Pyruvate decarboxylation
Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [1] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.
Overview
Pyruvate decarboxylation is the biochemical reaction that uses pyruvate to form acetyl-CoA, releasing reducing equivalents and carbon dioxide. Pyruvate decarboxylation, which links the metabolic pathways glycolysis and the citric acid cycle, is referred to as "the transition reaction," "the link reaction," or "the oxidative decarboxylation reaction." This reaction is usually catalyzed by the pyruvate dehydrogenase complex as part of aerobic respiration.[1] In eukaryotes, pyruvate decarboxylation takes place exclusively inside mitochondria; in prokaryotes similar reactions take place in the cytoplasm and at the plasma membrane.[2]
The oxidative decarboxylation of pyruvate in anaerobic organisms differs from the aerobic process in that the electron acceptor is an iron-sulfur protein, not NAD+. The conversion is catalyzed by a thiamine-dependent enzyme that also acylates coenzyme A.[3] The reducing equivalents are disposed of by the production of H2 via hydrogenase.
References
- ↑ Alberts et al. Molecular Biology of the Cell. Garland Science, 2001. ISBN 0-8153-4072-9
- ↑ Raven et al. Biology, 8th edition. McGraw Hill, 2008. ISBN 978-0-07-110202-5
- ↑ Eric Chabrière, Xavier Vernède, Bruno Guigliarelli, Marie-Hélène Charon, E. Claude Hatchikian, Juan C. Fontecilla-Camps “Crystal Structure of the Free Radical Intermediate of Pyruvate:Ferredoxin Oxidoreductase” Science 2001, Volume 294, page 2559.
External links
de:Oxidative Decarboxylierung it:Decarbossilazione ossidativa del piruvato lt:Pereinamoji reakcija