TFE3, a member of the helix-loop-helix family of transcription factors, binds to the mu-E3 motif of the immunoglobulin heavy-chain enhancer and is expressed in many cell types (Henthorn et al., 1991).[supplied by OMIM][3]
A proportion of renal carcinomas (RCC) that occur in young patients are associated with translocations involving the TFE3 gene at chromosome Xp11.2 PRCC
↑Henthorn PS, Stewart CC, Kadesch T, Puck JM (Feb 1992). "The gene encoding human TFE3, a transcription factor that binds the immunoglobulin heavy-chain enhancer, maps to Xp11.22". Genomics. 11 (2): 374–8. doi:10.1016/0888-7543(91)90145-5. PMID1685140.
↑Mansky KC, Sulzbacher S, Purdom G, Nelsen L, Hume DA, Rehli M, Ostrowski MC (Feb 2002). "The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter". J. Leukoc. Biol. 71 (2): 304–10. PMID11818452.
↑Grinberg AV, Kerppola T (Mar 2003). "Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity". J. Biol. Chem. 278 (13): 11227–36. doi:10.1074/jbc.M211734200. PMID12551947.
Beckmann H, Kadesch T (1991). "The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity". Genes Dev. 5 (6): 1057–66. doi:10.1101/gad.5.6.1057. PMID2044953.
Beckmann H, Su LK, Kadesch T (1990). "TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif". Genes Dev. 4 (2): 167–79. doi:10.1101/gad.4.2.167. PMID2338243.
Weterman MJ, van Groningen JJ, Jansen A, van Kessel AG (2000). "Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins". Oncogene. 19 (1): 69–74. doi:10.1038/sj.onc.1203255. PMID10644981.
Hua X, Miller ZA, Benchabane H, Wrana JL, Lodish HF (2000). "Synergism between transcription factors TFE3 and Smad3 in transforming growth factor-beta-induced transcription of the Smad7 gene". J. Biol. Chem. 275 (43): 33205–8. doi:10.1074/jbc.C000568200. PMID10973944.
Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P, Bridge J (2001). "The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25". Oncogene. 20 (1): 48–57. doi:10.1038/sj.onc.1204074. PMID11244503.
Weterman MA, van Groningen JJ, den Hartog A, Geurts van Kessel A (2001). "Transformation capacities of the papillary renal cell carcinoma-associated PRCCTFE3 and TFE3PRCC fusion genes". Oncogene. 20 (12): 1414–24. doi:10.1038/sj.onc.1204213. PMID11313885.
Heimann P, El Housni H, Ogur G, Weterman MA, Petty EM, Vassart G (2001). "Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas". Cancer Res. 61 (10): 4130–5. PMID11358836.
Chung MC, Kim HK, Kawamoto S (2001). "TFEC can function as a transcriptional activator of the nonmuscle myosin II heavy chain-A gene in transfected cells". Biochemistry. 40 (30): 8887–97. doi:10.1021/bi002847d. PMID11467950.
Dintilhac A, Bernués J (2002). "HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences". J. Biol. Chem. 277 (9): 7021–8. doi:10.1074/jbc.M108417200. PMID11748221.
Kawata Y, Suzuki H, Higaki Y, Denisenko O, Schullery D, Abrass C, Bomsztyk K (2002). "bcn-1 Element-dependent activation of the laminin gamma 1 chain gene by the cooperative action of transcription factor E3 (TFE3) and Smad proteins". J. Biol. Chem. 277 (13): 11375–84. doi:10.1074/jbc.M111284200. PMID11801598.