HTRA1: Difference between revisions
Jump to navigation
Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Serine protease HTRA1''' is an [[enzyme]] that in humans is encoded by the ''HTRA1'' [[gene]].<ref name="pmid8977104">{{cite journal |vauthors=Zumbrunn J, Trueb B | title = Primary structure of a putative serine protease specific for IGF-binding proteins | journal = FEBS Lett | volume = 398 | issue = 2–3 | pages = 187–92 |date=Jan 1997 | pmid = 8977104 | pmc = | doi =10.1016/S0014-5793(96)01229-X }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: HTRA1 HtrA serine peptidase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5654| accessdate = }}</ref> The HTRA1 protein is composed of four distinct [[protein domain]]s. They are from amino-terminus to carboxyl-terminus an Insulin-like growth factor binding domain, a [[kazal domain]], a [[trypsin]]-like peptidase domain and a [[PDZ domain]]. | ||
}} | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = This gene encodes a member of the trypsin family of serine proteases. This protein is a secreted enzyme that is proposed to regulate the availability of insulin-like growth factors (IGFs) by cleaving IGF-binding proteins. It has also been suggested to be a regulator of cell growth.<ref name="entrez" | | summary_text = This gene encodes a member of the trypsin family of serine proteases. This protein is a secreted enzyme that is proposed to regulate the availability of insulin-like growth factors (IGFs) by cleaving IGF-binding proteins. It has also been suggested to be a regulator of cell growth.<ref name="entrez"/> | ||
}} | }} | ||
Mutations of this gene are responsible for the development of [[CARASIL]], a genetic form of cerebral vasculopathy. | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==External links== | |||
* [https://www.ncbi.nlm.nih.gov/books/NBK32533/ GeneReviews/NCBI/NIH/UW entry on CARASIL Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, Maeda Syndrome] | |||
* [https://www.ncbi.nlm.nih.gov/omim/610149,600142,602194,600142,602194 OMIM entries on CARASIL] | |||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{ | *{{Cite journal |doi=10.1038/eye.2011.37 |title=Complement in age-related macular degeneration: a focus on function |year=2011 |last1=Bradley |first1=D T |last2=Zipfel |first2=P F |last3=Hughes |first3=A E |journal=Eye |volume=25 |issue=6 |pmid=21394116 |pmc=3178140}} | ||
*{{cite journal | | *{{cite journal |vauthors=Zurawa-Janicka D, Narkiewicz J, Lipińska B |title=[Characterization of the HtrA family of proteins] |journal=Postepy Biochem. |volume=53 |issue= 1 |pages= 27–36 |year= 2007 |pmid= 17718385 |doi= }} | ||
*{{cite journal | *{{cite journal |vauthors=Andersson B, Wentland MA, Ricafrente JY, etal |title=A "double adaptor" method for improved shotgun library construction |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107–13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }} | ||
*{{cite journal | *{{cite journal |vauthors=Yu W, Andersson B, Worley KC, etal |title=Large-scale concatenation cDNA sequencing |journal=Genome Res. |volume=7 |issue= 4 |pages= 353–8 |year= 1997 |pmid= 9110174 |doi= 10.1101/gr.7.4.353| pmc=139146 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Zumbrunn J, Trueb B |title=Localization of the gene for a serine protease with IGF-binding domain (PRSS11) to human chromosome 10q25.3-q26.2 |journal=Genomics |volume=45 |issue= 2 |pages= 461–2 |year= 1998 |pmid= 9344681 |doi= 10.1006/geno.1997.4953 }} | ||
*{{cite journal | *{{cite journal |vauthors=Hu SI, Carozza M, Klein M, etal |title=Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage |journal=J. Biol. Chem. |volume=273 |issue= 51 |pages= 34406–12 |year= 1999 |pmid= 9852107 |doi=10.1074/jbc.273.51.34406 }} | ||
*{{cite journal | *{{cite journal |vauthors=Baldi A, De Luca A, Morini M, etal |title=The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells |journal=Oncogene |volume=21 |issue= 43 |pages= 6684–8 |year= 2002 |pmid= 12242667 |doi= 10.1038/sj.onc.1205911 }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | *{{cite journal |vauthors=Nie GY, Hampton A, Li Y, etal |title=Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2 |journal=Biochem. J. |volume=371 |issue= Pt 1 |pages= 39–48 |year= 2003 |pmid= 12513693 |doi= 10.1042/BJ20021569 | pmc=1223265 }} | ||
*{{cite journal | *{{cite journal |vauthors=De Luca A, De Falco M, Severino A, etal |title=Distribution of the serine protease HtrA1 in normal human tissues |journal=J. Histochem. Cytochem. |volume=51 |issue= 10 |pages= 1279–84 |year= 2003 |pmid= 14500695 |doi= 10.1177/002215540305101004}} | ||
*{{cite journal | *{{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }} | ||
*{{cite journal | *{{cite journal |vauthors=Chien J, Staub J, Hu SI, etal |title=A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer |journal=Oncogene |volume=23 |issue= 8 |pages= 1636–44 |year= 2004 |pmid= 14716297 |doi= 10.1038/sj.onc.1207271 }} | ||
*{{cite journal | *{{cite journal |vauthors=Oka C, Tsujimoto R, Kajikawa M, etal |title=HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins |journal=Development |volume=131 |issue= 5 |pages= 1041–53 |year= 2004 |pmid= 14973287 |doi= 10.1242/dev.00999 }} | ||
*{{cite journal | *{{cite journal |vauthors=Colland F, Jacq X, Trouplin V, etal |title=Functional proteomics mapping of a human signaling pathway |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324–32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 | pmc=442148 }} | ||
*{{cite journal | *{{cite journal |vauthors=Grau S, Baldi A, Bussani R, etal |title=Implications of the serine protease HtrA1 in amyloid precursor protein processing |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 17 |pages= 6021–6 |year= 2005 |pmid= 15855271 |doi= 10.1073/pnas.0501823102 | pmc=1087941 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ozturk A, Desai PP, Minster RL, etal |title=Three SNPs in the GSTO1, GSTO2 and PRSS11 genes on chromosome 10 are not associated with age-at-onset of Alzheimer's disease |journal=Neurobiol. Aging |volume=26 |issue= 8 |pages= 1161–5 |year= 2005 |pmid= 15917099 |doi= 10.1016/j.neurobiolaging.2004.11.001 }} | ||
*{{cite journal | *{{cite journal |vauthors=Grau S, Richards PJ, Kerr B, etal |title=The role of human HtrA1 in arthritic disease |journal=J. Biol. Chem. |volume=281 |issue= 10 |pages= 6124–9 |year= 2006 |pmid= 16377621 |doi= 10.1074/jbc.M500361200 }} | ||
*{{cite journal | *{{cite journal |vauthors=Bowden MA, Di Nezza-Cossens LA, Jobling T, etal |title=Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer |journal=Gynecol. Oncol. |volume=103 |issue= 1 |pages= 253–60 |year= 2006 |pmid= 16650464 |doi= 10.1016/j.ygyno.2006.03.006 }} | ||
*{{cite journal | *{{cite journal |vauthors=Chien J, Aletti G, Baldi A, etal |title=Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity |journal=J. Clin. Invest. |volume=116 |issue= 7 |pages= 1994–2004 |year= 2006 |pmid= 16767218 |doi= 10.1172/JCI27698 | pmc=1474818 }} | ||
*{{cite journal | *{{cite journal |vauthors=Dewan A, Liu M, Hartman S, etal |title=HTRA1 promoter polymorphism in wet age-related macular degeneration |journal=Science |volume=314 |issue= 5801 |pages= 989–92 |year= 2006 |pmid= 17053108 |doi= 10.1126/science.1133807 }} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{ | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{ | {{PBB_Controls | ||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{gene-10-stub}} |
Latest revision as of 14:11, 31 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Serine protease HTRA1 is an enzyme that in humans is encoded by the HTRA1 gene.[1][2] The HTRA1 protein is composed of four distinct protein domains. They are from amino-terminus to carboxyl-terminus an Insulin-like growth factor binding domain, a kazal domain, a trypsin-like peptidase domain and a PDZ domain.
This gene encodes a member of the trypsin family of serine proteases. This protein is a secreted enzyme that is proposed to regulate the availability of insulin-like growth factors (IGFs) by cleaving IGF-binding proteins. It has also been suggested to be a regulator of cell growth.[2]
Mutations of this gene are responsible for the development of CARASIL, a genetic form of cerebral vasculopathy.
References
- ↑ Zumbrunn J, Trueb B (Jan 1997). "Primary structure of a putative serine protease specific for IGF-binding proteins". FEBS Lett. 398 (2–3): 187–92. doi:10.1016/S0014-5793(96)01229-X. PMID 8977104.
- ↑ 2.0 2.1 "Entrez Gene: HTRA1 HtrA serine peptidase 1".
External links
- GeneReviews/NCBI/NIH/UW entry on CARASIL Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, Maeda Syndrome
- OMIM entries on CARASIL
Further reading
- Bradley, D T; Zipfel, P F; Hughes, A E (2011). "Complement in age-related macular degeneration: a focus on function". Eye. 25 (6). doi:10.1038/eye.2011.37. PMC 3178140. PMID 21394116.
- Zurawa-Janicka D, Narkiewicz J, Lipińska B (2007). "[Characterization of the HtrA family of proteins]". Postepy Biochem. 53 (1): 27–36. PMID 17718385.
- Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Yu W, Andersson B, Worley KC, et al. (1997). "Large-scale concatenation cDNA sequencing". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Zumbrunn J, Trueb B (1998). "Localization of the gene for a serine protease with IGF-binding domain (PRSS11) to human chromosome 10q25.3-q26.2". Genomics. 45 (2): 461–2. doi:10.1006/geno.1997.4953. PMID 9344681.
- Hu SI, Carozza M, Klein M, et al. (1999). "Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage". J. Biol. Chem. 273 (51): 34406–12. doi:10.1074/jbc.273.51.34406. PMID 9852107.
- Baldi A, De Luca A, Morini M, et al. (2002). "The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells". Oncogene. 21 (43): 6684–8. doi:10.1038/sj.onc.1205911. PMID 12242667.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Nie GY, Hampton A, Li Y, et al. (2003). "Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2". Biochem. J. 371 (Pt 1): 39–48. doi:10.1042/BJ20021569. PMC 1223265. PMID 12513693.
- De Luca A, De Falco M, Severino A, et al. (2003). "Distribution of the serine protease HtrA1 in normal human tissues". J. Histochem. Cytochem. 51 (10): 1279–84. doi:10.1177/002215540305101004. PMID 14500695.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Chien J, Staub J, Hu SI, et al. (2004). "A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer". Oncogene. 23 (8): 1636–44. doi:10.1038/sj.onc.1207271. PMID 14716297.
- Oka C, Tsujimoto R, Kajikawa M, et al. (2004). "HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins". Development. 131 (5): 1041–53. doi:10.1242/dev.00999. PMID 14973287.
- Colland F, Jacq X, Trouplin V, et al. (2004). "Functional proteomics mapping of a human signaling pathway". Genome Res. 14 (7): 1324–32. doi:10.1101/gr.2334104. PMC 442148. PMID 15231748.
- Grau S, Baldi A, Bussani R, et al. (2005). "Implications of the serine protease HtrA1 in amyloid precursor protein processing". Proc. Natl. Acad. Sci. U.S.A. 102 (17): 6021–6. doi:10.1073/pnas.0501823102. PMC 1087941. PMID 15855271.
- Ozturk A, Desai PP, Minster RL, et al. (2005). "Three SNPs in the GSTO1, GSTO2 and PRSS11 genes on chromosome 10 are not associated with age-at-onset of Alzheimer's disease". Neurobiol. Aging. 26 (8): 1161–5. doi:10.1016/j.neurobiolaging.2004.11.001. PMID 15917099.
- Grau S, Richards PJ, Kerr B, et al. (2006). "The role of human HtrA1 in arthritic disease". J. Biol. Chem. 281 (10): 6124–9. doi:10.1074/jbc.M500361200. PMID 16377621.
- Bowden MA, Di Nezza-Cossens LA, Jobling T, et al. (2006). "Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer". Gynecol. Oncol. 103 (1): 253–60. doi:10.1016/j.ygyno.2006.03.006. PMID 16650464.
- Chien J, Aletti G, Baldi A, et al. (2006). "Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity". J. Clin. Invest. 116 (7): 1994–2004. doi:10.1172/JCI27698. PMC 1474818. PMID 16767218.
- Dewan A, Liu M, Hartman S, et al. (2006). "HTRA1 promoter polymorphism in wet age-related macular degeneration". Science. 314 (5801): 989–92. doi:10.1126/science.1133807. PMID 17053108.
This article on a gene on human chromosome 10 is a stub. You can help Wikipedia by expanding it. |