Levofloxacin (injection): Difference between revisions
Adeel Jamil (talk | contribs) No edit summary |
Adeel Jamil (talk | contribs) No edit summary |
||
Line 7: | Line 7: | ||
|blackBoxWarningTitle=<b><span style="color:#FF0000;">TITLE</span></b> | |blackBoxWarningTitle=<b><span style="color:#FF0000;">TITLE</span></b> | ||
|blackBoxWarningBody=<i><span style="color:#FF0000;">Condition Name:</span></i> (Content) | |blackBoxWarningBody=<i><span style="color:#FF0000;">Condition Name:</span></i> (Content) | ||
| | |offLabelAdultGuideSupport=There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of Levofloxacin (injection) in adult patients. | ||
|offLabelAdultNoGuideSupport=There is limited information regarding <i>Off-Label Non–Guideline-Supported Use</i> of Levofloxacin (injection) in adult patients. | |||
|offLabelPedGuideSupport=There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of Levofloxacin (injection) in pediatric patients. | |||
|offLabelPedNoGuideSupport=There is limited information regarding <i>Off-Label Non–Guideline-Supported Use</i> of Levofloxacin (injection) in pediatric patients. | |||
|FDAPregCat=C | |||
|useInPregnancyFDA=* Levofloxacin was not teratogenic in rats at oral doses as high as 810 mg/kg/day which corresponds to 9.4 times the highest recommended human dose based upon relative body surface area, or at intravenous doses as high as 160 mg/kg/day corresponding to 1.9 times the highest recommended human dose based upon relative body surface area. The oral dose of 810 mg/kg/day to rats caused decreased fetal body weight and increased fetal mortality. No teratogenicity was observed when rabbits were dosed orally as high as 50 mg/kg/day which corresponds to 1.1 times the highest recommended human dose based upon relative body surface area, or when dosed intravenously as high as 25 mg/kg/day, corresponding to 0.5 times the highest recommended human dose based upon relative body surface area. | |||
===== | * There are, however, no adequate and well-controlled studies in pregnant women. Levofloxacin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. | ||
|useInNursing=* Based on data on other fluoroquinolones and very limited data on levofloxacin, it can be presumed that levofloxacin will be excreted in human milk. Because of the potential for serious adverse reactions from levofloxacin in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. | |||
|useInPed=* Quinolones, including levofloxacin, cause arthropathy and osteochondrosis in juvenile animals of several species. | |||
=====Pharmacokinetics following intravenous administration===== | |||
* The pharmacokinetics of levofloxacin following a single intravenous dose were investigated in pediatric patients ranging in age from six months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients resulting in lower plasma exposures than adults for a given mg/kg dose [see CLINICAL PHARMACOLOGY (12.3) and CLINICAL STUDIES (14.9)]. | |||
=====Inhalational Anthrax (Post-Exposure)===== | |||
* | * Levofloxacin is indicated in pediatric patients 6 months of age and older, for inhalational anthrax (post-exposure). The risk-benefit assessment indicates that administration of levofloxacin to pediatric patients is appropriate. The safety of levofloxacin in pediatric patients treated for more than 14 days has not been studied. | ||
* | |||
=====Plague===== | |||
* Levofloxacin is indicated in pediatric patients, 6 months of age and older, for treatment of plague, including pneumonic and septicemic plague due to Yersinia pestis (Y. pestis) and prophylaxis for plague. Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals. The risk-benefit assessment indicates that administration of levofloxacin to pediatric patients is appropriate. | |||
* Safety and effectiveness in pediatric patients below the age of six months have not been established. | |||
=====Adverse Events===== | |||
* In clinical trials, 1534 children (6 months to 16 years of age) were treated with oral and intravenous levofloxacin. Children 6 months to 5 years of age received levofloxacin 10 mg/kg twice a day and children greater than 5 years of age received 10 mg/kg once a day (maximum 500 mg per day) for approximately 10 days. | |||
* A subset of children in the clinical trials (1340 levofloxacin-treated and 893 non-fluoroquinolone-treated) enrolled in a prospective, long-term surveillance study to assess the incidence of protocol-defined musculoskeletal disorders (arthralgia, arthritis, tendinopathy, gait abnormality) during 60 days and 1 year following the first dose of the study drug. Children treated with levofloxacin had a significantly higher incidence of musculoskeletal disorders when compared to the non-fluoroquinolone-treated children as illustrated in Table 9. | |||
tab | |||
* | * Arthralgia was the most frequently occurring musculoskeletal disorder in both treatment groups. Most of the musculoskeletal disorders in both groups involved multiple weight-bearing joints. Disorders were moderate in 8/46 (17%) children and mild in 35/46 (76%) levofloxacin-treated children and most were treated with analgesics. The median time to resolution was 7 days for levofloxacin-treated children and 9 for non-fluoroquinolone-treated children (approximately 80% resolved within 2 months in both groups). No child had a severe or serious disorder and all musculoskeletal disorders resolved without sequelae. | ||
* Vomiting and diarrhea were the most frequently reported adverse events, occurring in similar frequency in the levofloxacin-treated and non-fluoroquinolone-treated children. | |||
* | * In addition to the events reported in pediatric patients in clinical trials, events reported in adults during clinical trials or post-marketing experience [see ADVERSE REACTIONS (6)] may also be expected to occur in pediatric patients. | ||
|useInGeri=* Geriatric patients are at increased risk for developing severe tendon disorders including tendon rupture when being treated with a fluoroquinolone such as levofloxacin. This risk is further increased in patients receiving concomitant corticosteroid therapy. Tendinitis or tendon rupture can involve the Achilles, hand, shoulder, or other tendon sites and can occur during or after completion of therapy; cases occurring up to several months after fluoroquinolone treatment have been reported. Caution should be used when prescribing levofloxacin to elderly patients especially those on corticosteroids. Patients should be informed of this potential side effect and advised to discontinue levofloxacin and contact their healthcare provider if any symptoms of tendinitis or tendon rupture occur. | |||
===== | * In phase 3 clinical trials, 1,945 levofloxacin-treated patients (26%) were ≥ 65 years of age. Of these, 1,081 patients (14%) were between the ages of 65 and 74 and 864 patients (12%) were 75 years or older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity of some older individuals cannot be ruled out. | ||
* Severe, and sometimes fatal, cases of hepatotoxicity have been reported post-marketing in association with levofloxacin. The majority of fatal hepatotoxicity reports occurred in patients 65 years of age or older and most were not associated with hypersensitivity. Levofloxacin should be discontinued immediately if the patient develops signs and symptoms of hepatitis. | |||
* | |||
* Elderly patients may be more susceptible to drug-associated effects on the QT interval. Therefore, precaution should be taken when using levofloxacin with concomitant drugs that can result in prolongation of the QT interval (e.g., Class IA or Class III antiarrhythmics) or in patients with risk factors for torsade de pointes (e.g., known QT prolongation, uncorrected hypokalemia). | |||
* The pharmacokinetic properties of levofloxacin in younger adults and elderly adults do not differ significantly when creatinine clearance is taken into consideration. However, since the drug is known to be substantially excreted by the kidney, the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. | |||
|useInRenalImpair=* Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in patients with impaired renal function (creatinine clearance < 50 mL/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of levofloxacin are not required following hemodialysis or CAPD. | |||
|useInHepaticImpair=* Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment. | |||
|administration=* Injection | |||
|overdose=* In the event of an acute overdosage, the stomach should be emptied. The patient should be observed and appropriate hydration maintained. Levofloxacin is not efficiently removed by hemodialysis or peritoneal dialysis. | |||
* Levofloxacin exhibits a low potential for acute toxicity. Mice, rats, dogs and monkeys exhibited the following clinical signs after receiving a single high dose of levofloxacin: ataxia, ptosis, decreased locomotor activity, dyspnea, prostration, tremors, and convulsions. Doses in excess of 1500 mg/kg orally and 250 mg/kg IV produced significant mortality in rodents. | |||
|drugBox={{drugbox2 | |||
| Verifiedfields = changed | |||
| Watchedfields = changed | |||
| verifiedrevid = 462090938 | |||
| IUPAC_name = (''S'')-9-fluoro-2,3-dihydro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-7''H''-pyrido[''1'',''2'',''3''-''de'']-1,4-benzoxazine-6-carboxylic acid | |||
| image = Levofloxacin2DCSD.png | |||
| width = 250px | |||
| image2 = Levofloxacin ball-and-stick.png | |||
<!--Clinical data--> | |||
| tradename = Levaquin, Tavanic,<br/>Iquix ([[intravenous|IV]]),<br/>Quixin (eye drops) | |||
| Drugs.com = {{drugs.com|monograph|levofloxacin}} | |||
| MedlinePlus = a697040 | |||
| licence_US = Levofloxacin | |||
| pregnancy_US = C | |||
| legal_status = Rx-only | |||
| routes_of_administration = [[Route of administration#Enteral|Oral]], [[Intravenous therapy|IV]], ophthalmic | |||
<!--Pharmacokinetic data--> | |||
| bioavailability = 99% | |||
| protein_bound = 24 to 38% | |||
| metabolism = <5% desmethyl and N-oxide metabolites | |||
| elimination_half-life = 6 to 8 hours | |||
| excretion = Urinary, mainly unchanged | |||
<!--Identifiers--> | |||
| CASNo_Ref = {{cascite|correct|CAS}} | |||
| CAS_number_Ref = {{cascite|correct|??}} | |||
| CAS_number = 100986-85-4 | |||
| ATC_prefix = J01 | |||
| ATC_suffix = MA12 | |||
| ATC_supplemental = {{ATC|S01|AE05}} | |||
| PubChem = 149096 | |||
| DrugBank_Ref = {{drugbankcite|correct|drugbank}} | |||
| DrugBank = DB01137 | |||
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | |||
| ChemSpiderID = 131410 | |||
| NIAID_ChemDB = 002307 | |||
| UNII_Ref = {{fdacite|changed|FDA}} | |||
| UNII = RIX4E89Y14 | |||
| KEGG_Ref = {{keggcite|correct|kegg}} | |||
| KEGG = D08120 | |||
| ChEMBL_Ref = {{ebicite|correct|EBI}} | |||
| ChEMBL = 33 | |||
<!--Chemical data--> | |||
| chemical_formula = | |||
| C=18 | H=20 | F=1 | N=3 | O=4 | |||
| molecular_weight = 361.368 [[Gram|g]]/[[Mole (unit)|mol]] | |||
| smiles = C[C@H]1COc2c3n1cc(c(=O)c3cc(c2N4CCN(CC4)C)F)C(=O)O | |||
| InChI = 1/C18H20FN3O4/c1-10-9-26-17-14-11(16(23)12(18(24)25)8-22(10)14)7-13(19)15(17)21-5-3-20(2)4-6-21/h7-8,10H,3-6,9H2,1-2H3,(H,24,25)/t10-/m0/s1 | |||
| InChIKey = GSDSWSVVBLHKDQ-JTQLQIEIBM | |||
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} | |||
| StdInChI = 1S/C18H20FN3O4/c1-10-9-26-17-14-11(16(23)12(18(24)25)8-22(10)14)7-13(19)15(17)21-5-3-20(2)4-6-21/h7-8,10H,3-6,9H2,1-2H3,(H,24,25)/t10-/m0/s1 | |||
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | |||
| StdInChIKey = GSDSWSVVBLHKDQ-JTQLQIEISA-N | |||
| synonyms = | |||
}} | |||
|mechAction=* Levofloxacin is a member of the fluoroquinolone class of antibacterial agents and acts by inhibiting DNA gyrase (bacterial topoisomerase II) which is an enzyme required for DNA replication, transcription, repair, and recombination. | |||
= | |structure=* Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral and intravenous administration. Chemically, levofloxacin, a chiral fluorinated carboxyquinolone, is the pure (-)-(S)-enantiomer of the racemic drug substance ofloxacin. The chemical name is (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid hemihydrate. | ||
|PD=====Microbiology==== | |||
* Levofloxacin is | |||
===== | =====Mechanism of Resistance===== | ||
* | * Fluoroquinolone resistance can arise through mutations in defined regions of DNA gyrase or topoisomerase IV, termed the Quinolone-Resistance Determining Regions (QRDRs), or through altered efflux. | ||
* Fluoroquinolones, including levofloxacin, differ in chemical structure and mode of action from aminoglycosides, macrolides and β-lactam antibiotics, including penicillins. Fluoroquinolones may, therefore, be active against bacteria resistant to these antimicrobials. | |||
* | * Resistance to levofloxacin due to spontaneous mutation in vitro is a rare occurrence (range: 10-9 to 10-10). Cross-resistance has been observed between levofloxacin and some other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to levofloxacin. | ||
===== | =====Activity in vitro and in vivo===== | ||
* Levofloxacin | * Levofloxacin has in vitro activity against Gram-negative and Gram-positive bacteria. Levofloxacin has been shown to be active against most isolates of the following bacteria both in vitro and in clinical infections as described in INDICATIONS AND USAGE (1): | ||
===== | =====Gram-Positive Bacteria===== | ||
* | * Enterococcus faecalis | ||
* Staphylococcus aureus (methicillin-susceptible isolates) | |||
* Staphylococcus epidermidis (methicillin-susceptible isolates) | |||
* Staphylococcus saprophyticus | |||
* Streptococcus pneumoniae (including multi-drug resistant isolates [MDRSP])1 | |||
* Streptococcus pyogenes | |||
* MDRSP (Multi-drug resistant Streptococcus pneumoniae) isolates are isolates resistant to two or more of the following antibiotics: penicillin (MIC ≥2 mcg/mL), 2nd generation cephalosporins, e.g., cefuroxime; macrolides, tetracyclines and trimethoprim/sulfamethoxazole. | |||
=====Gram-Negative Bacteria===== | |||
* Enterobacter cloacae | |||
* Escherichia coli | |||
* Haemophilus influenzae | |||
* Haemophilus parainfluenzae | |||
* Klebsiella pneumoniae | |||
* Legionella pneumophila | |||
* Moraxella catarrhalis | |||
* Proteus mirabilis | |||
* Pseudomonas aeruginosa | |||
* Serratia marcescens | |||
=====Other Bacteria===== | |||
* Chlamydophila pneumoniae | |||
* Mycoplasma pneumoniae | |||
* | * The following in vitro data are available, but their clinical significance is unknown: | ||
:* Levofloxacin exhibits in vitro minimum inhibitory concentrations (MIC values) of 2 mcg/mL or less against most (≥90%) isolates of the following microorganisms; however, the safety and effectiveness of levofloxacin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials. | |||
=====Gram-Positive Bacteria===== | |||
* Staphylococcus haemolyticus | |||
* β-hemolytic Streptococcus (Group C/F) | |||
* β-hemolytic Streptococcus (Group G) | |||
* Streptococcus agalactiae | |||
* Streptococcus milleri | |||
* Viridans group streptococci | |||
* Bacillus anthracis | |||
* Gram-Negative Bacteria | |||
* Acinetobacter baumannii | |||
* Acinetobacter lwoffii | |||
* Bordetella pertussis | |||
* Citrobacter koseri | |||
* Citrobacter freundii | |||
* Enterobacter aerogenes | |||
* Enterobacter sakazakii | |||
* Klebsiella oxytoca | |||
* Morganella morganii | |||
* Pantoea agglomerans | |||
* Proteus vulgaris | |||
* Providencia rettgeri | |||
* Providencia stuartii | |||
* Pseudomonas fluorescens | |||
* Yersinia pestis | |||
* Anaerobic Gram-Positive Bacteria | |||
* Clostridium perfringens | |||
=====Susceptibility Tests===== | |||
* When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in the resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment. | |||
* | |||
===== | =====Dilution techniques:===== | ||
* | * Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC values should be determined using a standardized procedure. Standardized procedures are based on a dilution method1,2,4 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of levofloxacin powder. The MIC values should be interpreted according to the criteria outlined in Table 11. | ||
==== | =====Diffusion techniques:===== | ||
* Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2,3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5 mcg levofloxacin to test the susceptibility of bacteria to levofloxacin. | |||
* | * Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5 mcg levofloxacin disk should be interpreted according to the criteria outlined in Table 11. | ||
tab | tab | ||
* | * A report of Susceptible indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of Intermediate indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected. | ||
===== | =====Quality Control:===== | ||
* | * Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test.1,2,3,4 Standard levofloxacin powder should provide the range of MIC values noted in Table 12. For the diffusion technique using the 5 mcg disk, the criteria in Table 12 should be achieved. | ||
tab | tab | ||
* Table | |PK=* The mean ±SD pharmacokinetic parameters of levofloxacin determined under single and steady-state conditions following intravenous (IV) doses of levofloxacin are summarized in Table 10. | ||
tab | tab | ||
===== | =====Absorption===== | ||
* Levofloxacin | * Levofloxacin is rapidly and essentially completely absorbed after oral administration. Peak plasma concentrations are usually attained one to two hours after oral dosing. The absolute bioavailability of levofloxacin from a 500 mg tablet and a 750 mg tablet of levofloxacin are both approximately 99%, demonstrating complete oral absorption of levofloxacin. Following a single intravenous dose of levofloxacin to healthy volunteers, the mean ± SD peak plasma concentration attained was 6.2 ± 1.0 mcg/mL after a 500 mg dose infused over 60 minutes and 11.5 ± 4.0 mcg/mL after a 750 mg dose infused over 90 minutes. Levofloxacin Oral Solution and Tablet formulations are bioequivalent. | ||
* Levofloxacin pharmacokinetics are linear and predictable after single and multiple oral or IV dosing regimens. Steady-state conditions are reached within 48 hours following a 500 mg or 750 mg once-daily dosage regimen. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily oral dosage regimens were approximately 5.7 ± 1.4 and 0.5 ± 0.2 mcg/mL after the 500 mg doses, and 8.6 ± 1.9 and 1.1 ± 0.4 mcg/mL after the 750 mg doses, respectively. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily IV regimens were approximately 6.4 ± 0.8 and 0.6 ± 0.2 mcg/mL after the 500 mg doses, and 12.1 ± 4.1 and 1.3 ± 0.71 mcg/mL after the 750 mg doses, respectively. Oral administration of a 500 mg dose of levofloxacin with food prolongs the time to peak concentration by approximately 1 hour and decreases the peak concentration by approximately 14% following tablet and approximately 25% following oral solution administration. Therefore, levofloxacin tablets can be administered without regard to food. It is recommended that levofloxacin oral solution be taken 1 hour before or 2 hours after eating. | |||
* The plasma concentration profile of levofloxacin after IV administration is similar and comparable in extent of exposure (AUC) to that observed for levofloxacin tablets when equal doses (mg/mg) are administered. Therefore, the oral and IV routes of administration can be considered interchangeable (see Figure 2 and Figure 3). | |||
fig | |||
=====Distribution===== | |||
* The mean volume of distribution of levofloxacin generally ranges from 74 to 112 L after single and multiple 500 mg or 750 mg doses, indicating widespread distribution into body tissues. Levofloxacin reaches its peak levels in skin tissues and in blister fluid of healthy subjects at approximately 3 hours after dosing. The skin tissue biopsy to plasma AUC ratio is approximately 2 and the blister fluid to plasma AUC ratio is approximately 1 following multiple once-daily oral administration of 750 mg and 500 mg doses of levofloxacin, respectively, to healthy subjects. Levofloxacin also penetrates well into lung tissues. Lung tissue concentrations were generally 2- to 5-fold higher than plasma concentrations and ranged from approximately 2.4 to 11.3 mcg/g over a 24-hour period after a single 500 mg oral dose. | |||
* | |||
* In vitro, over a clinically relevant range (1 to 10 mcg/mL) of serum/plasma levofloxacin concentrations, levofloxacin is approximately 24 to 38% bound to serum proteins across all species studied, as determined by the equilibrium dialysis method. Levofloxacin is mainly bound to serum albumin in humans. Levofloxacin binding to serum proteins is independent of the drug concentration. | |||
=====Metabolism===== | |||
* Levofloxacin is stereochemically stable in plasma and urine and does not invert metabolically to its enantiomer, D-ofloxacin. Levofloxacin undergoes limited metabolism in humans and is primarily excreted as unchanged drug in the urine. Following oral administration, approximately 87% of an administered dose was recovered as unchanged drug in urine within 48 hours, whereas less than 4% of the dose was recovered in feces in 72 hours. Less than 5% of an administered dose was recovered in the urine as the desmethyl and N-oxide metabolites, the only metabolites identified in humans. These metabolites have little relevant pharmacological activity. | |||
* | |||
=====Excretion===== | |||
* Levofloxacin is excreted largely as unchanged drug in the urine. The mean terminal plasma elimination half-life of levofloxacin ranges from approximately 6 to 8 hours following single or multiple doses of levofloxacin given orally or intravenously. The mean apparent total body clearance and renal clearance range from approximately 144 to 226 mL/min and 96 to 142 mL/min, respectively. Renal clearance in excess of the glomerular filtration rate suggests that tubular secretion of levofloxacin occurs in addition to its glomerular filtration. Concomitant administration of either cimetidine or probenecid results in approximately 24% and 35% reduction in the levofloxacin renal clearance, respectively, indicating that secretion of levofloxacin occurs in the renal proximal tubule. No levofloxacin crystals were found in any of the urine samples freshly collected from subjects receiving levofloxacin. | |||
=====Geriatric===== | |||
* | * There are no significant differences in levofloxacin pharmacokinetics between young and elderly subjects when the subjects’ differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of levofloxacin to healthy elderly subjects (66 - 80 years of age), the mean terminal plasma elimination half-life of levofloxacin was about 7.6 hours, as compared to approximately 6 hours in younger adults. The difference was attributable to the variation in renal function status of the subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by age. Levofloxacin dose adjustment based on age alone is not necessary. | ||
=====Pediatrics===== | |||
* | * The pharmacokinetics of levofloxacin following a single 7 mg/kg intravenous dose were investigated in pediatric patients ranging in age from 6 months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients, resulting in lower plasma exposures than adults for a given mg/kg dose. Subsequent pharmacokinetic analyses predicted that a dosage regimen of 8 mg/kg every 12 hours (not to exceed 250 mg per dose) for pediatric patients 6 months to 17 years of age would achieve comparable steady state plasma exposures (AUC0-24 and Cmax) to those observed in adult patients administered 500 mg of levofloxacin once every 24 hours. | ||
=====Gender===== | |||
* There are no significant differences in levofloxacin pharmacokinetics between male and female subjects when subjects’ differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of levofloxacin to healthy male subjects, the mean terminal plasma elimination half-life of levofloxacin was about 7.5 hours, as compared to approximately 6.1 hours in female subjects. This difference was attributable to the variation in renal function status of the male and female subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by the gender of the subjects. Dose adjustment based on gender alone is not necessary. | |||
=====Race===== | |||
* | * The effect of race on levofloxacin pharmacokinetics was examined through a covariate analysis performed on data from 72 subjects: 48 white and 24 non-white. The apparent total body clearance and apparent volume of distribution were not affected by the race of the subjects. | ||
=====Renal Impairment===== | |||
* | * Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in adult patients with impaired renal function (creatinine clearance < 50 mL/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of levofloxacin are not required following hemodialysis or CAPD. | ||
===== | =====Hepatic Impairment===== | ||
* Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment. | |||
=====Bacterial Infection===== | |||
* The pharmacokinetics of levofloxacin in patients with serious community-acquired bacterial infections are comparable to those observed in healthy subjects. | |||
=====Drug-Drug Interactions===== | |||
* The potential for pharmacokinetic drug interactions between levofloxacin and antacids, warfarin, theophylline, cyclosporine, digoxin, probenecid, and cimetidine has been evaluated. | |||
|nonClinToxic=====Carcinogenesis, Mutagenesis , Impairment of Fertility==== | |||
* | * In a lifetime bioassay in rats, levofloxacin exhibited no carcinogenic potential following daily dietary administration for 2 years; the highest dose (100 mg/kg/day) was 1.4 times the highest recommended human dose (750 mg) based upon relative body surface area. Levofloxacin did not shorten the time to tumor development of UV-induced skin tumors in hairless albino (Skh-1) mice at any levofloxacin dose level and was therefore not photo-carcinogenic under conditions of this study. Dermal levofloxacin concentrations in the hairless mice ranged from 25 to 42 mcg/g at the highest levofloxacin dose level (300 mg/kg/day) used in the photo-carcinogenicity study. By comparison, dermal levofloxacin concentrations in human subjects receiving 750 mg of levofloxacin averaged approximately 11.8 mcg/g at Cmax. | ||
* Levofloxacin was not mutagenic in the following assays: Ames bacterial mutation assay (S. typhimurium and E. coli), CHO/HGPRT forward mutation assay, mouse micronucleus test, mouse dominant lethal test, rat unscheduled DNA synthesis assay, and the mouse sister chromatid exchange assay. It was positive in the in vitro chromosomal aberration (CHL cell line) and sister chromatid exchange (CHL/IU cell line) assays. | |||
* | |||
* Levofloxacin caused no impairment of fertility or reproductive performance in rats at oral doses as high as 360 mg/kg/day, corresponding to 4.2 times the highest recommended human dose based upon relative body surface area and intravenous doses as high as 100 mg/kg/day, corresponding to 1.2 times the highest recommended human dose based upon relative body surface area. | |||
=====Animal Toxicology & OR Pharmacology===== | |||
* Levofloxacin and other quinolones have been shown to cause arthropathy in immature animals of most species tested [see WARNINGS AND PRECAUTIONS (5.10)]. In immature dogs (4-5 months old), oral doses of 10 mg/kg/day for 7 days and intravenous doses of 4 mg/kg/day for 14 days of levofloxacin resulted in arthropathic lesions. Administration at oral doses of 300 mg/kg/day for 7 days and intravenous doses of 60 mg/kg/day for 4 weeks produced arthropathy in juvenile rats. Three-month old beagle dogs dosed orally with levofloxacin at 40 mg/kg/day exhibited clinically severe arthrotoxicity resulting in the termination of dosing at Day 8 of a 14-day dosing routine. Slight musculoskeletal clinical effects, in the absence of gross pathological or histopathological effects, resulted from the lowest dose level of 2.5 mg/kg/day (approximately 0.2-fold the pediatric dose based upon AUC comparisons). Synovitis and articular cartilage lesions were observed at the 10 and 40 mg/kg dose levels (approximately 0.7-fold and 2.4-fold the pediatric dose, respectively, based on AUC comparisons). Articular cartilage gross pathology and histopathology persisted to the end of the 18-week recovery period for those dogs from the 10 and 40 mg/kg/day dose levels. | |||
* | * When tested in a mouse ear swelling bioassay, levofloxacin exhibited phototoxicity similar in magnitude to ofloxacin, but less phototoxicity than other quinolones. | ||
* | * While crystalluria has been observed in some intravenous rat studies, urinary crystals are not formed in the bladder, being present only after micturition and are not associated with nephrotoxicity. | ||
* | * In mice, the CNS stimulatory effect of quinolones is enhanced by concomitant administration of non-steroidal anti-inflammatory drugs. | ||
* In dogs, levofloxacin administered at 6 mg/kg or higher by rapid intravenous injection produced hypotensive effects. These effects were considered to be related to histamine release. | |||
* | * In vitro and in vivo studies in animals indicate that levofloxacin is neither an enzyme inducer nor inhibitor in the human therapeutic plasma concentration range; therefore, no drug metabolizing enzyme-related interactions with other drugs or agents are anticipated. | ||
|clinicalStudies======Nosocomial Pneumonia===== | |||
* Adult patients with clinically and radiologically documented nosocomial pneumonia were enrolled in a multicenter, randomized, open-label study comparing intravenous levofloxacin (750 mg once daily) followed by oral levofloxacin (750 mg once daily) for a total of 7-15 days to intravenous imipenem/cilastatin (500-1000 mg every 6-8 hours daily) followed by oral ciprofloxacin (750 mg every 12 hours daily) for a total of 7-15 days. Levofloxacin-treated patients received an average of 7 days of intravenous therapy (range: 1-16 days); comparator-treated patients received an average of 8 days of intravenous therapy (range: 1-19 days). | |||
* | * Overall, in the clinically and microbiologically evaluable population, adjunctive therapy was empirically initiated at study entry in 56 of 93 (60.2%) patients in the levofloxacin arm and 53 of 94 (56.4%) patients in the comparator arm. The average duration of adjunctive therapy was 7 days in the levofloxacin arm and 7 days in the comparator. In clinically and microbiologically evaluable patients with documented Pseudomonas aeruginosa infection, 15 of 17 (88.2%) received ceftazidime (N=11) or piperacillin/tazobactam (N=4) in the levofloxacin arm and 16 of 17 (94.1%) received an aminoglycoside in the comparator arm. Overall, in clinically and microbiologically evaluable patients, vancomycin was added to the treatment regimen of 37 of 93 (39.8%) patients in the levofloxacin arm and 28 of 94 (29.8%) patients in the comparator arm for suspected methicillin-resistant S. aureus infection. | ||
* Clinical success rates in clinically and microbiologically evaluable patients at the posttherapy visit (primary study endpoint assessed on day 3-15 after completing therapy) were 58.1% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-17.2, 12.0]. The microbiological eradication rates at the posttherapy visit were 66.7% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of eradication rates (levofloxacin minus comparator) was [-8.3, 20.3]. Clinical success and microbiological eradication rates by pathogen are detailed in Table 13. | |||
tab | |||
===== | =====Community-Acquired Pneumonia: 7-14 day Treatment Regimen===== | ||
* | * Adult inpatients and outpatients with a diagnosis of community-acquired bacterial pneumonia were evaluated in 2 pivotal clinical studies. In the first study, 590 patients were enrolled in a prospective, multi-center, unblinded randomized trial comparing levofloxacin 500 mg once daily orally or intravenously for 7 to 14 days to ceftriaxone 1 to 2 grams intravenously once or in equally divided doses twice daily followed by cefuroxime axetil 500 mg orally twice daily for a total of 7 to 14 days. Patients assigned to treatment with the control regimen were allowed to receive erythromycin (or doxycycline if intolerant of erythromycin) if an infection due to atypical pathogens was suspected or proven. Clinical and microbiologic evaluations were performed during treatment, 5 to 7 days posttherapy, and 3 to 4 weeks posttherapy. Clinical success (cure plus improvement) with levofloxacin at 5 to 7 days posttherapy, the primary efficacy variable in this study, was superior (95%) to the control group (83%). The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-6, 19]. In the second study, 264 patients were enrolled in a prospective, multi-center, non-comparative trial of 500 mg levofloxacin administered orally or intravenously once daily for 7 to 14 days. Clinical success for clinically evaluable patients was 93%. For both studies, the clinical success rate in patients with atypical pneumonia due to Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila were 96%, 96%, and 70%, respectively. Microbiologic eradication rates across both studies are presented in Table 14. | ||
tab | |||
===== | =====Community-Acquired Pneumonia Due to Multi-Drug Resistant Streptococcus pneumoniae===== | ||
* The | * Levofloxacin was effective for the treatment of community-acquired pneumonia caused by multi-drug resistant Streptococcus pneumoniae (MDRSP). MDRSP isolates are isolates resistant to two or more of the following antibacterials: penicillin (MIC ≥2 mcg/mL), 2nd generation cephalosporins (e.g., cefuroxime, macrolides, tetracyclines and trimethoprim/sulfamethoxazole). Of 40 microbiologically evaluable patients with MDRSP isolates, 38 patients (95.0%) achieved clinical and bacteriologic success at post-therapy. The clinical and bacterial success rates are shown in Table 15. | ||
tab | |||
* | * Not all isolates were resistant to all antimicrobial classes tested. Success and eradication rates are summarized in Table 16. | ||
tab | |||
==== | =====Community-Acquired Pneumonia: 5-day Treatment Regimen===== | ||
* | * To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 528 outpatient and hospitalized adults with clinically and radiologically determined mild to severe community-acquired pneumonia were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg, IV or orally, every day for five days or levofloxacin 500 mg IV or orally, every day for 10 days. | ||
* | * Clinical success rates (cure plus improvement) in the clinically evaluable population were 90.9% in the levofloxacin 750 mg group and 91.1% in the levofloxacin 500 mg group. The 95% CI for the difference of response rates (levofloxacin 750 minus levofloxacin 500) was [-5.9, 5.4]. In the clinically evaluable population (31-38 days after enrollment) pneumonia was observed in 7 out of 151 patients in the levofloxacin 750 mg group and 2 out of 147 patients in the levofloxacin 500 mg group. Given the small numbers observed, the significance of this finding cannot be determined statistically. The microbiological efficacy of the 5-day regimen was documented for infections listed in Table 17. | ||
tab | |||
* | =====Acute Bacterial Sinusitis: 5-day and 10-14 day Treatment Regimens===== | ||
* Levofloxacin is approved for the treatment of acute bacterial sinusitis (ABS) using either 750 mg by mouth × 5 days or 500 mg by mouth once daily × 10-14 days. To evaluate the safety and efficacy of a high dose short course of levofloxacin, 780 outpatient adults with clinically and radiologically determined acute bacterial sinusitis were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg by mouth once daily for five days to levofloxacin 500 mg by mouth once daily for 10 days. | |||
* Clinical success rates (defined as complete or partial resolution of the pre-treatment signs and symptoms of ABS to such an extent that no further antibiotic treatment was deemed necessary) in the microbiologically evaluable population were 91.4% (139/152) in the levofloxacin 750 mg group and 88.6% (132/149) in the levofloxacin 500 mg group at the test-of-cure (TOC) visit (95% CI [-4.2, 10.0] for levofloxacin 750 mg minus levofloxacin 500 mg). | |||
* Rates of clinical success by pathogen in the microbiologically evaluable population who had specimens obtained by antral tap at study entry showed comparable results for the five- and ten-day regimens at the test-of-cure visit 22 days post treatment. | |||
tab | tab | ||
=====Complicated Skin and Skin Structure Infections===== | |||
* Three hundred ninety-nine patients were enrolled in an open-label, randomized, comparative study for complicated skin and skin structure infections. The patients were randomized to receive either levofloxacin 750 mg once daily (IV followed by oral), or an approved comparator for a median of 10 ± 4.7 days. As is expected in complicated skin and skin structure infections, surgical procedures were performed in the levofloxacin and comparator groups. Surgery (incision and drainage or debridement) was performed on 45% of the levofloxacin-treated patients and 44% of the comparator-treated patients, either shortly before or during antibiotic treatment and formed an integral part of therapy for this indication. | |||
* Among those who could be evaluated clinically 2-5 days after completion of study drug, overall success rates (improved or cured) were 116/138 (84.1%) for patients treated with levofloxacin and 106/132 (80.3%) for patients treated with the comparator. | |||
* Success rates varied with the type of diagnosis ranging from 68% in patients with infected ulcers to 90% in patients with infected wounds and abscesses. These rates were equivalent to those seen with comparator drugs. | |||
=====Chronic Bacterial Prostatitis===== | |||
* Adult patients with a clinical diagnosis of prostatitis and microbiological culture results from urine sample collected after prostatic massage (VB3) or expressed prostatic secretion (EPS) specimens obtained via the Meares-Stamey procedure were enrolled in a multicenter, randomized, double-blind study comparing oral levofloxacin 500 mg, once daily for a total of 28 days to oral ciprofloxacin 500 mg, twice daily for a total of 28 days. The primary efficacy endpoint was microbiologic efficacy in microbiologically evaluable patients. A total of 136 and 125 microbiologically evaluable patients were enrolled in the levofloxacin and ciprofloxacin groups, respectively. The microbiologic eradication rate by patient infection at 5-18 days after completion of therapy was 75.0% in the levofloxacin group and 76.8% in the ciprofloxacin group (95% CI [-12.58, 8.98] for levofloxacin minus ciprofloxacin). The overall eradication rates for pathogens of interest are presented in Table 19. | |||
tab | tab | ||
* | * Eradication rates for S. epidermidis when found with other co-pathogens are consistent with rates seen in pure isolates. | ||
* Clinical success (cure + improvement with no need for further antibiotic therapy) rates in microbiologically evaluable population 5-18 days after completion of therapy were 75.0% for levofloxacin-treated patients and 72.8% for ciprofloxacin-treated patients (95% CI [-8.87, 13.27] for levofloxacin minus ciprofloxacin). Clinical long-term success (24-45 days after completion of therapy) rates were 66.7% for the levofloxacin-treated patients and 76.9% for the ciprofloxacin-treated patients (95% CI [-23.40, 2.89] for levofloxacin minus ciprofloxacin). | |||
=====Complicated Urinary Tract Infections and Acute Pyelonephritis: 5-day Treatment Regimen===== | |||
* To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 1109 patients with cUTI and AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from November 2004 to April 2006 comparing levofloxacin 750 mg IV or orally once daily for 5 days (546 patients) with ciprofloxacin 400 mg IV or 500 mg orally twice daily for 10 days (563 patients). Patients with AP complicated by underlying renal diseases or conditions such as complete obstruction, surgery, transplantation, concurrent infection or congenital malformation were excluded. Efficacy was measured by bacteriologic eradication of the baseline organism(s) at the post-therapy visit in patients with a pathogen identified at baseline. The post-therapy (test-of-cure) visit occurred 10 to 14 days after the last active dose of levofloxacin and 5 to 9 days after the last dose of active ciprofloxacin. | |||
* The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 20. | |||
tab | tab | ||
* Microbiologic eradication rates in the Microbiologically Evaluable population at TOC for individual pathogens recovered from patients randomized to levofloxacin treatment are presented in Table 21. | |||
tab | |||
=====Complicated Urinary Tract Infections and Acute Pyelonephritis: 10-day Treatment Regimen===== | |||
* | * To evaluate the safety and efficacy of the 250 mg dose, 10 day regimen of levofloxacin, 567 patients with uncomplicated UTI, mild-to-moderate cUTI, and mild-to-moderate AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from June 1993 to January 1995 comparing levofloxacin 250 mg orally once daily for 10 days (285 patients) with ciprofloxacin 500 mg orally twice daily for 10 days (282 patients). Patients with a resistant pathogen, recurrent UTI, women over age 55 years, and with an indwelling catheter were initially excluded, prior to protocol amendment which took place after 30% of enrollment. Microbiological efficacy was measured by bacteriologic eradication of the baseline organism(s) at 1-12 days post-therapy in patients with a pathogen identified at baseline. | ||
* The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 22. | |||
tab | |||
* | * 1-9 days posttherapy for 30% of subjects enrolled prior to a protocol amendment; 5-12 days posttherapy for 70% of subjects. | ||
===== | =====Inhalational Anthrax (Post-Exposure)===== | ||
* | * The effectiveness of levofloxacin for this indication is based on plasma concentrations achieved in humans, a surrogate endpoint reasonably likely to predict clinical benefit. Levofloxacin has not been tested in humans for the post-exposure prevention of inhalation anthrax. The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens. | ||
* Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/mL, respectively;and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/mL, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily. | |||
* In adults, the safety of levofloxacin for treatment durations of up to 28 days is well characterized. However, information pertaining to extended use at 500 mg daily up to 60 days is limited. Prolonged levofloxacin therapy in adults should only be used when the benefit outweighs the risk. | |||
* | * In pediatric patients, the safety of levofloxacin for treatment durations of more than 14 days has not been studied. An increased incidence of musculoskeletal adverse events (arthralgia, arthritis, tendinopathy, gait abnormality) compared to controls has been observed in clinical studies with treatment duration of up to 14 days. Long-term safety data, including effects on cartilage, following the administration of levofloxacin to pediatric patients is limited. | ||
= | * A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 49 LD50 (~2.7 × 106) spores (range 17 - 118 LD50) of B. anthracis (Ames strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the anthrax strain used in this study was 0.125 mcg/mL. In the animals studied, mean plasma concentrations of levofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady state ranged from 2.79 to 4.87 mcg/mL. Steady state trough concentrations at 24 hours post-dose ranged from 0.107 to 0.164 mcg/mL. Mean (SD) steady state AUC0-24 was 33.4 ± 3.2 mcg.h/mL (range 30.4 to 36.0 mcg.h/mL). Mortality due to anthrax for animals that received a 30 day regimen of oral levofloxacin beginning 24 hrs post exposure was significantly lower (1/10), compared to the placebo group (9/10) [P=0.0011, 2-sided Fisher’s Exact Test]. The one levofloxacin treated animal that died of anthrax did so following the 30-day drug administration period. | ||
* | =====Plague===== | ||
* Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals. | |||
* The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in an African green monkey model of pneumonic plague are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens. | |||
* Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/mL, respectively; and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/mL, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily. | |||
===== | * A placebo-controlled animal study in African green monkeys exposed to an inhaled mean dose of 65 LD50 (range 3 to 145 LD50) of Yersinia pestis (CO92 strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the Y. pestis strain used in this study was 0.03 mcg/mL. Mean plasma concentrations of levofloxacin achieved at the end of a single 30-min infusion ranged from 2.84 to 3.50 mcg/mL in African green monkeys. Trough concentrations at 24 hours post-dose ranged from <0.03 to 0.06 mcg/mL. Mean (SD) AUC0-24 was 11.9 (3.1) mcg.h/mL (range 9.50 to 16.86 mcg.h/mL). Animals were randomized to receive either a 10-day regimen of i.v. levofloxacin or placebo beginning within 6 hrs of the onset of telemetered fever (≥ 39oC for more than 1 hour). Mortality in the levofloxacin group was significantly lower (1/17) compared to the placebo group (7/7) [p<0.001, Fisher’s Exact Test; exact 95% confidence interval (-99.9%, -55.5%) for the difference in mortality]. One levofloxacin-treated animal was euthanized on Day 9 post-exposure to Y. pestis due to a gastric complication; it had a blood culture positive for Y. pestis on Day 3 and all subsequent daily blood cultures from Day 4 through Day 7 were negative. | ||
|howSupplied======Levofloxacin Injection, Single-Use Vials===== | |||
* | * Levofloxacin Injection | ||
:* is supplied in single-use vials. Each vial contains a concentrated solution with the equivalent of 500 mg of levofloxacin USP in 20 mL vials and 750 mg of levofloxacin USP in 30 mL vials. | |||
:* 25 mg/mL, 20 mL vials (NDC 23155-201-31) | |||
:* 25 mg/mL, 30 mL vials (NDC 23155-201-32) | |||
|storage=* Single-Use Vials should be stored at controlled room temperature and protected from light. | |||
|packLabel======PRINCIPAL DISPLAY PANEL-500 MG/20 ML LABEL===== | |||
Levofloxacin Injection | |||
500 mg/20 mL | |||
(25 mg/mL) | |||
NDC 23155-201-31 | |||
Rx only | |||
FOR INTRAVENOUS INFUSION AFTER DILUTION | |||
Attention Pharmacist: | |||
Dispense the accompanying Medication Guide to each patient. | |||
20 mL | |||
Single-Use Vial | |||
Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 500 mg of levofloxacin. | |||
May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. | |||
Directions for Use : Single-use vial. | |||
Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. | |||
See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. | |||
Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). Protect from light. | |||
Discard unused portion. | |||
Manufactured by: Emcure Pharmaceuticals Ltd., Hinjwadi, Pune, India. | |||
Manufactured for: Heritage Pharmaceuticals Inc. | |||
P | |||
=====PRINCIPAL DISPLAY PANEL-500 MG/20 ML CARTON===== | |||
Levofloxacin Injection | |||
500 mg/20 mL | |||
(25 mg/mL) | |||
NDC 23155-201-31 | |||
Rx only | |||
FOR INTRAVENOUS INFUSION AFTER DILUTION | |||
Attention Pharmacist: | |||
Dispense the accompanying Medication Guide to each patient. | |||
20 mL Single-Use Vial | |||
Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 500 mg of levofloxacin USP. | |||
May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. | |||
Store at 20° to 25°C (68° to 77°F). | |||
[See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). | |||
Protect from light. | |||
Retain in Carton until time of use. | |||
Directions for Use : Single-use vial. Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. | |||
Discard unused portion. | |||
Manufactured by : | |||
Emcure Pharmaceuticals Ltd., | |||
Hinjwadi, Pune, India. | |||
Manufactured for: | |||
Heritage Pharmaceuticals Inc. | |||
Eatontown, NJ 07724 | |||
1.866.901.DRUG (3784) | |||
P | |||
=====PRINCIPAL DISPLAY PANEL-750 MG/30 ML LABEL===== | |||
Levofloxacin Injection | |||
750 mg/30 mL | |||
(25 mg/mL) | |||
NDC 23155-201-32 | |||
Rx only | |||
FOR INTRAVENOUS INFUSION AFTER DILUTION | |||
Attention Pharmacist: | |||
Dispense the accompanying Medication Guide to each patient. | |||
30 mL Single-Use Vial | |||
Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 750 mg of levofloxacin. | |||
May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. | |||
Directions for Use : Single-use vial. | |||
Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. | |||
See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. | |||
Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). Protect from light. | |||
Discard unused portion. | |||
Manufactured by: Emcure Pharmaceuticals Ltd., | |||
Hinjwadi, Pune, India. | |||
===== | =====PRINCIPAL DISPLAY PANEL-750 MG/30 ML CARTON===== | ||
Levofloxacin Injection | |||
750 mg/30 mL | |||
(25 mg/mL) | |||
NDC 23155-201-32 | |||
Rx only | |||
FOR INTRAVENOUS INFUSION AFTER DILUTION | |||
Attention Pharmacist: | |||
Dispense the accompanying Medication Guide to each patient. | |||
30 mL Single-Use Vial | |||
Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 750 mg of levofloxacin USP. | |||
May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. | |||
Store at 20° to 25°C (68° to 77°F). | |||
[See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). | |||
Protect from light. | |||
Retain in Carton until time of use. | |||
Directions for Use : Single-use vial. Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. | |||
Discard unused portion. | |||
Manufactured by : | |||
Emcure Pharmaceuticals Ltd., | |||
Hinjwadi, Pune, India. | |||
===== | Manufactured for: | ||
Heritage Pharmaceuticals Inc. | |||
Eatontown, NJ 07724 | |||
1.866.901.DRUG (3784) | |||
|fdaPatientInfo======Antibacterial Resistance===== | |||
* Antibacterial drugs including levofloxacin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When levofloxacin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by levofloxacin or other antibacterial drugs in the future. | |||
=====Administration with Food, Fluids, and Concomitant Medications===== | |||
* Patients should drink fluids liberally while taking levofloxacin to avoid formation of a highly concentrated urine and crystal formation in the urine. | |||
=====Serious and Potentially Serious Adverse Reactions===== | |||
* Patients should be informed of the following serious adverse reactions that have been associated with levofloxacin or other fluoroquinolone use: | |||
* Tendon Disorders: Patients should contact their healthcare provider if they experience pain, swelling, or inflammation of a tendon, or weakness or inability to use one of their joints; rest and refrain from exercise; and discontinue levofloxacin treatment. The risk of severe tendon disorders with fluoroquinolones is higher in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. | |||
* Exacerbation of Myasthenia Gravis: Patients should inform their physician of any history of myasthenia gravis. Patients should notify their physician if they experience any symptoms of muscle weakness, including respiratory difficulties. | |||
* Hypersensitivity Reactions: Patients should be informed that levofloxacin can cause hypersensitivity reactions, even following the first dose. Patients should discontinue the drug at the first sign of a skin rash, hives or other skin reactions, a rapid heartbeat, difficulty in swallowing or breathing, any swelling suggesting angioedema (e.g., swelling of the lips, tongue, face, tightness of the throat, hoarseness), or other symptoms of an allergic reaction. | |||
* Hepatotoxicity: Severe hepatotoxicity (including acute hepatitis and fatal events) has been reported in patients taking levofloxacin. Patients should inform their physician and be instructed to discontinue levofloxacin treatment immediately if they experience any signs or symptoms of liver injury including: loss of appetite, nausea, vomiting, fever, weakness, tiredness, right upper quadrant tenderness, itching, yellowing of the skin and eyes, light colored bowel movements or dark colored urine. | |||
* Convulsions: Convulsions have been reported in patients taking fluoroquinolones, including levofloxacin. Patients should notify their physician before taking this drug if they have a history of convulsions. | |||
* Neurologic Adverse Effects (e.g., dizziness, lightheadedness, increased intracranial pressure): Patients should know how they react to levofloxacin before they operate an automobile or machinery or engage in other activities requiring mental alertness and coordination. Patients should notify their physician if persistent headache with or without blurred vision occurs. | |||
* Diarrhea: Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible. | |||
* Peripheral Neuropathies: Patients should be informed that peripheral neuropathy has been associated with levofloxacin use. Symptoms may occur soon after initiation of therapy and may be irreversible. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness, and/or weakness develop, patients should immediately discontinue treatment and contact their physician. | |||
* Prolongation of the QT Interval: Patients should inform their physician of any personal or family history of QT prolongation or proarrhythmic conditions such as hypokalemia, bradycardia, or recent myocardial ischemia; if they are taking any Class IA (quinidine, procainamide), or Class III (amiodarone, sotalol) antiarrhythmic agents. Patients should notify their physicians if they have any symptoms of prolongation of the QT interval, including prolonged heart palpitations or a loss of consciousness. | |||
* Musculoskeletal Disorders in Pediatric Patients: Parents should inform their child’s physician if their child has a history of joint-related problems before taking this drug. Parents of pediatric patients should also notify their child’s physician of any tendon or joint-related problems that occur during or following levofloxacin therapy. | |||
* Photosensitivity/Phototoxicity: Patients should be advised that photosensitivity/phototoxicity has been reported in patients receiving fluoroquinolone antibiotics. Patients should minimize or avoid exposure to natural or artificial sunlight (tanning beds or UVA/B treatment) while taking fluoroquinolones. If patients need to be outdoors when taking fluoroquinolones, they should wear loose-fitting clothes that protect skin from sun exposure and discuss other sun protection measures with their physician. If a sunburn like reaction or skin eruption occurs, patients should contact their physician. | |||
=====Drug Interactions with Insulin, Oral Hypoglycemic Agents, and Warfarin===== | |||
* | * Patients should be informed that if they are diabetic and are being treated with insulin or an oral hypoglycemic agent and a hypoglycemic reaction occurs, they should discontinue levofloxacin and consult a physician. | ||
===== | * Patients should be informed that concurrent administration of warfarin and levofloxacin has been associated with increases of the International Normalized Ratio (INR) or prothrombin time and clinical episodes of bleeding. Patients should notify their physician if they are taking warfarin, be monitored for evidence of bleeding, and also have their anticoagulation tests closely monitored while taking warfarin concomitantly. | ||
=====Plague and Anthrax Studies===== | |||
* Patients given levofloxacin for these conditions should be informed that efficacy studies could not be conducted in humans for ethical and feasibility reasons. Therefore, approval for these conditions was based on efficacy studies conducted in animals. | |||
* Manufactured by: | |||
:* Emcure Pharmaceuticals Ltd., | |||
:* Hinjwadi, Pune, India. | |||
* Manufactured for: | |||
:* Heritage Pharmaceuticals Inc. | |||
:* Eatontown, NJ 07724 | |||
:* 1.866.901.DRUG (3784) | |||
|alcohol=Alcohol-Levofloxacin (injection) interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication. | |alcohol=Alcohol-Levofloxacin (injection) interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication. | ||
}} | }} |
Latest revision as of 18:07, 26 May 2015
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Adeel Jamil, M.D. [2]
Disclaimer
WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.
Overview
Levofloxacin (injection) is an antibiotic and fluoroquinolone that is FDA approved for the treatment of {{{indication}}}. Common adverse reactions include {{{adverseReactions}}}.
Adult Indications and Dosage
FDA-Labeled Indications and Dosage (Adult)
There is limited information regarding Levofloxacin (injection) FDA-Labeled Indications and Dosage (Adult) in the drug label.
Off-Label Use and Dosage (Adult)
Guideline-Supported Use
There is limited information regarding Off-Label Guideline-Supported Use of Levofloxacin (injection) in adult patients.
Non–Guideline-Supported Use
There is limited information regarding Off-Label Non–Guideline-Supported Use of Levofloxacin (injection) in adult patients.
Pediatric Indications and Dosage
FDA-Labeled Indications and Dosage (Pediatric)
There is limited information regarding Levofloxacin (injection) FDA-Labeled Indications and Dosage (Pediatric) in the drug label.
Off-Label Use and Dosage (Pediatric)
Guideline-Supported Use
There is limited information regarding Off-Label Guideline-Supported Use of Levofloxacin (injection) in pediatric patients.
Non–Guideline-Supported Use
There is limited information regarding Off-Label Non–Guideline-Supported Use of Levofloxacin (injection) in pediatric patients.
Contraindications
There is limited information regarding Levofloxacin (injection) Contraindications in the drug label.
Warnings
There is limited information regarding Levofloxacin (injection) Warnings' in the drug label.
Adverse Reactions
Clinical Trials Experience
There is limited information regarding Levofloxacin (injection) Clinical Trials Experience in the drug label.
Postmarketing Experience
There is limited information regarding Levofloxacin (injection) Postmarketing Experience in the drug label.
Drug Interactions
There is limited information regarding Levofloxacin (injection) Drug Interactions in the drug label.
Use in Specific Populations
Pregnancy
- Levofloxacin was not teratogenic in rats at oral doses as high as 810 mg/kg/day which corresponds to 9.4 times the highest recommended human dose based upon relative body surface area, or at intravenous doses as high as 160 mg/kg/day corresponding to 1.9 times the highest recommended human dose based upon relative body surface area. The oral dose of 810 mg/kg/day to rats caused decreased fetal body weight and increased fetal mortality. No teratogenicity was observed when rabbits were dosed orally as high as 50 mg/kg/day which corresponds to 1.1 times the highest recommended human dose based upon relative body surface area, or when dosed intravenously as high as 25 mg/kg/day, corresponding to 0.5 times the highest recommended human dose based upon relative body surface area.
- There are, however, no adequate and well-controlled studies in pregnant women. Levofloxacin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Pregnancy Category (AUS):
There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Levofloxacin (injection) in women who are pregnant.
Labor and Delivery
There is no FDA guidance on use of Levofloxacin (injection) during labor and delivery.
Nursing Mothers
- Based on data on other fluoroquinolones and very limited data on levofloxacin, it can be presumed that levofloxacin will be excreted in human milk. Because of the potential for serious adverse reactions from levofloxacin in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.
Pediatric Use
- Quinolones, including levofloxacin, cause arthropathy and osteochondrosis in juvenile animals of several species.
Pharmacokinetics following intravenous administration
- The pharmacokinetics of levofloxacin following a single intravenous dose were investigated in pediatric patients ranging in age from six months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients resulting in lower plasma exposures than adults for a given mg/kg dose [see CLINICAL PHARMACOLOGY (12.3) and CLINICAL STUDIES (14.9)].
Inhalational Anthrax (Post-Exposure)
- Levofloxacin is indicated in pediatric patients 6 months of age and older, for inhalational anthrax (post-exposure). The risk-benefit assessment indicates that administration of levofloxacin to pediatric patients is appropriate. The safety of levofloxacin in pediatric patients treated for more than 14 days has not been studied.
Plague
- Levofloxacin is indicated in pediatric patients, 6 months of age and older, for treatment of plague, including pneumonic and septicemic plague due to Yersinia pestis (Y. pestis) and prophylaxis for plague. Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals. The risk-benefit assessment indicates that administration of levofloxacin to pediatric patients is appropriate.
- Safety and effectiveness in pediatric patients below the age of six months have not been established.
Adverse Events
- In clinical trials, 1534 children (6 months to 16 years of age) were treated with oral and intravenous levofloxacin. Children 6 months to 5 years of age received levofloxacin 10 mg/kg twice a day and children greater than 5 years of age received 10 mg/kg once a day (maximum 500 mg per day) for approximately 10 days.
- A subset of children in the clinical trials (1340 levofloxacin-treated and 893 non-fluoroquinolone-treated) enrolled in a prospective, long-term surveillance study to assess the incidence of protocol-defined musculoskeletal disorders (arthralgia, arthritis, tendinopathy, gait abnormality) during 60 days and 1 year following the first dose of the study drug. Children treated with levofloxacin had a significantly higher incidence of musculoskeletal disorders when compared to the non-fluoroquinolone-treated children as illustrated in Table 9.
tab
- Arthralgia was the most frequently occurring musculoskeletal disorder in both treatment groups. Most of the musculoskeletal disorders in both groups involved multiple weight-bearing joints. Disorders were moderate in 8/46 (17%) children and mild in 35/46 (76%) levofloxacin-treated children and most were treated with analgesics. The median time to resolution was 7 days for levofloxacin-treated children and 9 for non-fluoroquinolone-treated children (approximately 80% resolved within 2 months in both groups). No child had a severe or serious disorder and all musculoskeletal disorders resolved without sequelae.
- Vomiting and diarrhea were the most frequently reported adverse events, occurring in similar frequency in the levofloxacin-treated and non-fluoroquinolone-treated children.
- In addition to the events reported in pediatric patients in clinical trials, events reported in adults during clinical trials or post-marketing experience [see ADVERSE REACTIONS (6)] may also be expected to occur in pediatric patients.
Geriatic Use
- Geriatric patients are at increased risk for developing severe tendon disorders including tendon rupture when being treated with a fluoroquinolone such as levofloxacin. This risk is further increased in patients receiving concomitant corticosteroid therapy. Tendinitis or tendon rupture can involve the Achilles, hand, shoulder, or other tendon sites and can occur during or after completion of therapy; cases occurring up to several months after fluoroquinolone treatment have been reported. Caution should be used when prescribing levofloxacin to elderly patients especially those on corticosteroids. Patients should be informed of this potential side effect and advised to discontinue levofloxacin and contact their healthcare provider if any symptoms of tendinitis or tendon rupture occur.
- In phase 3 clinical trials, 1,945 levofloxacin-treated patients (26%) were ≥ 65 years of age. Of these, 1,081 patients (14%) were between the ages of 65 and 74 and 864 patients (12%) were 75 years or older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity of some older individuals cannot be ruled out.
- Severe, and sometimes fatal, cases of hepatotoxicity have been reported post-marketing in association with levofloxacin. The majority of fatal hepatotoxicity reports occurred in patients 65 years of age or older and most were not associated with hypersensitivity. Levofloxacin should be discontinued immediately if the patient develops signs and symptoms of hepatitis.
- Elderly patients may be more susceptible to drug-associated effects on the QT interval. Therefore, precaution should be taken when using levofloxacin with concomitant drugs that can result in prolongation of the QT interval (e.g., Class IA or Class III antiarrhythmics) or in patients with risk factors for torsade de pointes (e.g., known QT prolongation, uncorrected hypokalemia).
- The pharmacokinetic properties of levofloxacin in younger adults and elderly adults do not differ significantly when creatinine clearance is taken into consideration. However, since the drug is known to be substantially excreted by the kidney, the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.
Gender
There is no FDA guidance on the use of Levofloxacin (injection) with respect to specific gender populations.
Race
There is no FDA guidance on the use of Levofloxacin (injection) with respect to specific racial populations.
Renal Impairment
- Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in patients with impaired renal function (creatinine clearance < 50 mL/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of levofloxacin are not required following hemodialysis or CAPD.
Hepatic Impairment
- Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment.
Females of Reproductive Potential and Males
There is no FDA guidance on the use of Levofloxacin (injection) in women of reproductive potentials and males.
Immunocompromised Patients
There is no FDA guidance one the use of Levofloxacin (injection) in patients who are immunocompromised.
Administration and Monitoring
Administration
- Injection
Monitoring
There is limited information regarding Levofloxacin (injection) Monitoring in the drug label.
IV Compatibility
There is limited information regarding the compatibility of Levofloxacin (injection) and IV administrations.
Overdosage
- In the event of an acute overdosage, the stomach should be emptied. The patient should be observed and appropriate hydration maintained. Levofloxacin is not efficiently removed by hemodialysis or peritoneal dialysis.
- Levofloxacin exhibits a low potential for acute toxicity. Mice, rats, dogs and monkeys exhibited the following clinical signs after receiving a single high dose of levofloxacin: ataxia, ptosis, decreased locomotor activity, dyspnea, prostration, tremors, and convulsions. Doses in excess of 1500 mg/kg orally and 250 mg/kg IV produced significant mortality in rodents.
Pharmacology
Mechanism of Action
- Levofloxacin is a member of the fluoroquinolone class of antibacterial agents and acts by inhibiting DNA gyrase (bacterial topoisomerase II) which is an enzyme required for DNA replication, transcription, repair, and recombination.
Structure
- Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral and intravenous administration. Chemically, levofloxacin, a chiral fluorinated carboxyquinolone, is the pure (-)-(S)-enantiomer of the racemic drug substance ofloxacin. The chemical name is (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid hemihydrate.
Pharmacodynamics
Microbiology
Mechanism of Resistance
- Fluoroquinolone resistance can arise through mutations in defined regions of DNA gyrase or topoisomerase IV, termed the Quinolone-Resistance Determining Regions (QRDRs), or through altered efflux.
- Fluoroquinolones, including levofloxacin, differ in chemical structure and mode of action from aminoglycosides, macrolides and β-lactam antibiotics, including penicillins. Fluoroquinolones may, therefore, be active against bacteria resistant to these antimicrobials.
- Resistance to levofloxacin due to spontaneous mutation in vitro is a rare occurrence (range: 10-9 to 10-10). Cross-resistance has been observed between levofloxacin and some other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to levofloxacin.
Activity in vitro and in vivo
- Levofloxacin has in vitro activity against Gram-negative and Gram-positive bacteria. Levofloxacin has been shown to be active against most isolates of the following bacteria both in vitro and in clinical infections as described in INDICATIONS AND USAGE (1):
Gram-Positive Bacteria
- Enterococcus faecalis
- Staphylococcus aureus (methicillin-susceptible isolates)
- Staphylococcus epidermidis (methicillin-susceptible isolates)
- Staphylococcus saprophyticus
- Streptococcus pneumoniae (including multi-drug resistant isolates [MDRSP])1
- Streptococcus pyogenes
- MDRSP (Multi-drug resistant Streptococcus pneumoniae) isolates are isolates resistant to two or more of the following antibiotics: penicillin (MIC ≥2 mcg/mL), 2nd generation cephalosporins, e.g., cefuroxime; macrolides, tetracyclines and trimethoprim/sulfamethoxazole.
Gram-Negative Bacteria
- Enterobacter cloacae
- Escherichia coli
- Haemophilus influenzae
- Haemophilus parainfluenzae
- Klebsiella pneumoniae
- Legionella pneumophila
- Moraxella catarrhalis
- Proteus mirabilis
- Pseudomonas aeruginosa
- Serratia marcescens
Other Bacteria
- Chlamydophila pneumoniae
- Mycoplasma pneumoniae
- The following in vitro data are available, but their clinical significance is unknown:
- Levofloxacin exhibits in vitro minimum inhibitory concentrations (MIC values) of 2 mcg/mL or less against most (≥90%) isolates of the following microorganisms; however, the safety and effectiveness of levofloxacin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.
Gram-Positive Bacteria
- Staphylococcus haemolyticus
- β-hemolytic Streptococcus (Group C/F)
- β-hemolytic Streptococcus (Group G)
- Streptococcus agalactiae
- Streptococcus milleri
- Viridans group streptococci
- Bacillus anthracis
- Gram-Negative Bacteria
- Acinetobacter baumannii
- Acinetobacter lwoffii
- Bordetella pertussis
- Citrobacter koseri
- Citrobacter freundii
- Enterobacter aerogenes
- Enterobacter sakazakii
- Klebsiella oxytoca
- Morganella morganii
- Pantoea agglomerans
- Proteus vulgaris
- Providencia rettgeri
- Providencia stuartii
- Pseudomonas fluorescens
- Yersinia pestis
- Anaerobic Gram-Positive Bacteria
- Clostridium perfringens
Susceptibility Tests
- When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in the resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.
Dilution techniques:
- Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC values should be determined using a standardized procedure. Standardized procedures are based on a dilution method1,2,4 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of levofloxacin powder. The MIC values should be interpreted according to the criteria outlined in Table 11.
Diffusion techniques:
- Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2,3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5 mcg levofloxacin to test the susceptibility of bacteria to levofloxacin.
- Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5 mcg levofloxacin disk should be interpreted according to the criteria outlined in Table 11.
tab
- A report of Susceptible indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of Intermediate indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.
Quality Control:
- Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test.1,2,3,4 Standard levofloxacin powder should provide the range of MIC values noted in Table 12. For the diffusion technique using the 5 mcg disk, the criteria in Table 12 should be achieved.
tab
Pharmacokinetics
- The mean ±SD pharmacokinetic parameters of levofloxacin determined under single and steady-state conditions following intravenous (IV) doses of levofloxacin are summarized in Table 10.
tab
Absorption
- Levofloxacin is rapidly and essentially completely absorbed after oral administration. Peak plasma concentrations are usually attained one to two hours after oral dosing. The absolute bioavailability of levofloxacin from a 500 mg tablet and a 750 mg tablet of levofloxacin are both approximately 99%, demonstrating complete oral absorption of levofloxacin. Following a single intravenous dose of levofloxacin to healthy volunteers, the mean ± SD peak plasma concentration attained was 6.2 ± 1.0 mcg/mL after a 500 mg dose infused over 60 minutes and 11.5 ± 4.0 mcg/mL after a 750 mg dose infused over 90 minutes. Levofloxacin Oral Solution and Tablet formulations are bioequivalent.
- Levofloxacin pharmacokinetics are linear and predictable after single and multiple oral or IV dosing regimens. Steady-state conditions are reached within 48 hours following a 500 mg or 750 mg once-daily dosage regimen. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily oral dosage regimens were approximately 5.7 ± 1.4 and 0.5 ± 0.2 mcg/mL after the 500 mg doses, and 8.6 ± 1.9 and 1.1 ± 0.4 mcg/mL after the 750 mg doses, respectively. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily IV regimens were approximately 6.4 ± 0.8 and 0.6 ± 0.2 mcg/mL after the 500 mg doses, and 12.1 ± 4.1 and 1.3 ± 0.71 mcg/mL after the 750 mg doses, respectively. Oral administration of a 500 mg dose of levofloxacin with food prolongs the time to peak concentration by approximately 1 hour and decreases the peak concentration by approximately 14% following tablet and approximately 25% following oral solution administration. Therefore, levofloxacin tablets can be administered without regard to food. It is recommended that levofloxacin oral solution be taken 1 hour before or 2 hours after eating.
- The plasma concentration profile of levofloxacin after IV administration is similar and comparable in extent of exposure (AUC) to that observed for levofloxacin tablets when equal doses (mg/mg) are administered. Therefore, the oral and IV routes of administration can be considered interchangeable (see Figure 2 and Figure 3).
fig
Distribution
- The mean volume of distribution of levofloxacin generally ranges from 74 to 112 L after single and multiple 500 mg or 750 mg doses, indicating widespread distribution into body tissues. Levofloxacin reaches its peak levels in skin tissues and in blister fluid of healthy subjects at approximately 3 hours after dosing. The skin tissue biopsy to plasma AUC ratio is approximately 2 and the blister fluid to plasma AUC ratio is approximately 1 following multiple once-daily oral administration of 750 mg and 500 mg doses of levofloxacin, respectively, to healthy subjects. Levofloxacin also penetrates well into lung tissues. Lung tissue concentrations were generally 2- to 5-fold higher than plasma concentrations and ranged from approximately 2.4 to 11.3 mcg/g over a 24-hour period after a single 500 mg oral dose.
- In vitro, over a clinically relevant range (1 to 10 mcg/mL) of serum/plasma levofloxacin concentrations, levofloxacin is approximately 24 to 38% bound to serum proteins across all species studied, as determined by the equilibrium dialysis method. Levofloxacin is mainly bound to serum albumin in humans. Levofloxacin binding to serum proteins is independent of the drug concentration.
Metabolism
- Levofloxacin is stereochemically stable in plasma and urine and does not invert metabolically to its enantiomer, D-ofloxacin. Levofloxacin undergoes limited metabolism in humans and is primarily excreted as unchanged drug in the urine. Following oral administration, approximately 87% of an administered dose was recovered as unchanged drug in urine within 48 hours, whereas less than 4% of the dose was recovered in feces in 72 hours. Less than 5% of an administered dose was recovered in the urine as the desmethyl and N-oxide metabolites, the only metabolites identified in humans. These metabolites have little relevant pharmacological activity.
Excretion
- Levofloxacin is excreted largely as unchanged drug in the urine. The mean terminal plasma elimination half-life of levofloxacin ranges from approximately 6 to 8 hours following single or multiple doses of levofloxacin given orally or intravenously. The mean apparent total body clearance and renal clearance range from approximately 144 to 226 mL/min and 96 to 142 mL/min, respectively. Renal clearance in excess of the glomerular filtration rate suggests that tubular secretion of levofloxacin occurs in addition to its glomerular filtration. Concomitant administration of either cimetidine or probenecid results in approximately 24% and 35% reduction in the levofloxacin renal clearance, respectively, indicating that secretion of levofloxacin occurs in the renal proximal tubule. No levofloxacin crystals were found in any of the urine samples freshly collected from subjects receiving levofloxacin.
Geriatric
- There are no significant differences in levofloxacin pharmacokinetics between young and elderly subjects when the subjects’ differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of levofloxacin to healthy elderly subjects (66 - 80 years of age), the mean terminal plasma elimination half-life of levofloxacin was about 7.6 hours, as compared to approximately 6 hours in younger adults. The difference was attributable to the variation in renal function status of the subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by age. Levofloxacin dose adjustment based on age alone is not necessary.
Pediatrics
- The pharmacokinetics of levofloxacin following a single 7 mg/kg intravenous dose were investigated in pediatric patients ranging in age from 6 months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients, resulting in lower plasma exposures than adults for a given mg/kg dose. Subsequent pharmacokinetic analyses predicted that a dosage regimen of 8 mg/kg every 12 hours (not to exceed 250 mg per dose) for pediatric patients 6 months to 17 years of age would achieve comparable steady state plasma exposures (AUC0-24 and Cmax) to those observed in adult patients administered 500 mg of levofloxacin once every 24 hours.
Gender
- There are no significant differences in levofloxacin pharmacokinetics between male and female subjects when subjects’ differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of levofloxacin to healthy male subjects, the mean terminal plasma elimination half-life of levofloxacin was about 7.5 hours, as compared to approximately 6.1 hours in female subjects. This difference was attributable to the variation in renal function status of the male and female subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by the gender of the subjects. Dose adjustment based on gender alone is not necessary.
Race
- The effect of race on levofloxacin pharmacokinetics was examined through a covariate analysis performed on data from 72 subjects: 48 white and 24 non-white. The apparent total body clearance and apparent volume of distribution were not affected by the race of the subjects.
Renal Impairment
- Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in adult patients with impaired renal function (creatinine clearance < 50 mL/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of levofloxacin are not required following hemodialysis or CAPD.
Hepatic Impairment
- Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment.
Bacterial Infection
- The pharmacokinetics of levofloxacin in patients with serious community-acquired bacterial infections are comparable to those observed in healthy subjects.
Drug-Drug Interactions
- The potential for pharmacokinetic drug interactions between levofloxacin and antacids, warfarin, theophylline, cyclosporine, digoxin, probenecid, and cimetidine has been evaluated.
Nonclinical Toxicology
Carcinogenesis, Mutagenesis , Impairment of Fertility
- In a lifetime bioassay in rats, levofloxacin exhibited no carcinogenic potential following daily dietary administration for 2 years; the highest dose (100 mg/kg/day) was 1.4 times the highest recommended human dose (750 mg) based upon relative body surface area. Levofloxacin did not shorten the time to tumor development of UV-induced skin tumors in hairless albino (Skh-1) mice at any levofloxacin dose level and was therefore not photo-carcinogenic under conditions of this study. Dermal levofloxacin concentrations in the hairless mice ranged from 25 to 42 mcg/g at the highest levofloxacin dose level (300 mg/kg/day) used in the photo-carcinogenicity study. By comparison, dermal levofloxacin concentrations in human subjects receiving 750 mg of levofloxacin averaged approximately 11.8 mcg/g at Cmax.
- Levofloxacin was not mutagenic in the following assays: Ames bacterial mutation assay (S. typhimurium and E. coli), CHO/HGPRT forward mutation assay, mouse micronucleus test, mouse dominant lethal test, rat unscheduled DNA synthesis assay, and the mouse sister chromatid exchange assay. It was positive in the in vitro chromosomal aberration (CHL cell line) and sister chromatid exchange (CHL/IU cell line) assays.
- Levofloxacin caused no impairment of fertility or reproductive performance in rats at oral doses as high as 360 mg/kg/day, corresponding to 4.2 times the highest recommended human dose based upon relative body surface area and intravenous doses as high as 100 mg/kg/day, corresponding to 1.2 times the highest recommended human dose based upon relative body surface area.
Animal Toxicology & OR Pharmacology
- Levofloxacin and other quinolones have been shown to cause arthropathy in immature animals of most species tested [see WARNINGS AND PRECAUTIONS (5.10)]. In immature dogs (4-5 months old), oral doses of 10 mg/kg/day for 7 days and intravenous doses of 4 mg/kg/day for 14 days of levofloxacin resulted in arthropathic lesions. Administration at oral doses of 300 mg/kg/day for 7 days and intravenous doses of 60 mg/kg/day for 4 weeks produced arthropathy in juvenile rats. Three-month old beagle dogs dosed orally with levofloxacin at 40 mg/kg/day exhibited clinically severe arthrotoxicity resulting in the termination of dosing at Day 8 of a 14-day dosing routine. Slight musculoskeletal clinical effects, in the absence of gross pathological or histopathological effects, resulted from the lowest dose level of 2.5 mg/kg/day (approximately 0.2-fold the pediatric dose based upon AUC comparisons). Synovitis and articular cartilage lesions were observed at the 10 and 40 mg/kg dose levels (approximately 0.7-fold and 2.4-fold the pediatric dose, respectively, based on AUC comparisons). Articular cartilage gross pathology and histopathology persisted to the end of the 18-week recovery period for those dogs from the 10 and 40 mg/kg/day dose levels.
- When tested in a mouse ear swelling bioassay, levofloxacin exhibited phototoxicity similar in magnitude to ofloxacin, but less phototoxicity than other quinolones.
- While crystalluria has been observed in some intravenous rat studies, urinary crystals are not formed in the bladder, being present only after micturition and are not associated with nephrotoxicity.
- In mice, the CNS stimulatory effect of quinolones is enhanced by concomitant administration of non-steroidal anti-inflammatory drugs.
- In dogs, levofloxacin administered at 6 mg/kg or higher by rapid intravenous injection produced hypotensive effects. These effects were considered to be related to histamine release.
- In vitro and in vivo studies in animals indicate that levofloxacin is neither an enzyme inducer nor inhibitor in the human therapeutic plasma concentration range; therefore, no drug metabolizing enzyme-related interactions with other drugs or agents are anticipated.
Clinical Studies
Nosocomial Pneumonia
- Adult patients with clinically and radiologically documented nosocomial pneumonia were enrolled in a multicenter, randomized, open-label study comparing intravenous levofloxacin (750 mg once daily) followed by oral levofloxacin (750 mg once daily) for a total of 7-15 days to intravenous imipenem/cilastatin (500-1000 mg every 6-8 hours daily) followed by oral ciprofloxacin (750 mg every 12 hours daily) for a total of 7-15 days. Levofloxacin-treated patients received an average of 7 days of intravenous therapy (range: 1-16 days); comparator-treated patients received an average of 8 days of intravenous therapy (range: 1-19 days).
- Overall, in the clinically and microbiologically evaluable population, adjunctive therapy was empirically initiated at study entry in 56 of 93 (60.2%) patients in the levofloxacin arm and 53 of 94 (56.4%) patients in the comparator arm. The average duration of adjunctive therapy was 7 days in the levofloxacin arm and 7 days in the comparator. In clinically and microbiologically evaluable patients with documented Pseudomonas aeruginosa infection, 15 of 17 (88.2%) received ceftazidime (N=11) or piperacillin/tazobactam (N=4) in the levofloxacin arm and 16 of 17 (94.1%) received an aminoglycoside in the comparator arm. Overall, in clinically and microbiologically evaluable patients, vancomycin was added to the treatment regimen of 37 of 93 (39.8%) patients in the levofloxacin arm and 28 of 94 (29.8%) patients in the comparator arm for suspected methicillin-resistant S. aureus infection.
- Clinical success rates in clinically and microbiologically evaluable patients at the posttherapy visit (primary study endpoint assessed on day 3-15 after completing therapy) were 58.1% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-17.2, 12.0]. The microbiological eradication rates at the posttherapy visit were 66.7% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of eradication rates (levofloxacin minus comparator) was [-8.3, 20.3]. Clinical success and microbiological eradication rates by pathogen are detailed in Table 13.
tab
Community-Acquired Pneumonia: 7-14 day Treatment Regimen
- Adult inpatients and outpatients with a diagnosis of community-acquired bacterial pneumonia were evaluated in 2 pivotal clinical studies. In the first study, 590 patients were enrolled in a prospective, multi-center, unblinded randomized trial comparing levofloxacin 500 mg once daily orally or intravenously for 7 to 14 days to ceftriaxone 1 to 2 grams intravenously once or in equally divided doses twice daily followed by cefuroxime axetil 500 mg orally twice daily for a total of 7 to 14 days. Patients assigned to treatment with the control regimen were allowed to receive erythromycin (or doxycycline if intolerant of erythromycin) if an infection due to atypical pathogens was suspected or proven. Clinical and microbiologic evaluations were performed during treatment, 5 to 7 days posttherapy, and 3 to 4 weeks posttherapy. Clinical success (cure plus improvement) with levofloxacin at 5 to 7 days posttherapy, the primary efficacy variable in this study, was superior (95%) to the control group (83%). The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-6, 19]. In the second study, 264 patients were enrolled in a prospective, multi-center, non-comparative trial of 500 mg levofloxacin administered orally or intravenously once daily for 7 to 14 days. Clinical success for clinically evaluable patients was 93%. For both studies, the clinical success rate in patients with atypical pneumonia due to Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila were 96%, 96%, and 70%, respectively. Microbiologic eradication rates across both studies are presented in Table 14.
tab
Community-Acquired Pneumonia Due to Multi-Drug Resistant Streptococcus pneumoniae
- Levofloxacin was effective for the treatment of community-acquired pneumonia caused by multi-drug resistant Streptococcus pneumoniae (MDRSP). MDRSP isolates are isolates resistant to two or more of the following antibacterials: penicillin (MIC ≥2 mcg/mL), 2nd generation cephalosporins (e.g., cefuroxime, macrolides, tetracyclines and trimethoprim/sulfamethoxazole). Of 40 microbiologically evaluable patients with MDRSP isolates, 38 patients (95.0%) achieved clinical and bacteriologic success at post-therapy. The clinical and bacterial success rates are shown in Table 15.
tab
- Not all isolates were resistant to all antimicrobial classes tested. Success and eradication rates are summarized in Table 16.
tab
Community-Acquired Pneumonia: 5-day Treatment Regimen
- To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 528 outpatient and hospitalized adults with clinically and radiologically determined mild to severe community-acquired pneumonia were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg, IV or orally, every day for five days or levofloxacin 500 mg IV or orally, every day for 10 days.
- Clinical success rates (cure plus improvement) in the clinically evaluable population were 90.9% in the levofloxacin 750 mg group and 91.1% in the levofloxacin 500 mg group. The 95% CI for the difference of response rates (levofloxacin 750 minus levofloxacin 500) was [-5.9, 5.4]. In the clinically evaluable population (31-38 days after enrollment) pneumonia was observed in 7 out of 151 patients in the levofloxacin 750 mg group and 2 out of 147 patients in the levofloxacin 500 mg group. Given the small numbers observed, the significance of this finding cannot be determined statistically. The microbiological efficacy of the 5-day regimen was documented for infections listed in Table 17.
tab
Acute Bacterial Sinusitis: 5-day and 10-14 day Treatment Regimens
- Levofloxacin is approved for the treatment of acute bacterial sinusitis (ABS) using either 750 mg by mouth × 5 days or 500 mg by mouth once daily × 10-14 days. To evaluate the safety and efficacy of a high dose short course of levofloxacin, 780 outpatient adults with clinically and radiologically determined acute bacterial sinusitis were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg by mouth once daily for five days to levofloxacin 500 mg by mouth once daily for 10 days.
- Clinical success rates (defined as complete or partial resolution of the pre-treatment signs and symptoms of ABS to such an extent that no further antibiotic treatment was deemed necessary) in the microbiologically evaluable population were 91.4% (139/152) in the levofloxacin 750 mg group and 88.6% (132/149) in the levofloxacin 500 mg group at the test-of-cure (TOC) visit (95% CI [-4.2, 10.0] for levofloxacin 750 mg minus levofloxacin 500 mg).
- Rates of clinical success by pathogen in the microbiologically evaluable population who had specimens obtained by antral tap at study entry showed comparable results for the five- and ten-day regimens at the test-of-cure visit 22 days post treatment.
tab
Complicated Skin and Skin Structure Infections
- Three hundred ninety-nine patients were enrolled in an open-label, randomized, comparative study for complicated skin and skin structure infections. The patients were randomized to receive either levofloxacin 750 mg once daily (IV followed by oral), or an approved comparator for a median of 10 ± 4.7 days. As is expected in complicated skin and skin structure infections, surgical procedures were performed in the levofloxacin and comparator groups. Surgery (incision and drainage or debridement) was performed on 45% of the levofloxacin-treated patients and 44% of the comparator-treated patients, either shortly before or during antibiotic treatment and formed an integral part of therapy for this indication.
- Among those who could be evaluated clinically 2-5 days after completion of study drug, overall success rates (improved or cured) were 116/138 (84.1%) for patients treated with levofloxacin and 106/132 (80.3%) for patients treated with the comparator.
- Success rates varied with the type of diagnosis ranging from 68% in patients with infected ulcers to 90% in patients with infected wounds and abscesses. These rates were equivalent to those seen with comparator drugs.
Chronic Bacterial Prostatitis
- Adult patients with a clinical diagnosis of prostatitis and microbiological culture results from urine sample collected after prostatic massage (VB3) or expressed prostatic secretion (EPS) specimens obtained via the Meares-Stamey procedure were enrolled in a multicenter, randomized, double-blind study comparing oral levofloxacin 500 mg, once daily for a total of 28 days to oral ciprofloxacin 500 mg, twice daily for a total of 28 days. The primary efficacy endpoint was microbiologic efficacy in microbiologically evaluable patients. A total of 136 and 125 microbiologically evaluable patients were enrolled in the levofloxacin and ciprofloxacin groups, respectively. The microbiologic eradication rate by patient infection at 5-18 days after completion of therapy was 75.0% in the levofloxacin group and 76.8% in the ciprofloxacin group (95% CI [-12.58, 8.98] for levofloxacin minus ciprofloxacin). The overall eradication rates for pathogens of interest are presented in Table 19.
tab
- Eradication rates for S. epidermidis when found with other co-pathogens are consistent with rates seen in pure isolates.
- Clinical success (cure + improvement with no need for further antibiotic therapy) rates in microbiologically evaluable population 5-18 days after completion of therapy were 75.0% for levofloxacin-treated patients and 72.8% for ciprofloxacin-treated patients (95% CI [-8.87, 13.27] for levofloxacin minus ciprofloxacin). Clinical long-term success (24-45 days after completion of therapy) rates were 66.7% for the levofloxacin-treated patients and 76.9% for the ciprofloxacin-treated patients (95% CI [-23.40, 2.89] for levofloxacin minus ciprofloxacin).
Complicated Urinary Tract Infections and Acute Pyelonephritis: 5-day Treatment Regimen
- To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 1109 patients with cUTI and AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from November 2004 to April 2006 comparing levofloxacin 750 mg IV or orally once daily for 5 days (546 patients) with ciprofloxacin 400 mg IV or 500 mg orally twice daily for 10 days (563 patients). Patients with AP complicated by underlying renal diseases or conditions such as complete obstruction, surgery, transplantation, concurrent infection or congenital malformation were excluded. Efficacy was measured by bacteriologic eradication of the baseline organism(s) at the post-therapy visit in patients with a pathogen identified at baseline. The post-therapy (test-of-cure) visit occurred 10 to 14 days after the last active dose of levofloxacin and 5 to 9 days after the last dose of active ciprofloxacin.
- The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 20.
tab
- Microbiologic eradication rates in the Microbiologically Evaluable population at TOC for individual pathogens recovered from patients randomized to levofloxacin treatment are presented in Table 21.
tab
Complicated Urinary Tract Infections and Acute Pyelonephritis: 10-day Treatment Regimen
- To evaluate the safety and efficacy of the 250 mg dose, 10 day regimen of levofloxacin, 567 patients with uncomplicated UTI, mild-to-moderate cUTI, and mild-to-moderate AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from June 1993 to January 1995 comparing levofloxacin 250 mg orally once daily for 10 days (285 patients) with ciprofloxacin 500 mg orally twice daily for 10 days (282 patients). Patients with a resistant pathogen, recurrent UTI, women over age 55 years, and with an indwelling catheter were initially excluded, prior to protocol amendment which took place after 30% of enrollment. Microbiological efficacy was measured by bacteriologic eradication of the baseline organism(s) at 1-12 days post-therapy in patients with a pathogen identified at baseline.
- The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 22.
tab
- 1-9 days posttherapy for 30% of subjects enrolled prior to a protocol amendment; 5-12 days posttherapy for 70% of subjects.
Inhalational Anthrax (Post-Exposure)
- The effectiveness of levofloxacin for this indication is based on plasma concentrations achieved in humans, a surrogate endpoint reasonably likely to predict clinical benefit. Levofloxacin has not been tested in humans for the post-exposure prevention of inhalation anthrax. The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens.
- Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/mL, respectively;and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/mL, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily.
- In adults, the safety of levofloxacin for treatment durations of up to 28 days is well characterized. However, information pertaining to extended use at 500 mg daily up to 60 days is limited. Prolonged levofloxacin therapy in adults should only be used when the benefit outweighs the risk.
- In pediatric patients, the safety of levofloxacin for treatment durations of more than 14 days has not been studied. An increased incidence of musculoskeletal adverse events (arthralgia, arthritis, tendinopathy, gait abnormality) compared to controls has been observed in clinical studies with treatment duration of up to 14 days. Long-term safety data, including effects on cartilage, following the administration of levofloxacin to pediatric patients is limited.
- A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 49 LD50 (~2.7 × 106) spores (range 17 - 118 LD50) of B. anthracis (Ames strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the anthrax strain used in this study was 0.125 mcg/mL. In the animals studied, mean plasma concentrations of levofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady state ranged from 2.79 to 4.87 mcg/mL. Steady state trough concentrations at 24 hours post-dose ranged from 0.107 to 0.164 mcg/mL. Mean (SD) steady state AUC0-24 was 33.4 ± 3.2 mcg.h/mL (range 30.4 to 36.0 mcg.h/mL). Mortality due to anthrax for animals that received a 30 day regimen of oral levofloxacin beginning 24 hrs post exposure was significantly lower (1/10), compared to the placebo group (9/10) [P=0.0011, 2-sided Fisher’s Exact Test]. The one levofloxacin treated animal that died of anthrax did so following the 30-day drug administration period.
Plague
- Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals.
- The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in an African green monkey model of pneumonic plague are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens.
- Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/mL, respectively; and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/mL, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily.
- A placebo-controlled animal study in African green monkeys exposed to an inhaled mean dose of 65 LD50 (range 3 to 145 LD50) of Yersinia pestis (CO92 strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the Y. pestis strain used in this study was 0.03 mcg/mL. Mean plasma concentrations of levofloxacin achieved at the end of a single 30-min infusion ranged from 2.84 to 3.50 mcg/mL in African green monkeys. Trough concentrations at 24 hours post-dose ranged from <0.03 to 0.06 mcg/mL. Mean (SD) AUC0-24 was 11.9 (3.1) mcg.h/mL (range 9.50 to 16.86 mcg.h/mL). Animals were randomized to receive either a 10-day regimen of i.v. levofloxacin or placebo beginning within 6 hrs of the onset of telemetered fever (≥ 39oC for more than 1 hour). Mortality in the levofloxacin group was significantly lower (1/17) compared to the placebo group (7/7) [p<0.001, Fisher’s Exact Test; exact 95% confidence interval (-99.9%, -55.5%) for the difference in mortality]. One levofloxacin-treated animal was euthanized on Day 9 post-exposure to Y. pestis due to a gastric complication; it had a blood culture positive for Y. pestis on Day 3 and all subsequent daily blood cultures from Day 4 through Day 7 were negative.
How Supplied
Levofloxacin Injection, Single-Use Vials
- Levofloxacin Injection
- is supplied in single-use vials. Each vial contains a concentrated solution with the equivalent of 500 mg of levofloxacin USP in 20 mL vials and 750 mg of levofloxacin USP in 30 mL vials.
- 25 mg/mL, 20 mL vials (NDC 23155-201-31)
- 25 mg/mL, 30 mL vials (NDC 23155-201-32)
Storage
- Single-Use Vials should be stored at controlled room temperature and protected from light.
Images
Drug Images
{{#ask: Page Name::Levofloxacin (injection) |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}
Package and Label Display Panel
PRINCIPAL DISPLAY PANEL-500 MG/20 ML LABEL
Levofloxacin Injection 500 mg/20 mL (25 mg/mL) NDC 23155-201-31 Rx only FOR INTRAVENOUS INFUSION AFTER DILUTION Attention Pharmacist: Dispense the accompanying Medication Guide to each patient. 20 mL
Single-Use Vial Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 500 mg of levofloxacin. May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. Directions for Use : Single-use vial. Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). Protect from light. Discard unused portion. Manufactured by: Emcure Pharmaceuticals Ltd., Hinjwadi, Pune, India. Manufactured for: Heritage Pharmaceuticals Inc.
P
PRINCIPAL DISPLAY PANEL-500 MG/20 ML CARTON
Levofloxacin Injection 500 mg/20 mL (25 mg/mL) NDC 23155-201-31 Rx only FOR INTRAVENOUS INFUSION AFTER DILUTION Attention Pharmacist: Dispense the accompanying Medication Guide to each patient. 20 mL Single-Use Vial Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 500 mg of levofloxacin USP. May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). Protect from light. Retain in Carton until time of use. Directions for Use : Single-use vial. Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. Discard unused portion. Manufactured by : Emcure Pharmaceuticals Ltd., Hinjwadi, Pune, India.
Manufactured for: Heritage Pharmaceuticals Inc. Eatontown, NJ 07724 1.866.901.DRUG (3784)
P
PRINCIPAL DISPLAY PANEL-750 MG/30 ML LABEL
Levofloxacin Injection 750 mg/30 mL (25 mg/mL) NDC 23155-201-32 Rx only FOR INTRAVENOUS INFUSION AFTER DILUTION Attention Pharmacist: Dispense the accompanying Medication Guide to each patient. 30 mL Single-Use Vial Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 750 mg of levofloxacin. May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. Directions for Use : Single-use vial. Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). Protect from light. Discard unused portion. Manufactured by: Emcure Pharmaceuticals Ltd., Hinjwadi, Pune, India.
PRINCIPAL DISPLAY PANEL-750 MG/30 ML CARTON
Levofloxacin Injection 750 mg/30 mL (25 mg/mL) NDC 23155-201-32 Rx only FOR INTRAVENOUS INFUSION AFTER DILUTION Attention Pharmacist: Dispense the accompanying Medication Guide to each patient. 30 mL Single-Use Vial Each vial contains a concentrated solution in Water for Injection, USP with the equivalent of 750 mg of levofloxacin USP. May contain diluted Hydrochloric Acid, NF and/or Sodium Hydroxide, NF for pH adjustment. pH range 3.8 - 5.8. Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Excursions permitted between 15° to 30°C (59° to 86°F). Protect from light. Retain in Carton until time of use. Directions for Use : Single-use vial. Not for direct infusion. Vial contents must be further diluted with an appropriate solution prior to intravenous administration. See insert for the preparation of intravenous solutions, stability, storage, compatibility, and usual adult dosage. Discard unused portion. Manufactured by : Emcure Pharmaceuticals Ltd., Hinjwadi, Pune, India.
Manufactured for: Heritage Pharmaceuticals Inc. Eatontown, NJ 07724 1.866.901.DRUG (3784) {{#ask: Label Page::Levofloxacin (injection) |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}
Patient Counseling Information
Antibacterial Resistance
- Antibacterial drugs including levofloxacin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When levofloxacin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by levofloxacin or other antibacterial drugs in the future.
Administration with Food, Fluids, and Concomitant Medications
- Patients should drink fluids liberally while taking levofloxacin to avoid formation of a highly concentrated urine and crystal formation in the urine.
Serious and Potentially Serious Adverse Reactions
- Patients should be informed of the following serious adverse reactions that have been associated with levofloxacin or other fluoroquinolone use:
- Tendon Disorders: Patients should contact their healthcare provider if they experience pain, swelling, or inflammation of a tendon, or weakness or inability to use one of their joints; rest and refrain from exercise; and discontinue levofloxacin treatment. The risk of severe tendon disorders with fluoroquinolones is higher in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants.
- Exacerbation of Myasthenia Gravis: Patients should inform their physician of any history of myasthenia gravis. Patients should notify their physician if they experience any symptoms of muscle weakness, including respiratory difficulties.
- Hypersensitivity Reactions: Patients should be informed that levofloxacin can cause hypersensitivity reactions, even following the first dose. Patients should discontinue the drug at the first sign of a skin rash, hives or other skin reactions, a rapid heartbeat, difficulty in swallowing or breathing, any swelling suggesting angioedema (e.g., swelling of the lips, tongue, face, tightness of the throat, hoarseness), or other symptoms of an allergic reaction.
- Hepatotoxicity: Severe hepatotoxicity (including acute hepatitis and fatal events) has been reported in patients taking levofloxacin. Patients should inform their physician and be instructed to discontinue levofloxacin treatment immediately if they experience any signs or symptoms of liver injury including: loss of appetite, nausea, vomiting, fever, weakness, tiredness, right upper quadrant tenderness, itching, yellowing of the skin and eyes, light colored bowel movements or dark colored urine.
- Convulsions: Convulsions have been reported in patients taking fluoroquinolones, including levofloxacin. Patients should notify their physician before taking this drug if they have a history of convulsions.
- Neurologic Adverse Effects (e.g., dizziness, lightheadedness, increased intracranial pressure): Patients should know how they react to levofloxacin before they operate an automobile or machinery or engage in other activities requiring mental alertness and coordination. Patients should notify their physician if persistent headache with or without blurred vision occurs.
- Diarrhea: Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.
- Peripheral Neuropathies: Patients should be informed that peripheral neuropathy has been associated with levofloxacin use. Symptoms may occur soon after initiation of therapy and may be irreversible. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness, and/or weakness develop, patients should immediately discontinue treatment and contact their physician.
- Prolongation of the QT Interval: Patients should inform their physician of any personal or family history of QT prolongation or proarrhythmic conditions such as hypokalemia, bradycardia, or recent myocardial ischemia; if they are taking any Class IA (quinidine, procainamide), or Class III (amiodarone, sotalol) antiarrhythmic agents. Patients should notify their physicians if they have any symptoms of prolongation of the QT interval, including prolonged heart palpitations or a loss of consciousness.
- Musculoskeletal Disorders in Pediatric Patients: Parents should inform their child’s physician if their child has a history of joint-related problems before taking this drug. Parents of pediatric patients should also notify their child’s physician of any tendon or joint-related problems that occur during or following levofloxacin therapy.
- Photosensitivity/Phototoxicity: Patients should be advised that photosensitivity/phototoxicity has been reported in patients receiving fluoroquinolone antibiotics. Patients should minimize or avoid exposure to natural or artificial sunlight (tanning beds or UVA/B treatment) while taking fluoroquinolones. If patients need to be outdoors when taking fluoroquinolones, they should wear loose-fitting clothes that protect skin from sun exposure and discuss other sun protection measures with their physician. If a sunburn like reaction or skin eruption occurs, patients should contact their physician.
Drug Interactions with Insulin, Oral Hypoglycemic Agents, and Warfarin
- Patients should be informed that if they are diabetic and are being treated with insulin or an oral hypoglycemic agent and a hypoglycemic reaction occurs, they should discontinue levofloxacin and consult a physician.
- Patients should be informed that concurrent administration of warfarin and levofloxacin has been associated with increases of the International Normalized Ratio (INR) or prothrombin time and clinical episodes of bleeding. Patients should notify their physician if they are taking warfarin, be monitored for evidence of bleeding, and also have their anticoagulation tests closely monitored while taking warfarin concomitantly.
Plague and Anthrax Studies
- Patients given levofloxacin for these conditions should be informed that efficacy studies could not be conducted in humans for ethical and feasibility reasons. Therefore, approval for these conditions was based on efficacy studies conducted in animals.
- Manufactured by:
- Emcure Pharmaceuticals Ltd.,
- Hinjwadi, Pune, India.
- Manufactured for:
- Heritage Pharmaceuticals Inc.
- Eatontown, NJ 07724
- 1.866.901.DRUG (3784)
Precautions with Alcohol
Alcohol-Levofloxacin (injection) interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
Brand Names
There is limited information regarding Levofloxacin (injection) Brand Names in the drug label.
Look-Alike Drug Names
There is limited information regarding Levofloxacin (injection) Look-Alike Drug Names in the drug label.
Drug Shortage Status
Price
References
The contents of this FDA label are provided by the National Library of Medicine.