Friedel-Crafts reaction
The Friedel-Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877.[1] There are two main types of Friedel-Crafts reactions: alkylation reactions and acylation reactions. This reaction type is part of electrophilic aromatic substitution.
Several reviews have been written.[2][3][4][5]
Friedel-Crafts alkylation
Friedel-Crafts alkylation involves the alkylation of an aromatic ring and an alkyl halide using a strong Lewis acid catalyst. With anhydrous ferric chloride as a catalyst, the alkyl group attaches at the former site of the chloride ion.
This reaction has one big disadvantage, namely that the product is more nucleophilic than the reactant due to the electron donating alkyl-chain. Therefore, another hydrogen is substituted with an alkyl-chain, which leads to overalkyation of the molecule. Also, if the chlorine is not on a tertiary carbon, carbocation rearrangement reaction will occur. This is due to the relative stability of the tertiary carbocation over the secondary and primary carbocations.
Steric hindrance can be exploited to limit the number of alkylations, as in the t-butylation of 1,4-dimethoxybenzene.
Alkylations are not limited to alkyl halides: Friedel-Crafts reactions are possible with any carbocationic intermediate such as those derived from alkenes and a protic acid or lewis acid, enones and epoxides. In one study the electrophile is a bromonium ion derived from an alkene and NBS:[6]
In this reaction samarium(III) triflate is believed to activate the NBS halogen donor in halonium ion formation.
Friedel-Crafts dealkylation
This reaction is reversible. In a reversed Friedel-Crafts reaction or Friedel-Crafts dealkylation, alkyl groups can be removed in the presence of protons and a Lewis acid.
For example, in a multiple addition of ethyl bromide to benzene ortho and para substitution is expected after the first monosubstitution step because an alkyl group is an activating group. The actual reaction product is 1,3,5-triethylbenzene with all alkyl groups as a meta substituent.[7] Thermodynamic reaction control makes sure that thermodynamically favored meta substitution with steric hindrance minimized takes prevalence over less favorable ortho and para substitution by chemical equilibration. The ultimate reaction product is thus the result of a series of alkylations and dealkylations.
Friedel-Crafts acylation
Friedel-Crafts acylation is the acylation of aromatic rings with an acyl chloride using a strong Lewis acid catalyst. Friedel-Crafts acylation is also possible with acid anhydrides. Reaction conditions are similar to the Friedel-Crafts alkylation mentioned above. This reaction has several advantages over the alkylation reaction. Due to the electron-withdrawing effect of the carbonyl group, the ketone product is always less reactive than the original molecule, so multiple acylations do not occur. Also, there are no carbocation rearrangements, as the carbonium ion is stabilized by a resonance structure in which the positive charge is on the oxygen.
The viability of the Friedel-Crafts acylation depends on the stability of the acyl chloride reagent. Formyl chloride, for example, is too unstable to be isolated. Thus, synthesis of benzaldehyde via the Friedel-Crafts pathway requires that formyl chloride be synthesized in situ. This is accomplished via the Gatterman-Koch Synthesis, accomplished by reacting benzene with carbon monoxide and hydrogen chloride under high pressure, catalyzed by a mixture of aluminium chloride and cuprous chloride.
In a simple mechanistic view step one consists of dissociation of a chlorine atom:
to an acyl cation followed by nucleophilic attack of the arene:
to product:
Friedel-Crafts hydroxyalkylation
Arenes react with certain aldehydes and ketones to the hydroxyalkylated product for example in the reaction of the mesityl derivative of glyoxal with benzene[8] to form a benzoin with an alcohol rather than a carbonyl group:
Scope & variations
This reaction is related to several classic named reactions:
- The acylated reaction product can be converted into the alkylated product via a Clemmensen reduction.
- The Gattermann-Koch reaction can be used to synthesize benzaldehyde from benzene.
- A reaction modification with an aromatic phenyl ester as a reactant is called the Fries rearrangement.
- In the Scholl reaction two arenes couple directly (sometimes called Friedel-Crafts arylation).
- In the Zincke-Suhl reaction p-cresol is alkylated to a cyclohexadienone with tetrachloromethane
- In the Blanc chloromethylation a chloromethyl group is added to an arene with formaldehyde, hydrochloric acid and zinc chloride.
- The Bogert-Cook Synthesis (1933) involves the dehydration and isomerization of 1-ß-phenylethylcyclohexanol to the octahydro derivative of phenanthrene [9]
- The Darzens-Nenitzescu Synthesis of Ketones (1910, 1936) [10] involves the acylation of cyclohexene with acetyl chloride to methylcyclohexenylketone.
- In the related Nenitzescu reductive acylation (1936) [11] a saturated hydrocarbon is added making it a reductive acylation to methylcyclohexylketone
- In a green chemistry variation aluminium chloride is replaced by graphite in an alkylation of p-xylene with 2-bromobutane. This variation will not work with primary halides from which less carbocation involvement is inferred.[12]
References
- ↑ Friedel, C.; Crafts, J. M. Compt. Rend. 1877, 84, 1392 & 1450.
- ↑ Price, C. C. Org. React. 1946, 3, 1. (Review)
- ↑ Groves, J. K. Chem. Soc. Rev. 1972, 1, 73. (Review)
- ↑ Eyley, S. C. Comp. Org. Syn. 1991, 2, 707-731. (Review)
- ↑ Heaney, H. Comp. Org. Syn. 1991, 2, 733-752. (Review)
- ↑ S. Hajra, B. Maji and S. Bar (2007). "Samarium Triflate-Catalyzed Halogen-Promoted Friedel-Crafts Alkylation with Alkenes". Org. Lett. 9 (15): 2783–2786. doi:10.1021/ol070813t.
- ↑ K. Wallace, R. Hanes, E. Anslyn, J. Morey, K. Kilway and J. Siegel (2005). "Preparation of 1,3,5-Tris(aminomethyl)-2,4,6-triethylbenzene from Two Versatile 1,3,5-Tri(halosubstituted) 2,4,6-Triethylbenzene Derivatives". Synthesis (12): 2080–2083. doi:10.1055/s-2005-869963.
- ↑ R. C. Fuson, H. H. Weinstock and G. E. Ullyot (1935). "A New Synthesis of Benzoins. 2′,4′,6′-Trimethylbenzoin". J. Am. Chem. Soc. 57 (10): 1803–1804. doi:10.1021/ja01313a015.
- ↑ This reaction with phosphorus pentoxide: J. v. d. Kamp and E. Mosettig (1936). "TRANS- AND CIS-AS-OCTAHYDROPHENANTHRENE". J. Am. Chem. Soc. 58 (6): 1062–1063. doi:10.1021/ja01297a514.
- ↑ http://www.drugfuture.com/OrganicNameReactions/onr94.htm
- ↑ http://www.drugfuture.com/OrganicNameReactions/onr277.htm
- ↑ Sereda, Grigoriy A.; Rajpara, Vikul B. (2007). "A Green Alternative to Aluminum Chloride Alkylation of Xylene". J. Chem. Educ. 2007 (84): 692.
FC reactions in Org. Synth.
Friedel-Crafts reactions appear in Organic Syntheses:
- Alkylations:
- Diphenylacetone, Organic Syntheses, Coll. Vol. 3, p.343 (1955); Vol. 29, p.38 (1949) Article link.
- Reaction of p-xylene with chloromethane to durene Organic Syntheses, Coll. Vol. 2, p.248 (1943); Vol. 10, p.32 (1930). Article link
- Synthesis of benzophenone from benzene and tetrachloromethane Organic Syntheses, Coll. Vol. 1, p.95 (1941); Vol. 8, p.26 (1928).Article link
- Acylations:
- Dibenzoylethylene Organic Syntheses, Coll. Vol. 3, p.248 (1955); Vol. 20, p.29 (1940) Article link.
- reaction of acenaphthene plus succinic acid Organic Syntheses, Coll. Vol. 3, p.6 (1955); Vol. 20, p.1 (1940).Article link
- Desoxybenzoin Organic Syntheses, Coll. Vol. 2, p.156 (1943); Vol. 12, p.16 (1932). Article link
- Acylation of a phenanthrene compound Organic Syntheses, Vol. 80, p.227 Link
- Reaction of bromobenzene with acetic anhydride Organic Syntheses, Coll. Vol. 1, p.109 (1941); Vol. 5, p.17 (1925). Article link
- beta-methylanthraquinone, Organic Syntheses, Coll. Vol. 1, p.353 (1941); Vol. 4, p.43 (1925). Article link
- Benzoylation of ferrocene Organic Syntheses, Coll. Vol. 6, p.625 (1988); Vol. 56, p.28 (1977). Article link