Genome project

(Redirected from Genome projects)
Jump to navigation Jump to search

WikiDoc Resources for Genome project

Articles

Most recent articles on Genome project

Most cited articles on Genome project

Review articles on Genome project

Articles on Genome project in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Genome project

Images of Genome project

Photos of Genome project

Podcasts & MP3s on Genome project

Videos on Genome project

Evidence Based Medicine

Cochrane Collaboration on Genome project

Bandolier on Genome project

TRIP on Genome project

Clinical Trials

Ongoing Trials on Genome project at Clinical Trials.gov

Trial results on Genome project

Clinical Trials on Genome project at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Genome project

NICE Guidance on Genome project

NHS PRODIGY Guidance

FDA on Genome project

CDC on Genome project

Books

Books on Genome project

News

Genome project in the news

Be alerted to news on Genome project

News trends on Genome project

Commentary

Blogs on Genome project

Definitions

Definitions of Genome project

Patient Resources / Community

Patient resources on Genome project

Discussion groups on Genome project

Patient Handouts on Genome project

Directions to Hospitals Treating Genome project

Risk calculators and risk factors for Genome project

Healthcare Provider Resources

Symptoms of Genome project

Causes & Risk Factors for Genome project

Diagnostic studies for Genome project

Treatment of Genome project

Continuing Medical Education (CME)

CME Programs on Genome project

International

Genome project en Espanol

Genome project en Francais

Business

Genome project in the Marketplace

Patents on Genome project

Experimental / Informatics

List of terms related to Genome project


Genome projects are scientific endeavours that ultimately aim to determine the complete genome sequence of an organism (be it an animal, a plant, a fungus, a bacterium, an archaean, a protist or a virus). The genome sequence for any organism requires the DNA sequences for each of the chromosomes in an organism to be determined. For bacteria, which usually have just one chromosome, a genome project will aim to map the sequence of that chromosome. Humans, with 22 pairs of autosomes and 2 sex chromosomes, will require 24 separate chromosome sequences in order to represent the completed genome.

The Human Genome Project was a landmark genome project and some have argued that the era of genomics is one of the more fundamental advances in human history.

Genome assembly

Genome assembly refers to the process of taking a large number of short DNA sequences, all of which were generated by a shotgun sequencing project, and putting them back together to create a representation of the original chromosomes from which the DNA originated. In a shotgun sequencing project, all the DNA from a source (usually a single organism, anything from a bacterium to a mammal) is first fractured into millions of small pieces. These pieces are then "read" by automated sequencing machines, which can read up to 900 nucleotides or bases at a time. (The four bases are adenine, guanine, cytosine, and thymine, represented as AGCT.) A genome assembly algorithm works by taking all the pieces and aligning them to one another, and detecting all places where two of the short sequences, or reads, overlap. These overlapping reads can be merged together, and the process continues.

Genome assembly is a very difficult computational problem, made more difficult because many genomes contain large numbers of identical sequences, known as repeats. These repeats can be thousands of nucleotides long, and some occur in thousands of different locations, especially in the large genomes of plants and animals.

Assembly software

Originally, most large-scale DNA sequencing centers developed their own software for assembling the sequences that they produced. However, this has changed as the software has grown more complex and as the number of sequencing centers has increased.

Among the list of available assemblers are:

  • Phred/Phrap by Phil Green was one of the first successful assemblers, widely used in the 1990s and early 2000s, especially for smaller genomes.
  • AMOS (A Modular, Open-Source assembler) is a well-known open source project intended to bring together the efforts of leading genome assembly code developers. The home of AMOS is currently http://amos.sourceforge.net. AMOS was initiated at The Institute for Genomic Research by Steven Salzberg, Mihai Pop, and Art Delcher, who are now at the The University of Maryland.
  • The Celera Assembler was the assembler developed by Gene Myers, Granger Sutton, Art Delcher, and others at Celera Genomics from 1998 until approximately 2002. It was moved to SourceForge and continues to be developed by the original scientists and others, at http://sourceforge.net/projects/wgs-assembler.
  • The Arachne assembler began in 2000 as the doctoral thesis of Serafim Batzoglou, now at Stanford University. Since that time, it has been developed by a team lead by David B. Jaffe at the Broad Institute, formerly part of the Whitehead Institute. It is available for download at http://www.broad.mit.edu/wga/arachnewiki/.

Genome annotation

Genome annotation is the process of attaching biological information to sequences.[1] It consists of two main steps:

  1. identifying elements on the genome, a process called Gene Finding, and
  2. attaching biological information to these elements.

Automatic annotation tools try to perform all this by computer analysis, as opposed to manual annotation (a.k.a. curation) which involves human expertise. Ideally, these approaches co-exist and complement each other in the same annotation pipeline.

The basic level of annotation is using BLAST for finding similarities, and then annotating genomes based on that. However, nowadays more and more additional information is added to the annotation platform. The additional information allows manual annotators to deconvolute discrepancies between genes that are given the same annotation.

For example, the SEED database uses genome context information, similarity scores, experimental data, and integrations of other resources to provide the most accurate genome annotations through their Subsystems approach. The Ensembl database relies on both curated data sources as well as a range of different software tools in their automated genome annotation pipeline.[2]

Structural annotation consists in the identification of genomic elements.

  • ORFs and their localisation
  • gene structure
  • coding regions
  • location of regulatory motifs

Functional annotation consists in attaching biological information to genomic elements.

  • biochemical function
  • biological function
  • involved regulation and interactions
  • expression

These steps may involve both biological experiments and in silico analysis.

A variety of software tools have been developed to permit scientists to view and share genome annotations.

Genome annotation is the next major challenge for the Human Genome Project, now that the genome sequences of human and several model organisms are largely complete. Identifying the locations of genes and other genetic control elements is often described as defining the biological "parts list" for the assembly and normal operation of an organism. Scientists are still at an early stage in the process of delineating this parts list and in understanding how all the parts "fit together".

Genome annotation is an active area of investigation and involves a number of different organizations in the life science community which publish the results of their efforts in publicly available biological databases accessible via the web and other electronic means. Here is an alphabetical listing of on-going projects relevant to genome annotation:

When is a genome project finished?

When sequencing a genome, there are usually regions that are difficult to sequence (often regions with highly repetitive DNA). Thus, 'completed' genome sequences are rarely ever complete, and terms such as 'working draft' or 'essentially complete' have been used to more accurately describe the status of such genome projects. Even when every base pair of a genome sequence has been determined, there are still likely to be errors present because DNA sequencing is not a completely accurate process. It could also be argued that a complete genome project should include the sequences of mitochondria and (for plants) chloroplasts as these organelles have their own genomes.

It is often reported that the goal of sequencing a genome is to obtain information about the complete set of genes in that particular genome sequence. The proportion of a genome that encodes for genes may be very small (particularly in eukaryotes such as humans, where coding DNA may only account for a few percent of the entire sequence). However, it is not always possible (or desirable) to only sequence the coding regions separately. Also, as scientists understand more about the role of this noncoding DNA (often referred to as junk DNA), it will become more important to have a complete genome sequence as a background to understanding the genetics and biology of any given organism.

In many ways genome projects do not confine themselves to only determining a DNA sequence of an organism. Such projects may also include gene prediction to find out where the genes are in a genome, and what those genes do. There may also be related projects to sequence ESTs or mRNAs to help find out where the genes actually are.

Historical and Technological Perspectives

Historically, when sequencing eukaryotic genomes (such as the worm Caenorhabditis elegans) it was common to first map the genome to provide a series of landmarks across the genome. Rather than sequence a chromosome in one go, it would be sequenced piece by piece (with the prior knowledge of approximately where that piece is located on the larger chromosome). Changes in technology and in particular improvements to the processing power of computers, means that genomes can now be 'shotgun sequenced' in one go (there are caveats to this approach though when compared to the traditional approach).

Improvements in DNA sequencing technology has meant that the cost of sequencing a new genome sequence has steadily fallen (in terms of cost per base pair) and newer technology has also meant that genomes can be sequenced far more quickly. When research agencies decide what new genomes to sequence, the emphasis has been on species which have either a relevance to human health (e.g. pathogenic bacteria or vectors of disease such as mosquitos) or species which have commercial importance (e.g. livestock and crop plants). Secondary emphasis is placed on species whose genomes will help answer important questions in molecular evolution (e.g. the common chimpanzee).

In the future, it is likely that it will become even cheaper and quicker to sequence a genome. This will allow for complete genome sequences to be determined from many different individuals of the same species. For humans, this will allow us to better understand aspects of human genetic diversity.

Example genome projects

The common fruit fly, one of the first higher organisms to have its genome completely sequenced.
The zebrafish, another important model organism in genomics.
The International Grape Genome Program aims to improve control, yield and quality in wine grape production.
The Genomics GTL Pictorial Program.

Many organisms have genome projects that have either been completed or will be completed shortly, including:

See also

References

  1. Stein, L. (2001). "Genome annotation: from sequence to biology". Nature Reviews Genetics. 2: 493–503. doi:10.1038/35080529. PMID 11433356.
  2. "Ensembl's genome annotation pipeline online documentation".

External links

  • GOLD:Genomes OnLine Database
  • Genome Project Database
  • BFAB functional annotation resources to benchmark and to develop new annotation methods
  • FUNAT automatic functional annotation of bacterial sequences according to MIPS FunCat categories
  • SEED The SEED database, an open source database for genome annotation.
    • SEED's RAST Rapid annotation using subsystems technology for the free automatic annotation of complete microbial genomes
    • SEED's MG-RAST metagenome annotation and comparative analysis.
  • IMG The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.
  • IMG/M The Integrated Microbial Genomes system, for metagenome analysis by the DOE-JGI.
  • CAMERA Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research.
  • PUMA2 Integrated Grid based system for the comparative analysis of genomes and metabolic reconstructions.
  • SUPERFAMILY Database of protein superfamily and family annotations for all completely sequenced organisms
  • SIMAP Similarity Matrix of Proteins distributed computing project
  • GDB Human Genome Data Base

Template:Genomics-footer

nl:Genoomproject hi:जीनोम परियोजना

Template:WH Template:WS