Primary amoebic meningoencephalitis medical therapy: Difference between revisions
Created page with "__NOTOC__ {{Primary amoebic meningoencephalitis}} Please help WikiDoc by adding content here. It's easy! Click here to learn about editing. =..." |
m Changes made per Mahshid's request |
||
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Primary amoebic meningoencephalitis}} | {{Primary amoebic meningoencephalitis}} | ||
{{CMG}} | |||
Please help WikiDoc by adding content here. It's easy! Click [[Help:How_to_Edit_a_Page|here]] to learn about editing. | Please help WikiDoc by adding more content here. It's easy! Click [[Help:How_to_Edit_a_Page|here]] to learn about editing. | ||
==Overview== | |||
Considering the the high [[mortality rate]] of primary amoebic meningoencephalitis, unusually non-suggestive [[symptom]]ology of the early-stage disease, and necessity of [[microbial culture]] of the [[cerebrospinal fluid]] to effect a positive [[diagnosis]], it has been suggested that physicians should give an array of antimicrobial drugs, including the drugs used to treat amoebic encephalitis, before the disease is actually confirmed in order to increase the number of survivors. However, administering several of those drugs at once (or even some of them known to treat the condition) is often very dangerous and unpleasant for the patient. | |||
==Medical Therapy== | |||
*Admit patients with primary amoebic meningoencephalitis to the [[intensive care unit]] (ICU) for intensive monitoring and treatment. The current standard treatment is prompt [[intravenous]] administration of heroic doses of [[amphotericin B]], a systemic [[Antifungal medication|antifungal]] that is one of the few effective treatments for systemic infections of [[protozoal]] [[parasitic diseases]] (such as [[leishmaniasis]] and [[toxoplasmosis]]). | |||
*The success rate in treating PAM is usually quite poor, since by the time of definitive diagnosis most patients have already manifested signs of terminal cerebral [[necrosis]]. Even if definitive diagnosis is effected early enough to allow for a course of medication, [[amphotericin B]] also causes significant and permanent [[nephrotoxicity]] in the doses necessary to quickly halt the progress of the amoebae through the [[brain]]. | |||
*[[Rifampicin]] has also been used with [[amphotericin B]] in successful treatment.<ref name="pmid2056258">{{cite journal |author=Poungvarin N, Jariya P |title=The fifth nonlethal case of primary amoebic meningoencephalitis |journal=J Med Assoc Thai |volume=74 |issue=2 |pages=112–5 |year=1991 |month=February |pmid=2056258 |url=}}</ref><ref name="pmid12577098">{{cite journal |author=Jain R, Prabhakar S, Modi M, Bhatia R, Sehgal R |title=Naegleria meningitis: a rare survival |journal=Neurol India |volume=50 |issue=4 |pages=470–2 |year=2002 |month=December |pmid=12577098 |url=http://www.neurologyindia.com/article.asp?issn=0028-3886;year=2002;volume=50;issue=4;spage=470;epage=2;aulast=Jain}}</ref><ref name="pmid15900627">{{cite journal |author=Vargas-Zepeda J, Gómez-Alcalá AV, Vásquez-Morales JA, Licea-Amaya L, De Jonckheere JF, Lares-Villa F |title=Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin |journal=Arch. Med. Res. |volume=36 |issue=1 |pages=83–6 |year=2005 |pmid=15900627 |doi= 10.1016/j.arcmed.2004.11.003|url=}}</ref> However, there is some evidence that it does not effectively inhibit Naegleria growth.<ref name="urlProceedings of the Oklahoma Academy of Science">{{cite web |url=http://digital.library.okstate.edu/OAS/oas_htm_files/v77/p133_136nf.html |title=Proceedings of the Oklahoma Academy of Science |accessdate=2 January 2009}}</ref> | |||
*The successful use of a combination regimen that includes one amebicidal drug ([[miltefosine]]) along with two amebistatic drugs capable of crossing the [[blood brain barrier]] ([[fluconazole]] and [[albendazole]]) provides hope for attaining clinical cure for an otherwise lethal condition. | |||
*There is preclinical evidence that the relatively safe, inexpensive, and widely available [[phenothiazine]] [[antipsychotic]] [[chlorpromazine]] is a highly efficacious amebicide against ''[[N. fowleri]]'', with laboratory animal survival rates nearly double those receiving treatment with [[amphotericin B]].<ref>{{cite journal|last=Kim|first=JH|coauthors=Jung, SY, Lee, YJ, Song, KJ, Kwon, D, Kim, K, Park, S, Im, KI, Shin, HJ|title=Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri.|journal=Antimicrobial agents and chemotherapy|date=November 2008|year=2008|month=November|volume=52|issue=11|pages=4010–6|doi=10.1128/AAC.00197-08|pmid=18765686|url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573150/?tool=pubmed|accessdate=22 April 2012|pmc=2573150}}</ref> The mechanism of action is possibly the inhibition of the ''nfa1'' and ''Mp2CL5'' genes, found only in pathogenic strains of ''[[N. fowleri]]'', which are involved in amoebic [[phagocytosis]] and regulation of cellular growth, respectively.<ref>{{cite journal|last=Tiewcharoen|first=Supathra|title=Activity of chlorpromazine on nfa1 and Mp2CL5 genes of Naegleria fowleri trophozoites|journal=Health|date=1 January 2011|volume=03|issue=03|pages=166–171|doi=10.4236/health.2011.33032|url=http://www.scirp.org/Journal/PaperInformation.aspx?paperID=4314|accessdate=22 April 2012}}</ref> | |||
*There have been two well-documented survivors (one from the US in 1979<ref name="pmid7054710">{{cite journal| author=Seidel JS, Harmatz P, Visvesvara GS, Cohen A, Edwards J, Turner J| title=Successful treatment of primary amebic meningoencephalitis. | journal=N Engl J Med | year= 1982 | volume= 306 | issue= 6 | pages= 346-8 | pmid=7054710 | doi=10.1056/NEJM198202113060607 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7054710 }} </ref> and one from Mexico in 2003<ref name="pmid15900627">{{cite journal| author=Vargas-Zepeda J, Gómez-Alcalá AV, Vásquez-Morales JA, Licea-Amaya L, De Jonckheere JF, Lares-Villa F| title=Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin. | journal=Arch Med Res | year= 2005 | volume= 36 | issue= 1 | pages= 83-6 | pmid=15900627 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15900627 }} </ref>) who received the following combination of three drugs successfully (in addition to [[steroid]]s to control [[cerebral edema]]): | |||
'''1.''' [[Amphotericin B]] (IV +/- intrathecal): (one patient received amphotericin B [AMB] for 14 days and the other patient received it for 9 days). When AMB was compared with liposomal AMB against ''[[Naegleria fowleri]]'', the minimum inhibitory concentration (MIC) for AMB was 0.1 µg/mL, while that of liposomal AMB was 10x higher at 1 µg/ml. Liposomal AMB was found to be less effective in the mouse model and in in vitro testing than the more toxic form of AMB. AMB methyl ester was also found to be less effective in the mouse model.<ref name="pmid6926763">{{cite journal| author=Ferrante A| title=Comparative sensitivity of Naegleria fowleri to amphotericin B and amphotericin B methyl ester. | journal=Trans R Soc Trop Med Hyg | year= 1982 | volume= 76 | issue= 4 | pages= 476-8 | pmid=6926763 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6926763 }} </ref> Because of the extremely poor prognosis of ''[[Naegleria fowleri]]'' infection, it’s worth considering aggressive treatment.<br> | |||
'''2.''' [[Rifampicin]] (oral): 10 mg/kg/day (one survivor received this dosage in three divided doses for 9 days; the other received it every 24 hours for 1 month)<br> | |||
'''3.''' [[Fluconazole]] (IV or oral): 10 mg/kg/day (one survivor initially received this dosage IV every 24 hours but [[fluconazole]] was later switched to oral administration because the hospital ran out of IV stock)<br>or<br>[[Miconazole]] (IV): 350 mg per square meter of body-surface area per day in three divided doses (one survivor received this regimen for 9 days but [[miconazole]] is no longer available in the United States). | |||
*CDC also recommends the use of [[azithromycin]]. [[Azithromycin]] has both in vitro and in vivo (mouse model) efficacy against ''[[Naegleria fowleri]]'' and appears to be synergistic when administered with AMB. Therefore, [[azithromycin]] may be tried as an adjunct to AMB. | |||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
[[Category:Needs content]] | [[Category:Needs content]] | ||
Line 12: | Line 36: | ||
[[Category:Inflammations]] | [[Category:Inflammations]] | ||
[[Category:Meningitis]] | [[Category:Meningitis]] | ||
[[Category:Neurological Disease]] | [[Category:Neurological Disease]] | ||
[[Category:Disease]] | |||
{{WH}} | {{WH}} | ||
{{WS}} | {{WS}} |
Latest revision as of 18:47, 18 September 2017
Primary amoebic meningoencephalitis Microchapters |
Differentiating Primary Amoebic Meningoencephalitis from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Primary amoebic meningoencephalitis medical therapy On the Web |
American Roentgen Ray Society Images of Primary amoebic meningoencephalitis medical therapy |
Primary amoebic meningoencephalitis medical therapy in the news |
Blogs on Primary amoebic meningoencephalitis medical therapy |
Directions to Hospitals Treating Primary amoebic meningoencephalitis |
Risk calculators and risk factors for Primary amoebic meningoencephalitis medical therapy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.
Overview
Considering the the high mortality rate of primary amoebic meningoencephalitis, unusually non-suggestive symptomology of the early-stage disease, and necessity of microbial culture of the cerebrospinal fluid to effect a positive diagnosis, it has been suggested that physicians should give an array of antimicrobial drugs, including the drugs used to treat amoebic encephalitis, before the disease is actually confirmed in order to increase the number of survivors. However, administering several of those drugs at once (or even some of them known to treat the condition) is often very dangerous and unpleasant for the patient.
Medical Therapy
- Admit patients with primary amoebic meningoencephalitis to the intensive care unit (ICU) for intensive monitoring and treatment. The current standard treatment is prompt intravenous administration of heroic doses of amphotericin B, a systemic antifungal that is one of the few effective treatments for systemic infections of protozoal parasitic diseases (such as leishmaniasis and toxoplasmosis).
- The success rate in treating PAM is usually quite poor, since by the time of definitive diagnosis most patients have already manifested signs of terminal cerebral necrosis. Even if definitive diagnosis is effected early enough to allow for a course of medication, amphotericin B also causes significant and permanent nephrotoxicity in the doses necessary to quickly halt the progress of the amoebae through the brain.
- Rifampicin has also been used with amphotericin B in successful treatment.[1][2][3] However, there is some evidence that it does not effectively inhibit Naegleria growth.[4]
- The successful use of a combination regimen that includes one amebicidal drug (miltefosine) along with two amebistatic drugs capable of crossing the blood brain barrier (fluconazole and albendazole) provides hope for attaining clinical cure for an otherwise lethal condition.
- There is preclinical evidence that the relatively safe, inexpensive, and widely available phenothiazine antipsychotic chlorpromazine is a highly efficacious amebicide against N. fowleri, with laboratory animal survival rates nearly double those receiving treatment with amphotericin B.[5] The mechanism of action is possibly the inhibition of the nfa1 and Mp2CL5 genes, found only in pathogenic strains of N. fowleri, which are involved in amoebic phagocytosis and regulation of cellular growth, respectively.[6]
- There have been two well-documented survivors (one from the US in 1979[7] and one from Mexico in 2003[3]) who received the following combination of three drugs successfully (in addition to steroids to control cerebral edema):
1. Amphotericin B (IV +/- intrathecal): (one patient received amphotericin B [AMB] for 14 days and the other patient received it for 9 days). When AMB was compared with liposomal AMB against Naegleria fowleri, the minimum inhibitory concentration (MIC) for AMB was 0.1 µg/mL, while that of liposomal AMB was 10x higher at 1 µg/ml. Liposomal AMB was found to be less effective in the mouse model and in in vitro testing than the more toxic form of AMB. AMB methyl ester was also found to be less effective in the mouse model.[8] Because of the extremely poor prognosis of Naegleria fowleri infection, it’s worth considering aggressive treatment.
2. Rifampicin (oral): 10 mg/kg/day (one survivor received this dosage in three divided doses for 9 days; the other received it every 24 hours for 1 month)
3. Fluconazole (IV or oral): 10 mg/kg/day (one survivor initially received this dosage IV every 24 hours but fluconazole was later switched to oral administration because the hospital ran out of IV stock)
or
Miconazole (IV): 350 mg per square meter of body-surface area per day in three divided doses (one survivor received this regimen for 9 days but miconazole is no longer available in the United States).
- CDC also recommends the use of azithromycin. Azithromycin has both in vitro and in vivo (mouse model) efficacy against Naegleria fowleri and appears to be synergistic when administered with AMB. Therefore, azithromycin may be tried as an adjunct to AMB.
References
- ↑ Poungvarin N, Jariya P (1991). "The fifth nonlethal case of primary amoebic meningoencephalitis". J Med Assoc Thai. 74 (2): 112–5. PMID 2056258. Unknown parameter
|month=
ignored (help) - ↑ Jain R, Prabhakar S, Modi M, Bhatia R, Sehgal R (2002). "Naegleria meningitis: a rare survival". Neurol India. 50 (4): 470–2. PMID 12577098. Unknown parameter
|month=
ignored (help) - ↑ 3.0 3.1 Vargas-Zepeda J, Gómez-Alcalá AV, Vásquez-Morales JA, Licea-Amaya L, De Jonckheere JF, Lares-Villa F (2005). "Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin". Arch. Med. Res. 36 (1): 83–6. doi:10.1016/j.arcmed.2004.11.003. PMID 15900627.
- ↑ "Proceedings of the Oklahoma Academy of Science". Retrieved 2 January 2009.
- ↑ Kim, JH (November 2008). "Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri". Antimicrobial agents and chemotherapy. 52 (11): 4010–6. doi:10.1128/AAC.00197-08. PMC 2573150. PMID 18765686. Retrieved 22 April 2012. Unknown parameter
|month=
ignored (help); Unknown parameter|coauthors=
ignored (help) - ↑ Tiewcharoen, Supathra (1 January 2011). "Activity of chlorpromazine on nfa1 and Mp2CL5 genes of Naegleria fowleri trophozoites". Health. 03 (03): 166–171. doi:10.4236/health.2011.33032. Retrieved 22 April 2012.
- ↑ Seidel JS, Harmatz P, Visvesvara GS, Cohen A, Edwards J, Turner J (1982). "Successful treatment of primary amebic meningoencephalitis". N Engl J Med. 306 (6): 346–8. doi:10.1056/NEJM198202113060607. PMID 7054710.
- ↑ Ferrante A (1982). "Comparative sensitivity of Naegleria fowleri to amphotericin B and amphotericin B methyl ester". Trans R Soc Trop Med Hyg. 76 (4): 476–8. PMID 6926763.