Ewing's sarcoma pathophysiology: Difference between revisions

Jump to navigation Jump to search
Suveenkrishna Pothuru (talk | contribs)
Mmir (talk | contribs)
Mahshid
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Ewing's sarcoma}}
{{Ewing's sarcoma}}
{{CMG}}; {{MJM}}
{{CMG}};{{AE}} {{PSK}};'''Assistant Editor(s)-In-Chief''':{{MJM}}
==Overview==
==Overview==
Ewing sarcoma may occur anywhere in the body, but most commonly in the [[pelvis]] and proximal long tubular bones. The pathogenesis of Ewing sarcoma include t(11;22) chromosomal translocation.  On microscopic histopathological analysis, presence of small round cells that have a high nuclear to cytoplasmic ratio, vacuolated cytoplasm, and faded boundaries are characteristic findings of Ewing sarcoma.
Ewing's sarcoma may occur anywhere in the body, but most commonly occurs in the [[pelvis]] and proximal long tubular bones. The pathogenesis of Ewing's sarcoma include t(11;22) chromosomal translocation.  On microscopic histopathological analysis, the presence of small round cells that have a high nuclear to cytoplasmic ratio, vacuolated cytoplasm, and faded boundaries are characteristic findings of Ewing's sarcoma.


==Pathophysiology==
==Pathophysiology==
Ewing sarcoma may occur anywhere in the body, but most commonly in the [[pelvis]] and proximal long tubular bones. The [[diaphyses]] of the [[femur]] are the most common sites, followed by the [[tibia]] and the [[humerus]].
Ewing's sarcoma may occur anywhere in the body, but most commonly in the [[pelvis]] and proximal long tubular bones. The [[diaphyses]] of the [[femur]] are the most common sites, followed by the [[tibia]] and the [[humerus]].
===Genetics===
===Genetics===
Ewing sarcoma is the result of a [[translocation]] between chromosomes 11 and 22, which fuses the ''EWS'' gene of chromosome 22 to the ''FLI1'' gene of chromosome 11.
Ewing's sarcoma is the result of a [[translocation]] between chromosomes 11 and 22, which fuses the ''EWS'' gene of chromosome 22 to the ''FLI1'' gene of chromosome 11.<ref name=NIH>Cellular Classification of Ewing's sarcoma.National cancer institute.http://www.cancer.gov/types/bone/hp/ewing-treatment-pdq#section/_15</ref>
*The ''EWSR1'' gene is a member of the ''TET'' family [''TLS''/''EWS''/''TAF15''] of RNA-binding proteins. The ''FLI1'' gene is a member of the ''ETS'' family of DNA-binding genes.
*The ''EWSR1'' gene is a member of the ''TET'' family [''TLS''/''EWS''/''TAF15''] of RNA-binding proteins. The ''FLI1'' gene is a member of the ''ETS'' family of DNA-binding genes.
*Characteristically, the amino terminus of the ''EWSR1'' gene is juxtaposed with the carboxy terminus of the ''ETS'' family gene.
*Characteristically, the amino terminus of the ''EWSR1'' gene is juxtaposed with the carboxy terminus of the ''ETS'' family gene.
Line 14: Line 14:
*Other family members that may combine with the ''EWSR1'' gene are ''ERG'', ''ETV1'', ''ETV4'' (also termed ''E1AF''), and ''FEV''.
*Other family members that may combine with the ''EWSR1'' gene are ''ERG'', ''ETV1'', ''ETV4'' (also termed ''E1AF''), and ''FEV''.
*Rarely, ''TLS'', another ''TET'' family member, can substitute for ''EWSR1''.
*Rarely, ''TLS'', another ''TET'' family member, can substitute for ''EWSR1''.
The MIC2 gene product, CD99, is a surface membrane protein that is expressed in most cases of Ewing's sarcoma and is useful in diagnosing these tumors when the results are interpreted in the context of clinical and pathologic parameters. ''MIC2'' positivity is not unique to Ewing's sarcoma, and positivity by immunochemistry is found in several other tumors, including [[synovial sarcoma]], [[non-Hodgkin lymphoma]], and gastrointestinal stromal tumors.


====Microscopic pathology====
====Microscopic pathology====
Ewing sarcoma belongs to the group of neoplasms commonly referred to as small, round, and blue-cell tumors of childhood:<ref name="pmid17272319">{{cite journal |author=Iwamoto Y |title=Diagnosis and treatment of Ewing's sarcoma |journal=[[Japanese Journal of Clinical Oncology]] |volume=37 |issue=2 |pages=79–89 |year=2007 |month=February |pmid=17272319 |doi=10.1093/jjco/hyl142 |url=http://jjco.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=17272319 |accessdate=2012-01-04}}</ref>  
Ewing's sarcoma belongs to the group of neoplasms commonly referred to as small, round, and blue-cell tumors of childhood:<ref name=NIH>Cellular Classification of Ewing's sarcoma.National cancer institute.http://www.cancer.gov/types/bone/hp/ewing-treatment-pdq#section/_15</ref><ref name="pmid17272319">{{cite journal |author=Iwamoto Y |title=Diagnosis and treatment of Ewing's sarcoma |journal=[[Japanese Journal of Clinical Oncology]] |volume=37 |issue=2 |pages=79–89 |year=2007 |month=February |pmid=17272319 |doi=10.1093/jjco/hyl142 |url=http://jjco.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=17272319 |accessdate=2012-01-04}}</ref>
*It consists of a [[homogeneous]] population of small round blue cells that have a high [[nuclear]] to [[cytoplasmic]] ratio.
*On microscopic histopathological analysis, Ewing's sarcoma consists of a [[homogeneous]] population of small round blue cells that have a high [[nuclear]] to [[cytoplasmic]] ratio.
*The tumor cells are tightly packed and grow in a diffuse pattern without evidence of structural organization.
*The tumor cells are tightly packed and grow in a diffuse pattern without evidence of structural organization.
*The individual cells of Ewing sarcoma contain round-to-oval nuclei, with fine dispersed chromatin without nucleoli.
*The individual cells of Ewing's sarcoma contain round-to-oval nuclei, with fine dispersed [[chromatin]] without [[nucleoli]].
*Occasionally, cells with smaller, more hyperchromatic, and probably degenerative nuclei are present, giving a light cell/dark cell pattern.
*Occasionally, cells with smaller, more hyperchromatic, and probably degenerative nuclei are present, giving a light cell/dark cell pattern.
*The cytoplasm varies in amount, but in the classic case, it is clear and contains glycogen, which can be highlighted with a periodic acid-Schiff stain.
*The cytoplasm varies in amount, but in the classic case, it is clear and contains glycogen, which can be highlighted with a periodic acid-Schiff stain.
Line 33: Line 34:
{{WikiDoc Help Menu}}
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}
{{WikiDoc Sources}}
[[Category:Up-To-Date]]
[[Category:Oncology]]
[[Category:Medicine]]
[[Category:Orthopedics]]

Latest revision as of 23:20, 26 November 2017

Ewing's sarcoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Ewing's sarcoma from other diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Biopsy

X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Ewing's sarcoma pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Ewing's sarcoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Ewing's sarcoma pathophysiology

CDC on Ewing's sarcoma pathophysiology

Ewing's sarcoma pathophysiology in the news

Blogs on Ewing's sarcoma pathophysiology

Directions to Hospitals Treating Ewing's sarcoma

Risk calculators and risk factors for Ewing's sarcoma pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Suveenkrishna Pothuru, M.B,B.S. [2];Assistant Editor(s)-In-Chief:Michael Maddaleni, B.S.

Overview

Ewing's sarcoma may occur anywhere in the body, but most commonly occurs in the pelvis and proximal long tubular bones. The pathogenesis of Ewing's sarcoma include t(11;22) chromosomal translocation. On microscopic histopathological analysis, the presence of small round cells that have a high nuclear to cytoplasmic ratio, vacuolated cytoplasm, and faded boundaries are characteristic findings of Ewing's sarcoma.

Pathophysiology

Ewing's sarcoma may occur anywhere in the body, but most commonly in the pelvis and proximal long tubular bones. The diaphyses of the femur are the most common sites, followed by the tibia and the humerus.

Genetics

Ewing's sarcoma is the result of a translocation between chromosomes 11 and 22, which fuses the EWS gene of chromosome 22 to the FLI1 gene of chromosome 11.[1]

  • The EWSR1 gene is a member of the TET family [TLS/EWS/TAF15] of RNA-binding proteins. The FLI1 gene is a member of the ETS family of DNA-binding genes.
  • Characteristically, the amino terminus of the EWSR1 gene is juxtaposed with the carboxy terminus of the ETS family gene.
  • In most cases (90%), the carboxy terminus is provided by FLI1, a member of the family of transcription factor genes located on chromosome 11 band q24.
  • Other family members that may combine with the EWSR1 gene are ERG, ETV1, ETV4 (also termed E1AF), and FEV.
  • Rarely, TLS, another TET family member, can substitute for EWSR1.

The MIC2 gene product, CD99, is a surface membrane protein that is expressed in most cases of Ewing's sarcoma and is useful in diagnosing these tumors when the results are interpreted in the context of clinical and pathologic parameters. MIC2 positivity is not unique to Ewing's sarcoma, and positivity by immunochemistry is found in several other tumors, including synovial sarcoma, non-Hodgkin lymphoma, and gastrointestinal stromal tumors.

Microscopic pathology

Ewing's sarcoma belongs to the group of neoplasms commonly referred to as small, round, and blue-cell tumors of childhood:[1][2]

  • On microscopic histopathological analysis, Ewing's sarcoma consists of a homogeneous population of small round blue cells that have a high nuclear to cytoplasmic ratio.
  • The tumor cells are tightly packed and grow in a diffuse pattern without evidence of structural organization.
  • The individual cells of Ewing's sarcoma contain round-to-oval nuclei, with fine dispersed chromatin without nucleoli.
  • Occasionally, cells with smaller, more hyperchromatic, and probably degenerative nuclei are present, giving a light cell/dark cell pattern.
  • The cytoplasm varies in amount, but in the classic case, it is clear and contains glycogen, which can be highlighted with a periodic acid-Schiff stain.
  • The nuclei have intense color which make them easily visible.

References

  1. 1.0 1.1 Cellular Classification of Ewing's sarcoma.National cancer institute.http://www.cancer.gov/types/bone/hp/ewing-treatment-pdq#section/_15
  2. Iwamoto Y (2007). "Diagnosis and treatment of Ewing's sarcoma". Japanese Journal of Clinical Oncology. 37 (2): 79–89. doi:10.1093/jjco/hyl142. PMID 17272319. Retrieved 2012-01-04. Unknown parameter |month= ignored (help)


Template:WikiDoc Sources