HDL laboratory test: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
Rim Halaby (talk | contribs)
 
(15 intermediate revisions by the same user not shown)
Line 7: Line 7:


==Overview==
==Overview==
The association between [[HDL]] levels and cardiovascular outcomes, especially in [[statin]] treated high risk patient with residual cardiovascular risks, has triggered a large interest in conducting trials for the evaluation of [[HDL]] lowering drugs.  [[HDL]] is one of the most complicated and heterogeneous among the different lipoproteins as [[HDL]] subfractions can largely vary in function, structure, size, [[cholesterol]] and [[triglyceride]] contents.  The widely used method of measurement of [[HDL]] is done through the chemical measurement of HDL-cholesterol ( HDL-c); however, recent evidence suggests that HDL-c might not be the best method to quantify [[HDL]] and study its relationship with cardiovascular outcomes in statin treated patients.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref> Newer studies postulate that HDL-particles (HDL-p) might be a better measure for [[HDL]]'s effect on residual cardiovascular risks.<ref name="pmid24002795">{{cite journal| author=Mora S, Glynn RJ, Ridker PM| title=High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. | journal=Circulation | year= 2013 | volume= 128 | issue= 11 | pages= 1189-97 | pmid=24002795 | doi=10.1161/CIRCULATIONAHA.113.002671 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24002795}} </ref>
The association between [[HDL]] concentration and cardiovascular outcomes, especially in [[statin]] treated high-risk patients with residual cardiovascular risks, has triggered a large interest in the evaluation of [[HDL]] lowering drugs.  [[HDL]] is one of the most complicated and heterogeneous among the different lipoproteins; in fact, [[HDL]] subfractions vary largely in function, structure, size, [[cholesterol]] and [[triglyceride]] contents.  The widely used method of measurement of [[HDL]] is based on the chemical measurement of HDL-cholesterol (HDL-C); however, recent evidence suggests that HDL-C might not be the best method to measure the functionality of [[HDL]] and assess its relationship with cardiovascular outcomes among statin treated patients.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref> Recent studies postulate that HDL-particles (HDL-p) might be a better measure for [[HDL]]'s effect on residual cardiovascular risks.<ref name="pmid24002795">{{cite journal| author=Mora S, Glynn RJ, Ridker PM| title=High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. | journal=Circulation | year= 2013 | volume= 128 | issue= 11 | pages= 1189-97 | pmid=24002795 | doi=10.1161/CIRCULATIONAHA.113.002671 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24002795}} </ref>


==HDL Measures==
==HDL Measures==
===HDL-C===
===HDL-C===
* HDL-cholesterol (HDL-C) has long been used to quantify [[HDL]]; in fact, HDL-C is measured according to its density on ultracentrifugation which ranges between 1.063 and 1.21 g/L.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref>
* HDL-cholesterol (HDL-C) has long been used to quantify [[HDL]]; in fact, HDL-C is measured according to its density on ultracentrifugation which ranges between 1.063 and 1.21 g/L.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref>
* HDL is very heterogeneous in structure, size and proportion of cholesterol and triglycerides; in fact different HDL subtypes have different physiochemical and functional characteristics.  Although HDL-C have reflected an inverse relationship between HDL levels and cardiovascular risks, HDL-C have  failed to reflect this association in some circumstances as the number of HDL-C might not have reflected the actual functionality of HDL. Hence, it has been hypothesized that HDL-C might not be the best method to measure HDL functionality and study its association with cardiovascular risk factor.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref><ref name="pmid24019446">{{cite journal| author=Rosenson RS, Brewer HB, Ansell B, Barter P, Chapman MJ, Heinecke JW et al.| title=Translation of High-Density Lipoprotein Function Into Clinical Practice: Current Prospects and Future Challenges. | journal=Circulation | year= 2013 | volume= 128 | issue= 11 | pages= 1256-1267 | pmid=24019446 | doi=10.1161/CIRCULATIONAHA.113.000962 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24019446  }} </ref>
* HDL is very heterogeneous in structure, size, and proportion of cholesterol and triglycerides; in fact, different HDL subtypes have different physiochemical and functional characteristics.  Although several studies demonstrated an inverse relationship between HDL-C and cardiovascular risks, this association was not demonstrated in some circumstances probably because the number of HDL-C might not have reflected the actual functionality of HDL. Hence, it has been hypothesized that HDL-C may not be the best method to measure HDL functionality and assess its association with cardiovascular risk factors.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref><ref name="pmid24019446">{{cite journal| author=Rosenson RS, Brewer HB, Ansell B, Barter P, Chapman MJ, Heinecke JW et al.| title=Translation of High-Density Lipoprotein Function Into Clinical Practice: Current Prospects and Future Challenges. | journal=Circulation | year= 2013 | volume= 128 | issue= 11 | pages= 1256-1267 | pmid=24019446 | doi=10.1161/CIRCULATIONAHA.113.000962 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24019446  }} </ref>


===HDL-P===
===HDL-P===
* HDL-particles (HDL-P) refers to the sum of the concentration of all the subfractions of HDL. HDL-P can be measured by nuclear magnetic resonance spectroscopic analysis or by ion mobility.  However, these two modalities of measuring HDL-P have not been proven to give identical results; and hence there is no standardized modality to measure HDL-P yet.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref><ref name="pmid22424025">{{cite journal| author=Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA| title=Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. | journal=Am Heart J | year= 2012 | volume= 163 | issue= 3 | pages= 515-21, 521.e1-3 | pmid=22424025 | doi=10.1016/j.ahj.2011.11.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22424025  }} </ref><ref name="pmid17110242">{{cite journal| author=Jeyarajah EJ, Cromwell WC, Otvos JD| title=Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. | journal=Clin Lab Med | year= 2006 | volume= 26 | issue= 4 | pages= 847-70 | pmid=17110242 | doi=10.1016/j.cll.2006.07.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17110242  }} </ref>
* HDL-particles (HDL-P) refers to the sum of the concentration of all the subfractions of HDL. HDL-P can be measured by nuclear magnetic resonance spectroscopic analysis or by ion mobility.  However, these two modalities of measuring HDL-P have not been proven to give identical results; and hence there is no standardized modality to measure HDL-P yet.<ref name="pmid21266551">{{cite journal| author=Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A et al.| title=HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. | journal=Clin Chem | year= 2011 | volume= 57 | issue= 3 | pages= 392-410 | pmid=21266551 | doi=10.1373/clinchem.2010.155333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21266551  }} </ref><ref name="pmid22424025">{{cite journal| author=Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA| title=Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. | journal=Am Heart J | year= 2012 | volume= 163 | issue= 3 | pages= 515-21, 521.e1-3 | pmid=22424025 | doi=10.1016/j.ahj.2011.11.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22424025  }} </ref><ref name="pmid17110242">{{cite journal| author=Jeyarajah EJ, Cromwell WC, Otvos JD| title=Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. | journal=Clin Lab Med | year= 2006 | volume= 26 | issue= 4 | pages= 847-70 | pmid=17110242 | doi=10.1016/j.cll.2006.07.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17110242  }} </ref>


* A recent study published in September 2013 suggests that HDL particle number (HDL-P) might be a better tool to assess [[HDL]] levels and its association with residual cardiovascular outcomes in patients treated with [[statin]].  This study relied on data from JUPITER trial ( Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin trial) where HDL size, HDL-P, HDL-C and apolipoprotein A-I level were measured in a population of 10886 participants.  The results of this study revealed that HDL-P correlates better with coronary vascular disease than does HDL-C in statin treated participants.  HDL-P and HDL-C equally correlate with coronary vascular disease in patients not treated with [[statin]].<ref name="pmid24002795">{{cite journal| author=Mora S, Glynn RJ, Ridker PM| title=High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. | journal=Circulation | year= 2013 | volume= 128 | issue= 11 | pages= 1189-97 | pmid=24002795 | doi=10.1161/CIRCULATIONAHA.113.002671 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24002795}} </ref><ref name="pmid20655105">{{cite journal| author=Ridker PM, Genest J, Boekholdt SM, Libby P, Gotto AM, Nordestgaard BG et al.| title=HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. | journal=Lancet | year= 2010 | volume= 376 | issue= 9738 | pages= 333-9 | pmid=20655105 | doi=10.1016/S0140-6736(10)60713-1 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20655105  }} </ref>  In addition, MESNA ( Multi-Ethnic Study of Atherosclerosis) reported that, decreased levels of HDL-P correlates with an increased risk of higher intima-medial thickness of the carotid artery while HDL-C was no longer associated with intima-medial thickness of the carotid artery after adjustment for LDL-P and each other.<ref name="pmid22796256">{{cite journal| author=Mackey RH, Greenland P, Goff DC, Lloyd-Jones D, Sibley CT, Mora S| title=High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). | journal=J Am Coll Cardiol | year= 2012 | volume= 60 | issue= 6 | pages= 508-16 | pmid=22796256 | doi=10.1016/j.jacc.2012.03.060 | pmc=PMC3411890 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22796256  }} </ref>
* A recent study published in September 2013 suggests that HDL particle number (HDL-P) might be a better tool to assess [[HDL]] levels and its association with residual cardiovascular outcomes in patients treated with [[statin]].  This study relied on data from the [[JUPITER trial]] (Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin trial) where HDL size, HDL-P, HDL-C, and apolipoprotein A-I level were measured in a population of 10,886 participants.  HDL-P was better associated with coronary vascular disease than HDL-C in [[statin]]-treated participants.  HDL-P and HDL-C equally correlate with coronary vascular disease in patients not treated with [[statin]].<ref name="pmid24002795">{{cite journal| author=Mora S, Glynn RJ, Ridker PM| title=High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. | journal=Circulation | year= 2013 | volume= 128 | issue= 11 | pages= 1189-97 | pmid=24002795 | doi=10.1161/CIRCULATIONAHA.113.002671 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24002795}} </ref><ref name="pmid20655105">{{cite journal| author=Ridker PM, Genest J, Boekholdt SM, Libby P, Gotto AM, Nordestgaard BG et al.| title=HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. | journal=Lancet | year= 2010 | volume= 376 | issue= 9738 | pages= 333-9 | pmid=20655105 | doi=10.1016/S0140-6736(10)60713-1 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20655105  }} </ref>  In addition, the [[MESA trial]] (Multi-Ethnic Study of Atherosclerosis) reported that decreased levels of HDL-P is associated with an increased risk of higher intima-medial thickness of the [[carotid artery]].  HDL-C was no longer associated with intima-medial thickness of the [[carotid artery]] after adjustment for LDL-P and each other.<ref name="pmid22796256">{{cite journal| author=Mackey RH, Greenland P, Goff DC, Lloyd-Jones D, Sibley CT, Mora S| title=High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). | journal=J Am Coll Cardiol | year= 2012 | volume= 60 | issue= 6 | pages= 508-16 | pmid=22796256 | doi=10.1016/j.jacc.2012.03.060 | pmc=PMC3411890 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22796256  }} </ref>
* The identification of an accurate method to clinically measure [[HDL]] has tremendous importance, especially that a lot of trials investigating new [[HDL]] increasing therapies are ongoing.
* The identification of an accurate method to clinically measure [[HDL]] has tremendous importance, especially that a lot of trials investigating new [[HDL]] increasing therapies are ongoing.
===HDL-P as an Alternative to HDL-C===
Few studies have evaluated the association between HDL-P and CHD risks, and we know of none that evaluated it jointly with HDL-C and LDL-P.
* Multi-Ethnic Study of Atherosclerosis (MESA) study on multi-ethnic men and women without clinical CVD or lipid-lowering medication use at baseline showed HDL-C associations with carotid intima-media thickness (cIMT)  and its CHD incidence to be substantially attenuated by adjusting for atherogenic lipoproteins, particularly LDL-P.  In contrast, HDL-P (particle concentrations) associations with cIMT and incident CHD were relatively unaffected by adjusting for atherogenic lipoproteins, HDL-C, and mean HDL particle size.<ref name="pmid22796256">{{cite journal| author=Mackey RH, Greenland P, Goff DC, Lloyd-Jones D, Sibley CT, Mora S| title=High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). | journal=J Am Coll Cardiol | year= 2012 | volume= 60 | issue= 6 | pages= 508-16 | pmid=22796256 | doi=10.1016/j.jacc.2012.03.060 | pmc=PMC3411890 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22796256  }} </ref>
* Multiple Risk Factor Intervention Trial (MRFIT) : Low HDL-P levels predicted CHD death over 18 years of follow-up among men with metabolic syndrome in the MRFIT cohort.  In the MRFIT, high levels of HDL-P and especially medium HDL-P were associated with a reduced risk of CHD<ref name="pmid17011566">{{cite journal| author=Kuller LH, Grandits G, Cohen JD, Neaton JD, Prineas R, Multiple Risk Factor Intervention Trial Research Group| title=Lipoprotein particles, insulin, adiponectin, C-reactive protein and risk of coronary heart disease among men with metabolic syndrome. | journal=Atherosclerosis | year= 2007 | volume= 195 | issue= 1 | pages= 122-8 | pmid=17011566 | doi=10.1016/j.atherosclerosis.2006.09.001 | pmc=PMC2098784 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17011566  }} </ref>
* EPIC-Norfolk Study : In this study lower HDL-P levels predicted incident events independent of age, sex, apoB, triglycerides, mean HDL particle size, smoking, myeloperoxidase, paraoxonase-1, and hsCRP.<ref name="pmid19153411">{{cite journal| author=El Harchaoui K, Arsenault BJ, Franssen R, Després JP, Hovingh GK, Stroes ES et al.| title=High-density lipoprotein particle size and concentration and coronary risk. | journal=Ann Intern Med | year= 2009 | volume= 150 | issue= 2 | pages= 84-93 | pmid=19153411 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19153411  }} </ref>
* VA-HIT Study : In this study lower levels of baseline and on-trial HDL-P predicted CHD events among men with low HDL-C randomized to gemfibrozil vs. placebo.<ref name="pmid16534013">{{cite journal| author=Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR et al.| title=Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. | journal=Circulation | year= 2006 | volume= 113 | issue= 12 | pages= 1556-63 | pmid=16534013 | doi=10.1161/CIRCULATIONAHA.105.565135 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16534013  }} </ref>
* Women’s Health Study : This large study showed the inverse association of HDL-P with incident CVD over an 11 year follow-up was not significant.<ref name="pmid19204302">{{cite journal| author=Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM| title=Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. | journal=Circulation | year= 2009 | volume= 119 | issue= 7 | pages= 931-9 | pmid=19204302 | doi=10.1161/CIRCULATIONAHA.108.816181 | pmc=PMC2663974 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19204302  }} </ref>  However, HDL-P was inversely associated with incident CHD among postmenopausal women in the Women’s Health Initiative Hormone Trial, adjusted for treatment arm, and the inverse association of HDL-P with cIMT was statistically significant for women in the current study.<ref name="pmid18599797">{{cite journal| author=Hsia J, Otvos JD, Rossouw JE, Wu L, Wassertheil-Smoller S, Hendrix SL et al.| title=Lipoprotein particle concentrations may explain the absence of coronary protection in the women's health initiative hormone trials. | journal=Arterioscler Thromb Vasc Biol | year= 2008 | volume= 28 | issue= 9 | pages= 1666-71 | pmid=18599797 | doi=10.1161/ATVBAHA.108.170431 | pmc=PMC2701372 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18599797  }} </ref>


==HDL Measurement Modalities==
==HDL Measurement Modalities==
The available modalities for the measurement of HDL are:
* Covalent chromatography
* Chemical precipitation
* Cross immune electrophoresis
* Ion mobility assays
* NMR
* One dimension gel electrophoresis
* Ultracentrifugation


===Chemical Measurements===
===Chemical Measurements===
Chemical measurements can be used to estimate HDL concentrations present in a blood sample, though such measurements may not indicate how well the HDL particles are functioning to reverse transport cholesterol from tissues. HDL-cholesterol (HDL-C) is measured by first removing LDL particles by aggregation or precipitation with divalent ions (such as Mg++) and then coupling the products of a cholesterol oxidase reaction to an indicator reaction. The measurement of apo-A reactive capacity can be used to measure HDL cholesterol but is thought to be less accurate.
Chemical measurements can be used to estimate HDL concentrations present in a blood sample, though such measurements may not indicate how well the HDL particles are functioning to reverse transport cholesterol from tissues. HDL-cholesterol (HDL-C) is measured by first removing LDL particles by aggregation or precipitation with divalent ions (such as Mg++) and then coupling the products of a cholesterol oxidase reaction to an indicator reaction. The measurement of apo-A reactive capacity can be used to measure HDL cholesterol but is thought to be less accurate.


Line 35: Line 52:
==References==
==References==
{{Reflist|2}}
{{Reflist|2}}
{{Lipopedia}}


{{Lipopedia}}
[[Category:Lipopedia]]
[[Category:Lipopedia]]
[[Category:Cardiology]]
[[Category:Cardiology]]
[[Category:HDLpedia]]

Latest revision as of 22:20, 9 October 2014

High Density Lipoprotein Microchapters

Home

Patient information

Overview

Historical Perspective

Classification

Physiology

Pathophysiology

Causes

Low HDL
High HDL

Epidemiology and Demographics

Screening

Natural History, Complications and Prognosis

Diagnosis

HDL Laboratory Test

Treatment

Medical Therapy

Prevention

Future or Investigational Therapies

Clinical Trials

Landmark Trials

List of All Trials

Case Studies

Case #1

HDL laboratory test On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of HDL laboratory test

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on HDL laboratory test

CDC on HDL laboratory test

HDL laboratory test in the news

Blogs on HDL laboratory test

Directions to Hospitals Treating High density lipoprotein

Risk calculators and risk factors for HDL laboratory test

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rim Halaby, M.D. [2]

Synonyms and keywords: HDL-C, HDL-P

Overview

The association between HDL concentration and cardiovascular outcomes, especially in statin treated high-risk patients with residual cardiovascular risks, has triggered a large interest in the evaluation of HDL lowering drugs. HDL is one of the most complicated and heterogeneous among the different lipoproteins; in fact, HDL subfractions vary largely in function, structure, size, cholesterol and triglyceride contents. The widely used method of measurement of HDL is based on the chemical measurement of HDL-cholesterol (HDL-C); however, recent evidence suggests that HDL-C might not be the best method to measure the functionality of HDL and assess its relationship with cardiovascular outcomes among statin treated patients.[1] Recent studies postulate that HDL-particles (HDL-p) might be a better measure for HDL's effect on residual cardiovascular risks.[2]

HDL Measures

HDL-C

  • HDL-cholesterol (HDL-C) has long been used to quantify HDL; in fact, HDL-C is measured according to its density on ultracentrifugation which ranges between 1.063 and 1.21 g/L.[1]
  • HDL is very heterogeneous in structure, size, and proportion of cholesterol and triglycerides; in fact, different HDL subtypes have different physiochemical and functional characteristics. Although several studies demonstrated an inverse relationship between HDL-C and cardiovascular risks, this association was not demonstrated in some circumstances probably because the number of HDL-C might not have reflected the actual functionality of HDL. Hence, it has been hypothesized that HDL-C may not be the best method to measure HDL functionality and assess its association with cardiovascular risk factors.[1][3]

HDL-P

  • HDL-particles (HDL-P) refers to the sum of the concentration of all the subfractions of HDL. HDL-P can be measured by nuclear magnetic resonance spectroscopic analysis or by ion mobility. However, these two modalities of measuring HDL-P have not been proven to give identical results; and hence there is no standardized modality to measure HDL-P yet.[1][4][5]
  • A recent study published in September 2013 suggests that HDL particle number (HDL-P) might be a better tool to assess HDL levels and its association with residual cardiovascular outcomes in patients treated with statin. This study relied on data from the JUPITER trial (Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin trial) where HDL size, HDL-P, HDL-C, and apolipoprotein A-I level were measured in a population of 10,886 participants. HDL-P was better associated with coronary vascular disease than HDL-C in statin-treated participants. HDL-P and HDL-C equally correlate with coronary vascular disease in patients not treated with statin.[2][6] In addition, the MESA trial (Multi-Ethnic Study of Atherosclerosis) reported that decreased levels of HDL-P is associated with an increased risk of higher intima-medial thickness of the carotid artery. HDL-C was no longer associated with intima-medial thickness of the carotid artery after adjustment for LDL-P and each other.[7]
  • The identification of an accurate method to clinically measure HDL has tremendous importance, especially that a lot of trials investigating new HDL increasing therapies are ongoing.

HDL-P as an Alternative to HDL-C

Few studies have evaluated the association between HDL-P and CHD risks, and we know of none that evaluated it jointly with HDL-C and LDL-P.

  • Multi-Ethnic Study of Atherosclerosis (MESA) study on multi-ethnic men and women without clinical CVD or lipid-lowering medication use at baseline showed HDL-C associations with carotid intima-media thickness (cIMT) and its CHD incidence to be substantially attenuated by adjusting for atherogenic lipoproteins, particularly LDL-P. In contrast, HDL-P (particle concentrations) associations with cIMT and incident CHD were relatively unaffected by adjusting for atherogenic lipoproteins, HDL-C, and mean HDL particle size.[7]
  • Multiple Risk Factor Intervention Trial (MRFIT) : Low HDL-P levels predicted CHD death over 18 years of follow-up among men with metabolic syndrome in the MRFIT cohort. In the MRFIT, high levels of HDL-P and especially medium HDL-P were associated with a reduced risk of CHD[8]
  • EPIC-Norfolk Study : In this study lower HDL-P levels predicted incident events independent of age, sex, apoB, triglycerides, mean HDL particle size, smoking, myeloperoxidase, paraoxonase-1, and hsCRP.[9]
  • VA-HIT Study : In this study lower levels of baseline and on-trial HDL-P predicted CHD events among men with low HDL-C randomized to gemfibrozil vs. placebo.[10]
  • Women’s Health Study : This large study showed the inverse association of HDL-P with incident CVD over an 11 year follow-up was not significant.[11] However, HDL-P was inversely associated with incident CHD among postmenopausal women in the Women’s Health Initiative Hormone Trial, adjusted for treatment arm, and the inverse association of HDL-P with cIMT was statistically significant for women in the current study.[12]

HDL Measurement Modalities

The available modalities for the measurement of HDL are:

  • Covalent chromatography
  • Chemical precipitation
  • Cross immune electrophoresis
  • Ion mobility assays
  • NMR
  • One dimension gel electrophoresis
  • Ultracentrifugation

Chemical Measurements

Chemical measurements can be used to estimate HDL concentrations present in a blood sample, though such measurements may not indicate how well the HDL particles are functioning to reverse transport cholesterol from tissues. HDL-cholesterol (HDL-C) is measured by first removing LDL particles by aggregation or precipitation with divalent ions (such as Mg++) and then coupling the products of a cholesterol oxidase reaction to an indicator reaction. The measurement of apo-A reactive capacity can be used to measure HDL cholesterol but is thought to be less accurate.

Electrophoresis Measurements

Since the HDL particles have a net negative charge and vary by size, electrophoresis measurements have been utilized since the 1960s to both indicate the number of HDL particles and additionally sort them by size. Larger HDL particles are carrying more cholesterol.

NMR Measurements

The newest methodology for measuring HDL particles, available clinically since the late 1990s uses nuclear magnetic resonance fingerprinting of the particles to measure both concentration and sizes. This methodology was pioneered by researcher Jim Otvos and the North Carolina State University academic research spinoff company and dramatically reduced the cost of HDL measurements.

References

  1. 1.0 1.1 1.2 1.3 Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A; et al. (2011). "HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events". Clin Chem. 57 (3): 392–410. doi:10.1373/clinchem.2010.155333. PMID 21266551.
  2. 2.0 2.1 Mora S, Glynn RJ, Ridker PM (2013). "High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy". Circulation. 128 (11): 1189–97. doi:10.1161/CIRCULATIONAHA.113.002671. PMID 24002795.
  3. Rosenson RS, Brewer HB, Ansell B, Barter P, Chapman MJ, Heinecke JW; et al. (2013). "Translation of High-Density Lipoprotein Function Into Clinical Practice: Current Prospects and Future Challenges". Circulation. 128 (11): 1256–1267. doi:10.1161/CIRCULATIONAHA.113.000962. PMID 24019446.
  4. Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA (2012). "Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study". Am Heart J. 163 (3): 515–21, 521.e1–3. doi:10.1016/j.ahj.2011.11.017. PMID 22424025.
  5. Jeyarajah EJ, Cromwell WC, Otvos JD (2006). "Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy". Clin Lab Med. 26 (4): 847–70. doi:10.1016/j.cll.2006.07.006. PMID 17110242.
  6. Ridker PM, Genest J, Boekholdt SM, Libby P, Gotto AM, Nordestgaard BG; et al. (2010). "HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial". Lancet. 376 (9738): 333–9. doi:10.1016/S0140-6736(10)60713-1. PMID 20655105.
  7. 7.0 7.1 Mackey RH, Greenland P, Goff DC, Lloyd-Jones D, Sibley CT, Mora S (2012). "High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis)". J Am Coll Cardiol. 60 (6): 508–16. doi:10.1016/j.jacc.2012.03.060. PMC 3411890. PMID 22796256.
  8. Kuller LH, Grandits G, Cohen JD, Neaton JD, Prineas R, Multiple Risk Factor Intervention Trial Research Group (2007). "Lipoprotein particles, insulin, adiponectin, C-reactive protein and risk of coronary heart disease among men with metabolic syndrome". Atherosclerosis. 195 (1): 122–8. doi:10.1016/j.atherosclerosis.2006.09.001. PMC 2098784. PMID 17011566.
  9. El Harchaoui K, Arsenault BJ, Franssen R, Després JP, Hovingh GK, Stroes ES; et al. (2009). "High-density lipoprotein particle size and concentration and coronary risk". Ann Intern Med. 150 (2): 84–93. PMID 19153411.
  10. Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR; et al. (2006). "Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial". Circulation. 113 (12): 1556–63. doi:10.1161/CIRCULATIONAHA.105.565135. PMID 16534013.
  11. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM (2009). "Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women". Circulation. 119 (7): 931–9. doi:10.1161/CIRCULATIONAHA.108.816181. PMC 2663974. PMID 19204302.
  12. Hsia J, Otvos JD, Rossouw JE, Wu L, Wassertheil-Smoller S, Hendrix SL; et al. (2008). "Lipoprotein particle concentrations may explain the absence of coronary protection in the women's health initiative hormone trials". Arterioscler Thromb Vasc Biol. 28 (9): 1666–71. doi:10.1161/ATVBAHA.108.170431. PMC 2701372. PMID 18599797.