Atrial septal defect MRI: Difference between revisions
m Bot: Adding CME Category::Cardiology |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 15: | Line 15: | ||
* Effective tool when echocardiographic results are inconclusive (small defects). | * Effective tool when echocardiographic results are inconclusive (small defects). | ||
* Can provide morphologic image of the [[heart]] in [[neonate]]s. | * Can provide morphologic image of the [[heart]] in [[neonate]]s. | ||
* Provides multiple images of the heart per [[cardiac cycle]]. | * Provides multiple images of the [[heart]] per [[cardiac cycle]]. | ||
* Non-invasive imaging method. | * Non-invasive imaging method. | ||
Line 28: | Line 28: | ||
* In another study done by Holmvang et al. Phase-contrast cine MRI has been found to be more reliable than Spin-echo images. The phase contrast MRI defines the defect shape by the cross section of the shunt flow. Due to the accurate diagnosis of the defect size it helps in making a decision on the therapeutics aspect of the patient i.e. transcutaneous catheter or surgical closure. On the other hand, spin-echo images, are not very accurate in finding ASD size and septal thinning adjacent to a secundum ASD may be falsely considered a part of the defect. <ref name="pmid8521569">{{cite journal| author=Holmvang G, Palacios IF, Vlahakes GJ, Dinsmore RE, Miller SW, Liberthson RR et al.| title=Imaging and sizing of atrial septal defects by magnetic resonance. | journal=Circulation | year= 1995 | volume= 92 | issue= 12 | pages= 3473-80 | pmid=8521569 | doi= | pmc= | url= }} </ref> | * In another study done by Holmvang et al. Phase-contrast cine MRI has been found to be more reliable than Spin-echo images. The phase contrast MRI defines the defect shape by the cross section of the shunt flow. Due to the accurate diagnosis of the defect size it helps in making a decision on the therapeutics aspect of the patient i.e. transcutaneous catheter or surgical closure. On the other hand, spin-echo images, are not very accurate in finding ASD size and septal thinning adjacent to a secundum ASD may be falsely considered a part of the defect. <ref name="pmid8521569">{{cite journal| author=Holmvang G, Palacios IF, Vlahakes GJ, Dinsmore RE, Miller SW, Liberthson RR et al.| title=Imaging and sizing of atrial septal defects by magnetic resonance. | journal=Circulation | year= 1995 | volume= 92 | issue= 12 | pages= 3473-80 | pmid=8521569 | doi= | pmc= | url= }} </ref> | ||
== 2008 ACC/AHA Guidelines - Evaluation of the Unoperated Patient - Atrial Septal Defect (DO NOT EDIT)<ref name="pmid19038677">{{cite journal| author=Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA et al.| title=ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. | journal=J Am Coll Cardiol | year= 2008 | volume= 52 | issue= 23 | pages= e1-121 | pmid=19038677 | doi=10.1016/j.jacc.2008.10.001 | pmc= |url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19038677 }} </ref>== | |||
{|class="wikitable" | {|class="wikitable" | ||
Line 34: | Line 34: | ||
| colspan="1" style="text-align:center; background:LightGreen"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]] | | colspan="1" style="text-align:center; background:LightGreen"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]] | ||
|- | |- | ||
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.''' ASD should be diagnosed by imaging techniques with demonstration of [shunting]] across the defect and evidence of RV volume overload and any associated anomalies. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])'' <nowiki>"</nowiki> | | bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.''' ASD should be diagnosed by imaging techniques with demonstration of [[shunting]] across the defect and evidence of RV volume overload and any associated anomalies. ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])'' <nowiki>"</nowiki> | ||
|} | |} | ||
Line 42: | Line 42: | ||
{{WikiDoc Help Menu}} | {{WikiDoc Help Menu}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} | ||
[[CME Category::Cardiology]] | |||
[[Category:Best pages]] | |||
[[Category:Cardiology]] | [[Category:Cardiology]] | ||
[[Category:Congenital heart disease]] | [[Category:Congenital heart disease]] |
Latest revision as of 01:58, 15 March 2016
Atrial Septal Defect Microchapters | |
Treatment | |
---|---|
Surgery | |
| |
Special Scenarios | |
Case Studies | |
Atrial septal defect MRI On the Web | |
American Roentgen Ray Society Images of Atrial septal defect MRI | |
Risk calculators and risk factors for Atrial septal defect MRI | |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S. [[2]]; Cafer Zorkun, M.D., Ph.D. [3]; Assistant Editor(s)-In-Chief: Kristin Feeney, B.S. [[4]]
Overview
Magnetic resonance imaging (MRI) can be used as a diagnostic tool in identifying an atrial septal defect. It also helps in visualization of the pulmonary veins, quantifying right ventricular volume and shunt size. Velocity-encoded, phase difference MRI can assess the magnitude of left-to-right shunting as reliably as is done by cardiac catheterization [1]. Also, it has the advantage of being a non-invasive tool compared to the invasive cardiac catheterization. Additionally, phase-contrast cine MRI is more reliable than spin-echo images in determining the size of defect that in turn helps to make a better therapeutics decision i.e. trans-cutaneous or the surgical closure [2].However, its current utility is limited for smaller defects and in inconclusive echocardiography findings.
MRI
Indications
MRI can successfully diagnose atrial septal defect. However, due to the availability of other non-invasive, cheap and sensitive methods like echocardiography its utility is limited for smaller defects.
Advantages
- Phase velocity MRI mapping can measure the ratio of pulmonary to systemic blood flow (Qp:Qs), ventricular volume, shunt size and pressure gradient across the heart chambers. It is as sensitive as cardiac catheterization that is considered a gold standard [3].
- Effective tool when echocardiographic results are inconclusive (small defects).
- Can provide morphologic image of the heart in neonates.
- Provides multiple images of the heart per cardiac cycle.
- Non-invasive imaging method.
Disadvantages
- Requires general anesthesia.
- Can misdiagnose certain anatomical structures for e.g. thin fossa ovalis can be mistaken for an ostium secundum defect.
- Static images can provide a skewed perception of the thickness of the septum.
Supportive Trial Data
- In a study done by Hundley et al. velocity-encoded, phase difference MRI have been found to assess the magnitude of left-to-right shunting as reliably as was done by cardiac catheterization. Also, it has the additional advantage of being a non-invasive tool compared to invasive cardiac catheterization.[1]
- In another study done by Holmvang et al. Phase-contrast cine MRI has been found to be more reliable than Spin-echo images. The phase contrast MRI defines the defect shape by the cross section of the shunt flow. Due to the accurate diagnosis of the defect size it helps in making a decision on the therapeutics aspect of the patient i.e. transcutaneous catheter or surgical closure. On the other hand, spin-echo images, are not very accurate in finding ASD size and septal thinning adjacent to a secundum ASD may be falsely considered a part of the defect. [2]
2008 ACC/AHA Guidelines - Evaluation of the Unoperated Patient - Atrial Septal Defect (DO NOT EDIT)[4]
Class I |
"1. ASD should be diagnosed by imaging techniques with demonstration of shunting across the defect and evidence of RV volume overload and any associated anomalies. (Level of Evidence: C) " |
References
- ↑ 1.0 1.1 Hundley WG, Li HF, Lange RA, Pfeifer DP, Meshack BM, Willard JE; et al. (1995). "Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques". Circulation. 91 (12): 2955–60. PMID 7796506.
- ↑ 2.0 2.1 Holmvang G, Palacios IF, Vlahakes GJ, Dinsmore RE, Miller SW, Liberthson RR; et al. (1995). "Imaging and sizing of atrial septal defects by magnetic resonance". Circulation. 92 (12): 3473–80. PMID 8521569.
- ↑ Xiuling, Q.I., Merchant, N., Walker, F., Webb, G., McLaughlin, P., Stainsby, J., Wright, G. "MRI Assessment of Atrial Septal Defects in Adults". Proc Intl. Soc. Mag. Reson. Med. year= 2001. 9: 455.
- ↑ Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA; et al. (2008). "ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". J Am Coll Cardiol. 52 (23): e1–121. doi:10.1016/j.jacc.2008.10.001. PMID 19038677.