Metabolic acidosis laboratory findings: Difference between revisions
Rim Halaby (talk | contribs) No edit summary |
Rim Halaby (talk | contribs) |
||
(21 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
|} | |} | ||
{{Metabolic acidosis}} | {{Metabolic acidosis}} | ||
{{CMG}} | {{CMG}}; {{AE}} {{Rim}} | ||
==Overview== | ==Overview== | ||
Metabolic acidosis is present when the blood [[bicarbonate]] concentration is decreased (<24 meq/L). | Metabolic acidosis is present when the blood [[bicarbonate]] concentration is decreased (<24 meq/L). The most important step in the evaluation of metabolic acidosis is to calculate the [[anion gap]]. Several laboratory measurements are useful in metabolic acidosis, such as [[arterial blood gas]] sampling, [[electrolytes]], serum [[lactate]] and [[ketone]] concentrations, as well as toxicological screening ([[salicylate level]], [[methanol]], or [[ethylene glycol]]). The analysis of the urine electrolytes concentration might be useful in normal anion gap metabolic acidosis. | ||
==Laboratory Findings== | ==Laboratory Findings== | ||
Metabolic acidosis is present when the blood [[bicarbonate]] concentration is decreased (<24 meq/L). | Metabolic acidosis is present when the blood [[bicarbonate]] concentration is decreased (<24 meq/L). The evaluation of metabolic acidosis should target the following: | ||
* Plasma bicarbonate | * Determine whether this is normal anion gap or high anion gap metabolic acidosis | ||
* Determine whether metabolic acidosis is an isolated or combined process | |||
* Determine whether respiratory compensation is appropriate or not | |||
* Determine the underlying etiology of the metabolic acidosis | |||
Laboratory tests include: | |||
* Electrolytes plasma concentration to calculate the plasma anion gap: | |||
** Plasma bicarbonate | |||
** Plasma Na+ | |||
** Plasma Cl- | |||
* PCO2 | * PCO2 | ||
* Arterial pH | * Arterial pH | ||
* | * In normal anion gap metabolic acidosis, additional measurement of urinary Na+, K+, and Cl- is needed in order to calculate urinary anion gap. | ||
* In high anion gap metabolic acidosis, the osmolal gap needs to be calculated; and therefore, blood sodium concentration, blood glucose, and BUN are needed. | |||
In normal anion gap metabolic acidosis, additional measurement of urinary Na+, K+, and Cl- is needed in order to calculate urinary anion gap. | |||
In high anion gap metabolic acidosis, the osmolal gap needs to be calculated; and therefore, blood sodium concentration, blood glucose, and BUN are needed. | |||
Shown below is an algorithm depicting the series of laboratory tests needed to evaluate metabolic acidosis. | Shown below is an algorithm depicting the series of laboratory tests needed to evaluate metabolic acidosis. | ||
{{Family tree/start}} | {{Family tree/start}} | ||
{{Family tree | | | A01 | | | | A01= <div style="text-align: left; width: 15em; padding:1em;">❑ Anion Gap (Na<sup>+</sup> - Cl<sup>-</sup> - HCO<sub>3</sub><sup>-</sup>) <br> ❑ Consider measurement of albumin, Ca<sup>2+</sup>, K<sup>+</sup>, and Mg<sup>2+</sup> | {{Family tree |boxstyle=background: #B8B8B8; | | | A01 | | | | A01= <div style="text-align: left; width: 15em; padding:1em;">❑ Anion Gap (Na<sup>+</sup> - Cl<sup>-</sup> - HCO<sub>3</sub><sup>-</sup>) <br> ❑ Consider measurement of albumin, Ca<sup>2+</sup>, K<sup>+</sup>, and Mg<sup>2+</sup> </div> }} | ||
{{Family tree | |,|-|^|-|.| | | }} | {{Family tree | |,|-|^|-|.| | | }} | ||
{{Family tree | B01 | | B02 | B01= '''High anion gap''' <br> <div style="text-align: left; width: 15em; padding:1em;"> ❑ Screen for ketonuria (dipstick acetoactetae or plasma beta hydoxybutarate) <br>❑ Renal function <br> ❑ Lactate concentration <br> ❑ Toxin screen <br> ❑ Osmolal gap </div>| B02= '''Normal-low anion gap''' <br> <div style="text-align: left; width: 15em; padding:1em;">❑ Urinary anion gap (Na<sup>+</sup> + K<sup>+</sup> - Cl<sup>-</sup>) </div>}} | {{Family tree |boxstyle=background: #B8B8B8; | B01 | | B02 | B01= '''High anion gap''' <br> <div style="text-align: left; width: 15em; padding:1em;"> ❑ Screen for ketonuria (dipstick acetoactetae or plasma beta hydoxybutarate) <br>❑ Renal function <br> ❑ Lactate concentration <br> ❑ Toxin screen <br> ❑ Osmolal gap </div>| B02= '''Normal-low anion gap''' <br> <div style="text-align: left; width: 15em; padding:1em;">❑ Urinary anion gap (Na<sup>+</sup> + K<sup>+</sup> - Cl<sup>-</sup>) </div>}} | ||
{{Family tree/end}} | {{Family tree/end}} | ||
Note that, in case of [[ketonuria]], urine [[acetoacetate]] might be initially absent. | |||
==Anion Gap== | ==Anion Gap== | ||
Line 39: | Line 46: | ||
| style="font-size: 100; padding: 0 5px; background: #B8B8B8;" align=left |<br> '''Anion gap = Na<sup>+</sup> - (Cl<sup>-</sup> + HCO3<sup>-</sup>)'''<br><br> | | style="font-size: 100; padding: 0 5px; background: #B8B8B8;" align=left |<br> '''Anion gap = Na<sup>+</sup> - (Cl<sup>-</sup> + HCO3<sup>-</sup>)'''<br><br> | ||
|} | |} | ||
Note the following: | |||
* If plasma glucose is elevated, use the measured Na<sup>+</sup> concentration rather than the corrected one. | |||
* The estimated anion gap is approximately 2.5 x the concentration of [[albumin]]. | |||
* There is a decrease of the AG by 2.5 for every 1 g/dL decrease in plasma albumin. | |||
====Interpretation of Anion Gap==== | ====Interpretation of Anion Gap==== | ||
Line 55: | Line 67: | ||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''High''' | |style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''High''' | ||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | | |style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | | ||
* Increased in unmeasured anions, OR | * Increased in unmeasured anions (organic acids, phosphates, sulfates), OR | ||
* Decrease in unmeasured cations | * Decrease in unmeasured cations (calcium, potassium, magnesium, lithium, bromine) | ||
|- | |- | ||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''Low''' | |style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''Low''' | ||
Line 62: | Line 74: | ||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | | |style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | | ||
* Laboratory mistake (the most common etiology) | * Laboratory mistake (the most common etiology) | ||
* Low albumin level | * Low albumin level (there is a decrease of the AG by 2.5 for every 1 g/dL decrease in plasma albumin), OR | ||
* Increase in unmeasured cations | * Increase in unmeasured cations (calcium, potassium, magnesium, lithium, bromine) | ||
* Elevated cationic paraprotein (immunoglubulin G gammopathy) | * Elevated cationic paraprotein (immunoglubulin G gammopathy) | ||
* Ingestion of [[pyridostigmine bromide]] (used to treat [[myasthenia gravis]]) | * Ingestion of [[pyridostigmine bromide]] (used to treat [[myasthenia gravis]]) | ||
Line 93: | Line 105: | ||
|} | |} | ||
==Plasma | ==Plasma Osmolal Gap== | ||
====Calculation of Plasma | ====Calculation of Plasma Osmolal Gap==== | ||
The plasma | The plasma osmolal gap can be useful in high anion gap metabolic acidosis. The plasma osmolal gap can be calculated as follows: | ||
{| | {| | ||
|- | |- | ||
| style="font-size: 100; padding: 0 5px; background: #B8B8B8;" align=left |<br> '''Plasma | | style="font-size: 100; padding: 0 5px; background: #B8B8B8;" align=left |<br> '''Plasma osmolal gap = plasma calculated osmolal gap - plasma measured osmolal gap'''<br><br> | ||
'''Plasma osmolality= (2 x Na<sup>+</sup>) + (Glucose/18) + (BUN/2.8)''' | '''Plasma osmolality= (2 x Na<sup>+</sup>) + (Glucose/18) + (BUN/2.8)''' | ||
|} | |} | ||
====Interpretation of Plasma | ====Interpretation of Plasma Osmolal Gap==== | ||
The plasma | The plasma osmolal gap is considered high if >10. A high osmolal gap represents an increase in unmeasured osmoles, such as in the cases of ingestion. The osmolal gap is also elevated in [[ketoacidosis]] and [[lactic acidosis]]. | ||
Shown below is a table depicting the anion gap and osmolal gap in different types of ingestion. | |||
{| style="cellpadding=0; cellspacing= 0; width: 600px;" | |||
|- | |||
| style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center | '''Ingestion''' || style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center |'''Anion gap''' || style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center |'''Osmolal gap''' | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Ethanol]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Methanol]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Ethylene glycol]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Formaldehyde]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Ethylene glycol]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Propylene glycol]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Isopropyl alcohol]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↔||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | ↑ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Acetaminophen]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↔ | |||
|- | |||
|style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |[[Salicylates]] ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↑|| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↔ | |||
|} | |||
==Hypochloremia vs Hypercholremia== | ==Hypochloremia vs Hypercholremia== | ||
Line 136: | Line 164: | ||
Pure vs combined metabolic acidosis can be estimated using the following values: plasma HCO3<sup>-</sup>, PCO2, and arterial pH. Shown below is a table summarizing the findings in the different scenarios. | Pure vs combined metabolic acidosis can be estimated using the following values: plasma HCO3<sup>-</sup>, PCO2, and arterial pH. Shown below is a table summarizing the findings in the different scenarios. | ||
{| | {| style="cellpadding=0; cellspacing= 0; width: 600px;" | ||
| Acid base status || Plasma bicarbonate (meq/L) || Arterial pH || PCO2 (mmHg) | |- | ||
| style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center | '''Acid base status''' || style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center | '''Plasma bicarbonate (meq/L)''' || style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center | '''Arterial pH''' || style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center | '''PCO2 (mmHg)''' | |||
|- | |- | ||
| Normal || 24 || 7.4 || 40 | | style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |Normal || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |24 || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |7.4 || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |40 | ||
|- | |- | ||
| Pure metabolic acidosis || ↓ || ↓ || ↓ | | style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |Pure metabolic acidosis || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↓ || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↓ || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↓ | ||
|- | |- | ||
| Combined metabolic and respiratory acidosis || ↓ || ↓ || ↔ | | style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |Combined metabolic and respiratory acidosis || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↓ ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | ↓ || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↔ | ||
|- | |- | ||
| Combined metabolic and respiratory alkalosis || ↓ || ↔ || ↓ | | style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |Combined metabolic and respiratory alkalosis || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↓ ||style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left | ↔ || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |↓ | ||
|} | |} | ||
===Δ Anion gap/Δ HCO3<sup>-</sup>=== | |||
====Calculation of Δ Anion gap/Δ HCO3<sup>-</sup>==== | |||
Pure high anion gap metabolic acidosis can be differentiated from combined metabolic acidosis by using the following equation: Δ Anion gap (AG)/ Δ HCO3<sup>-</sup> | Pure high anion gap metabolic acidosis can be differentiated from combined metabolic acidosis by using the following equation: Δ Anion gap (AG)/ Δ HCO3<sup>-</sup> | ||
{| | {| | ||
|- | |- | ||
| ''' | | style="font-size: 100; padding: 0 5px; background: #B8B8B8;" align=left |<br> '''Δ Anion gap (AG)/ Δ HCO3<sup>-</sup> = (calculated AG - expected AG)/(calculated HCO3<sup>-</sup>- expected HCO3<sup>-</sup>)'''<br><br> | ||
|} | |||
====Interpretation of Δ Anion gap/Δ HCO3<sup>-</sup>==== | |||
{| style="cellpadding=0; cellspacing= 0; width: 600px;" | |||
|- | |- | ||
| '''< | | style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center |'''Δ AG/ Δ HCO3<sup>-</sup>''' || style="padding: 0 5px; font-size: 100%; background: #4682B4; color: #FFFFFF;" align=center |'''Interpretation''' | ||
|- | |- | ||
| '''>2''' || High anion gap metabolic acidosis PLUS metabolic alkalosis | | style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''1-2''' || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |Pure high anion gap metabolic acidosis | ||
|- | |||
| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''<1''' || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |High anion gap metabolic acidosis PLUS normal anion gap metabolic acidosis | |||
|- | |||
| style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |'''>2''' || style="font-size: 100; padding: 0 5px; background: #B8B8B8" align=left |High anion gap metabolic acidosis PLUS metabolic alkalosis | |||
|} | |} | ||
==Associated Potassium Disorders== | ==Associated Potassium Disorders== |
Latest revision as of 22:51, 20 October 2014
Resident Survival Guide |
Metabolic acidosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Metabolic acidosis laboratory findings On the Web |
American Roentgen Ray Society Images of Metabolic acidosis laboratory findings |
Risk calculators and risk factors for Metabolic acidosis laboratory findings |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rim Halaby, M.D. [2]
Overview
Metabolic acidosis is present when the blood bicarbonate concentration is decreased (<24 meq/L). The most important step in the evaluation of metabolic acidosis is to calculate the anion gap. Several laboratory measurements are useful in metabolic acidosis, such as arterial blood gas sampling, electrolytes, serum lactate and ketone concentrations, as well as toxicological screening (salicylate level, methanol, or ethylene glycol). The analysis of the urine electrolytes concentration might be useful in normal anion gap metabolic acidosis.
Laboratory Findings
Metabolic acidosis is present when the blood bicarbonate concentration is decreased (<24 meq/L). The evaluation of metabolic acidosis should target the following:
- Determine whether this is normal anion gap or high anion gap metabolic acidosis
- Determine whether metabolic acidosis is an isolated or combined process
- Determine whether respiratory compensation is appropriate or not
- Determine the underlying etiology of the metabolic acidosis
Laboratory tests include:
- Electrolytes plasma concentration to calculate the plasma anion gap:
- Plasma bicarbonate
- Plasma Na+
- Plasma Cl-
- PCO2
- Arterial pH
- In normal anion gap metabolic acidosis, additional measurement of urinary Na+, K+, and Cl- is needed in order to calculate urinary anion gap.
- In high anion gap metabolic acidosis, the osmolal gap needs to be calculated; and therefore, blood sodium concentration, blood glucose, and BUN are needed.
Shown below is an algorithm depicting the series of laboratory tests needed to evaluate metabolic acidosis.
❑ Anion Gap (Na+ - Cl- - HCO3-) ❑ Consider measurement of albumin, Ca2+, K+, and Mg2+ | |||||||||||||||||
High anion gap ❑ Screen for ketonuria (dipstick acetoactetae or plasma beta hydoxybutarate) ❑ Renal function ❑ Lactate concentration ❑ Toxin screen ❑ Osmolal gap | Normal-low anion gap ❑ Urinary anion gap (Na+ + K+ - Cl-) | ||||||||||||||||
Note that, in case of ketonuria, urine acetoacetate might be initially absent.
Anion Gap
Calculation of Anion Gap
The anion gap can be calculated as follows:
Anion gap = Na+ - (Cl- + HCO3-) |
Note the following:
- If plasma glucose is elevated, use the measured Na+ concentration rather than the corrected one.
- The estimated anion gap is approximately 2.5 x the concentration of albumin.
- There is a decrease of the AG by 2.5 for every 1 g/dL decrease in plasma albumin.
Interpretation of Anion Gap
Anion gap (AG) is: unmeasured anions - unmeasured cations
- Unmeasured anions include plasma proteins
- Unmeasured cations include calcium, potassium, magnesium
When an anion decrease, another anion must increase as a compensation to keep the electrolyte balance. In metabolic acidosis, a decrease in the bicarbonate is associate with an increase in another anion. For example, when bicarbonate decreases, chloride might increase as a compensation. In that case the anion gap remains within normal limits. If chloride does not increase following the decrease of bicarbonate, another unmeasured anion must increase leading to an increase in the anion gap.
Shown below is a table that summarizes the interpretation of the anion gap results. Note that a change in the unmeasured cation might lead to a change in the anion gap without any alteration in the acid base status.
Anion gap | Interpretation |
High |
|
Low |
|
Urinary Anion Gap
Calculation of Urinary Anion Gap
The urinary anion gap must be calculated in normal anion gap metabolic acidosis. The anion gap can be calculated as follows:
Urinary anion gap = (Na+ + K+)- (Cl- |
Interpretation of Urinary Anion Gap
Urinary anion gap= Unmeasured anion- unmeasured cations
The major unmeasured cation is NH4+.
Urinary anion gap | Interpretation |
U (AG) < 0 | Increased NH4+ production to accompany the increased Cl- which reflects that the kidneys are not the cause of the metabolic acidosis |
U(AG) ≥ 0 | Impaired NH4+ production as in the case of renal failure, renal tubular acidosis type 1, renal tubular acidosis type 4 |
Plasma Osmolal Gap
Calculation of Plasma Osmolal Gap
The plasma osmolal gap can be useful in high anion gap metabolic acidosis. The plasma osmolal gap can be calculated as follows:
Plasma osmolal gap = plasma calculated osmolal gap - plasma measured osmolal gap Plasma osmolality= (2 x Na+) + (Glucose/18) + (BUN/2.8) |
Interpretation of Plasma Osmolal Gap
The plasma osmolal gap is considered high if >10. A high osmolal gap represents an increase in unmeasured osmoles, such as in the cases of ingestion. The osmolal gap is also elevated in ketoacidosis and lactic acidosis.
Shown below is a table depicting the anion gap and osmolal gap in different types of ingestion.
Ingestion | Anion gap | Osmolal gap |
Ethanol | ↑ | ↑ |
Methanol | ↑ | ↑ |
Ethylene glycol | ↑ | ↑ |
Formaldehyde | ↑ | ↑ |
Ethylene glycol | ↑ | ↑ |
Propylene glycol | ↑ | ↑ |
Isopropyl alcohol | ↔ | ↑ |
Acetaminophen | ↑ | ↔ |
Salicylates | ↑ | ↔ |
Hypochloremia vs Hypercholremia
The following equation can be used to assess the variation in chloride concentration in response to the metabolic acidosis: Na+/ Cl-
- If Na+/ Cl- < 1.4: Hyperchloremia (usually associated with normal anion gap metabolic acidosis)
- If Na+/ Cl- > 1.4: Hypochloremia
Respiratory Compensation
In metabolic acidosis, there is respiratory compensation that starts within a short period of the onset of the acid-base disturbance. Respiratory alkalosis (through hyperventilation) occurs in order to decraese PaCO2 and therefore compensate for the metabolic acidosis.
The expected change in PaCo2 is as follows:
Expected respiratory compensation: Δ PaCO2 = 1.2 [1 to 1.5] x Δ HCO3- |
Note that compensation increases the pH but does not bring it to normal. If bicarbonate concentration is low and the pH is normal, this suggests a combined acid-base abnormality.
Pure vs Combined Metabolic Acidosis
Pure vs combined metabolic acidosis can be estimated using the following values: plasma HCO3-, PCO2, and arterial pH. Shown below is a table summarizing the findings in the different scenarios.
Acid base status | Plasma bicarbonate (meq/L) | Arterial pH | PCO2 (mmHg) |
Normal | 24 | 7.4 | 40 |
Pure metabolic acidosis | ↓ | ↓ | ↓ |
Combined metabolic and respiratory acidosis | ↓ | ↓ | ↔ |
Combined metabolic and respiratory alkalosis | ↓ | ↔ | ↓ |
Δ Anion gap/Δ HCO3-
Calculation of Δ Anion gap/Δ HCO3-
Pure high anion gap metabolic acidosis can be differentiated from combined metabolic acidosis by using the following equation: Δ Anion gap (AG)/ Δ HCO3-
Δ Anion gap (AG)/ Δ HCO3- = (calculated AG - expected AG)/(calculated HCO3-- expected HCO3-) |
Interpretation of Δ Anion gap/Δ HCO3-
Δ AG/ Δ HCO3- | Interpretation |
1-2 | Pure high anion gap metabolic acidosis |
<1 | High anion gap metabolic acidosis PLUS normal anion gap metabolic acidosis |
>2 | High anion gap metabolic acidosis PLUS metabolic alkalosis |
Associated Potassium Disorders
Metabolic acidosis is commonly associated with hyperkalemia. As the H+ is low, K+ moves from inside the cell to the blood to ensure electrical neutrality.