Immunohistochemistry

(Redirected from Immunohistochemical stains)
Jump to navigation Jump to search

WikiDoc Resources for Immunohistochemistry

Articles

Most recent articles on Immunohistochemistry

Most cited articles on Immunohistochemistry

Review articles on Immunohistochemistry

Articles on Immunohistochemistry in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Immunohistochemistry

Images of Immunohistochemistry

Photos of Immunohistochemistry

Podcasts & MP3s on Immunohistochemistry

Videos on Immunohistochemistry

Evidence Based Medicine

Cochrane Collaboration on Immunohistochemistry

Bandolier on Immunohistochemistry

TRIP on Immunohistochemistry

Clinical Trials

Ongoing Trials on Immunohistochemistry at Clinical Trials.gov

Trial results on Immunohistochemistry

Clinical Trials on Immunohistochemistry at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Immunohistochemistry

NICE Guidance on Immunohistochemistry

NHS PRODIGY Guidance

FDA on Immunohistochemistry

CDC on Immunohistochemistry

Books

Books on Immunohistochemistry

News

Immunohistochemistry in the news

Be alerted to news on Immunohistochemistry

News trends on Immunohistochemistry

Commentary

Blogs on Immunohistochemistry

Definitions

Definitions of Immunohistochemistry

Patient Resources / Community

Patient resources on Immunohistochemistry

Discussion groups on Immunohistochemistry

Patient Handouts on Immunohistochemistry

Directions to Hospitals Treating Immunohistochemistry

Risk calculators and risk factors for Immunohistochemistry

Healthcare Provider Resources

Symptoms of Immunohistochemistry

Causes & Risk Factors for Immunohistochemistry

Diagnostic studies for Immunohistochemistry

Treatment of Immunohistochemistry

Continuing Medical Education (CME)

CME Programs on Immunohistochemistry

International

Immunohistochemistry en Espanol

Immunohistochemistry en Francais

Business

Immunohistochemistry in the Marketplace

Patents on Immunohistochemistry

Experimental / Informatics

List of terms related to Immunohistochemistry

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]


Immunohistochemistry or IHC refers to the process of localizing proteins in cells of a tissue section exploiting the principle of antibodies binding specifically to antigens in biological tissues. [1] It takes its name from the roots "immuno," in reference to antibodies used in the procedure, and "histo," meaning tissue. Immunohistochemical staining is widely used in the diagnosis and treatment of cancer. Specific molecular markers are characteristic of particular cancer types. IHC is also widely used in basic research to understand the distribution and localization of biomarkers in different parts of a tissue.

Visualising an antibody-antigen interaction can be accomplished in a number of ways. In the most common instance, an antibody is conjugated to an enzyme, such as peroxidase, that can catalyse a colour-producing reaction (see immunoperoxidase staining). Alternatively, the antibody can also be tagged to a fluorophore, such as FITC, rhodamine, or Texas Red, (see immunofluorescence). The latter method is of great use in confocal laser scanning microscopy, which is highly sensitive and can also be used to visualise interactions between multiple proteins.

Antibody types

The antibodies used for specific detection can be polyclonal or monoclonal. Monoclonal antibodies are generally considered to exhibit greater specificity. Polyclonal antibodies are made by injecting animals with peptide antigens, and then after a secondary immune response is stimulated, isolating antibodies from whole serum. Thus, polyclonal antibodies are a heterogeneous mix of antibodies that recognize several epitopes.

Antibodies can also be classified as primary or secondary reagents. Primary antibodies are raised against an antigen of interest and are typically unconjugated (unlabelled), while secondary antibodies are raised against primary antibodies. Hence, secondary antibodies recognize immunoglobulins of a particular species and are conjugated to either biotin or a reporter enzyme such as alkaline phosphatase or horseradish peroxidase. Some secondary antibodies are conjugated to fluorescent agents, such as the Alexa-Fluor family, are also frequently used for detection of proteins in IHC procedures. Protein concentration is generally measured by densitometry analysis, where the intensity of staining correlates with the amount of the protein of interest.

Sample preparation

In the procedure, depending on the purpose and the thickness of the experimental sample, either thin (about 4-40 μm) slices are taken of the tissue of interest, or if the tissue is not very thick and is penetrable it is used whole. The slicing is usually accomplished through the use of a microtome, and slices are mounted on slides. "Free-floating IHC" uses slices that are not mounted, these slices are normally produced using a vibrating microtome.

Direct and indirect IHC

The direct method of immunohistochemical staining uses one labelled antibody, which binds directly to the antigen being stained for.

There are two strategies used for the immmunohistochemical detection of antigens in tissue, the direct method and the indirect method.In both cases, the tissue is treated to rupture the membranes, usually by using a kind of detergent called Triton X-100.

The direct method is a one-step staining method, and involves a labeled antibody (e.g. FITC conjugated antiserum) reacting directly with the antigen in tissue sections. This technique utilizes only one antibody and the procedure is therefore simple and rapid. However, it can suffer problems with sensitivity due to little signal amplification and is in less common use than indirect methods.

The indirect method of immunohistochemical staining uses one antibody against the antigen being probed for, and a second, labelled, antibody against the first.

The indirect method involves an unlabeled primary antibody (first layer) which reacts with tissue antigen, and a labeled secondary antibody (second layer) which reacts with the primary antibody. (The secondary antibody must be against the IgG of the animal species in which the primary antibody has been raised.) This method is more sensitive due to signal amplification through several secondary antibody reactions with different antigenic sites on the primary antibody. The second layer antibody can be labeled with a fluorescent dye or an enzyme.

In a common procedure, a biotinylated secondary antibody is coupled with streptavidin-horseradish peroxidase. This is reacted with 3,3'-Diaminobenzidine (DAB) to produce a brown staining wherever primary and secondary antibodies are attached in a process known as DAB staining. The reaction can be enhanced using nickel, producing a deep purple/gray staining.

The indirect method, aside from its greater sensitivity, also has the advantage that only a relatively small number of standard conjugated (labeled) secondary antibodies needs to be generated. For example, a labeled secondary antibody raised against rabbit IgG, which can be purchased "off the shelf," is useful with any primary antibody raised in rabbit. With the direct method, it would be necessary to make custom labeled antibodies against every antigen of interest.

Diagnostic IHC markers

IHC is an excellent detection technique and has the tremendous advantage of being able to show exactly where a given protein is located within the tissue examined. This has made it a widely-used technique in the neurosciences, enabling researchers to examine protein expression within specific brain structures. Its major disadvantage is that, unlike immunoblotting techniques where staining is checked against a molecular weight ladder, it is impossible to show in IHC that the staining corresponds with the protein of interest. For this reason, primary antibodies must be well-validated in a Western Blot or similar procedure. The technique is even more widely used in diagnostic surgical pathology for typing tumors (e.g. carcinoma vs melanoma).

Immunotherapy

Many proteins shown to be highly upregulated in pathological states by immunohistochemistry are potential targets for therapies utilising monoclonal antibodies.

For example, Her-2/neu (also known as Erb-B2) is highly expressed in a variety of cancer cell types. As such, antibodies against Her-2/neu have been FDA approved for clinical treatment of cancer under the drug name Herceptin.

References

  1. Ramos-Vara, JA (2005). "Techical Aspects of Immunohistochemistry". Vet Pathol. 42: 405–426.

External links


Template:Pathology

de:Immunhistochemie he:אימונוהיסטוכימיה sv:Immunohistokemi


Template:WikiDoc Sources