GDI2: Difference between revisions
Jump to navigation
Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Rab GDP dissociation inhibitor beta''' is a [[protein]] that in humans is encoded by the ''GDI2'' [[gene]].<ref name="pmid9434952">{{cite journal |vauthors=Sedlacek Z, Munstermann E, Mincheva A, Lichter P, Poustka A | title = The human rab GDI beta gene with long retroposon-rich introns maps to 10p15 and its pseudogene to 7p11-p13 | journal = Mamm Genome | volume = 9 | issue = 1 | pages = 78–80 |date=Feb 1998 | pmid = 9434952 | pmc = | doi =10.1007/s003359900685 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: GDI2 GDP dissociation inhibitor 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2665| accessdate = }}</ref> | ||
}} | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = GDP dissociation inhibitors are proteins that regulate the GDP-GTP exchange reaction of members of the rab family, small GTP-binding proteins of the ras superfamily, that are involved in vesicular trafficking of molecules between cellular organelles. GDIs slow the rate of dissociation of GDP from rab proteins and release GDP from membrane-bound rabs. GDI2 is ubiquitously expressed. The GDI2 gene contains many repetitive elements indicating that it may be prone to inversion/deletion rearrangements.<ref name="entrez">{{cite web | title = Entrez Gene: GDI2 GDP dissociation inhibitor 2| url = | | summary_text = GDP dissociation inhibitors are proteins that regulate the GDP-GTP exchange reaction of members of the rab family, small GTP-binding proteins of the ras superfamily, that are involved in vesicular trafficking of molecules between cellular organelles. GDIs slow the rate of dissociation of GDP from rab proteins and release GDP from membrane-bound rabs. GDI2 is ubiquitously expressed. The GDI2 gene contains many repetitive elements indicating that it may be prone to inversion/deletion rearrangements.<ref name="entrez">{{cite web | title = Entrez Gene: GDI2 GDP dissociation inhibitor 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2665| accessdate = }}</ref> | ||
}} | }} | ||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal |vauthors=Dawson SJ, White LA |title=Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin. |journal=J. Infect. |volume=24 |issue= 3 |pages= 317–20 |year= 1992 |pmid= 1602151 |doi=10.1016/S0163-4453(05)80037-4 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Shisheva A, Südhof TC, Czech MP |title=Cloning, characterization, and expression of a novel GDP dissociation inhibitor isoform from skeletal muscle. |journal=Mol. Cell. Biol. |volume=14 |issue= 5 |pages= 3459–68 |year= 1994 |pmid= 7513052 |doi= 10.1128/mcb.14.5.3459| pmc=358710 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Bächner D, Sedlacek Z, Korn B |title=Expression patterns of two human genes coding for different rab GDP-dissociation inhibitors (GDIs), extremely conserved proteins involved in cellular transport. |journal=Hum. Mol. Genet. |volume=4 |issue= 4 |pages= 701–8 |year= 1995 |pmid= 7543319 |doi=10.1093/hmg/4.4.701 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Nishimura N, Goji J, Nakamura H |title=Cloning of a brain-type isoform of human Rab GDI and its expression in human neuroblastoma cell lines and tumor specimens. |journal=Cancer Res. |volume=55 |issue= 22 |pages= 5445–50 |year= 1995 |pmid= 7585614 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Shisheva A, Buxton J, Czech MP |title=Differential intracellular localizations of GDP dissociation inhibitor isoforms. Insulin-dependent redistribution of GDP dissociation inhibitor-2 in 3T3-L1 adipocytes. |journal=J. Biol. Chem. |volume=269 |issue= 39 |pages= 23865–8 |year= 1994 |pmid= 7929030 |doi= }} | ||
*{{cite journal | | *{{cite journal |vauthors=Shisheva A, Doxsey SJ, Buxton JM, Czech MP |title=Pericentriolar targeting of GDP-dissociation inhibitor isoform 2. |journal=Eur. J. Cell Biol. |volume=68 |issue= 2 |pages= 143–58 |year= 1996 |pmid= 8575461 |doi= }} | ||
*{{cite journal | | *{{cite journal |vauthors=Shisheva A, Chinni SR, DeMarco C |title=General role of GDP dissociation inhibitor 2 in membrane release of Rab proteins: modulations of its functional interactions by in vitro and in vivo structural modifications. |journal=Biochemistry |volume=38 |issue= 36 |pages= 11711–21 |year= 1999 |pmid= 10512627 |doi=10.1021/bi990200r }} | ||
*{{cite journal | | *{{cite journal |vauthors=Caillol N, Pasqualini E, Lloubes R, Lombardo D |title=Impairment of bile salt-dependent lipase secretion in human pancreatic tumoral SOJ-6 cells. |journal=J. Cell. Biochem. |volume=79 |issue= 4 |pages= 628–47 |year= 2000 |pmid= 10996854 |doi=10.1002/1097-4644(20001215)79:4<628::AID-JCB120>3.0.CO;2-T }} | ||
*{{cite journal | | *{{cite journal |vauthors=Weitzdoerfer R, Stolzlechner D, Dierssen M |title=Reduction of nucleoside diphosphate kinase B, Rab GDP-dissociation inhibitor beta and histidine triad nucleotide-binding protein in fetal Down syndrome brain. |journal=J. Neural Transm. Suppl. |volume= |issue= 61 |pages= 347–59 |year= 2002 |pmid= 11771757 |doi= 10.1007/978-3-7091-6262-0_29|display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Shin BK, Wang H, Yim AM |title=Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. |journal=J. Biol. Chem. |volume=278 |issue= 9 |pages= 7607–16 |year= 2003 |pmid= 12493773 |doi= 10.1074/jbc.M210455200 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Theodorescu D, Sapinoso LM, Conaway MR |title=Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. |journal=Clin. Cancer Res. |volume=10 |issue= 11 |pages= 3800–6 |year= 2004 |pmid= 15173088 |doi= 10.1158/1078-0432.CCR-03-0653 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Bruneel A, Labas V, Mailloux A |title=Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. |journal=Proteomics |volume=5 |issue= 15 |pages= 3876–84 |year= 2006 |pmid= 16130169 |doi= 10.1002/pmic.200401239 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Rual JF, Venkatesan K, Hao T |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Hu LD, Zou HF, Zhan SX, Cao KM |title=Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymph node metastasis. |journal=Oncol. Rep. |volume=17 |issue= 6 |pages= 1383–9 |year= 2007 |pmid= 17487395 |doi= 10.3892/or.17.6.1383}} | ||
*{{cite journal | | *{{cite journal |vauthors=Sun ZL, Zhu Y, Wang FQ |title=Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers. |journal=Biochim. Biophys. Acta |volume=1774 |issue= 6 |pages= 764–71 |year= 2007 |pmid= 17507299 |doi= 10.1016/j.bbapap.2007.04.001 |display-authors=etal}} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{ | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{ | {{PBB_Controls | ||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{gene-10-stub}} |
Latest revision as of 08:43, 31 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Rab GDP dissociation inhibitor beta is a protein that in humans is encoded by the GDI2 gene.[1][2]
GDP dissociation inhibitors are proteins that regulate the GDP-GTP exchange reaction of members of the rab family, small GTP-binding proteins of the ras superfamily, that are involved in vesicular trafficking of molecules between cellular organelles. GDIs slow the rate of dissociation of GDP from rab proteins and release GDP from membrane-bound rabs. GDI2 is ubiquitously expressed. The GDI2 gene contains many repetitive elements indicating that it may be prone to inversion/deletion rearrangements.[2]
References
- ↑ Sedlacek Z, Munstermann E, Mincheva A, Lichter P, Poustka A (Feb 1998). "The human rab GDI beta gene with long retroposon-rich introns maps to 10p15 and its pseudogene to 7p11-p13". Mamm Genome. 9 (1): 78–80. doi:10.1007/s003359900685. PMID 9434952.
- ↑ 2.0 2.1 "Entrez Gene: GDI2 GDP dissociation inhibitor 2".
Further reading
- Dawson SJ, White LA (1992). "Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin". J. Infect. 24 (3): 317–20. doi:10.1016/S0163-4453(05)80037-4. PMID 1602151.
- Shisheva A, Südhof TC, Czech MP (1994). "Cloning, characterization, and expression of a novel GDP dissociation inhibitor isoform from skeletal muscle". Mol. Cell. Biol. 14 (5): 3459–68. doi:10.1128/mcb.14.5.3459. PMC 358710. PMID 7513052.
- Bächner D, Sedlacek Z, Korn B, et al. (1995). "Expression patterns of two human genes coding for different rab GDP-dissociation inhibitors (GDIs), extremely conserved proteins involved in cellular transport". Hum. Mol. Genet. 4 (4): 701–8. doi:10.1093/hmg/4.4.701. PMID 7543319.
- Nishimura N, Goji J, Nakamura H, et al. (1995). "Cloning of a brain-type isoform of human Rab GDI and its expression in human neuroblastoma cell lines and tumor specimens". Cancer Res. 55 (22): 5445–50. PMID 7585614.
- Shisheva A, Buxton J, Czech MP (1994). "Differential intracellular localizations of GDP dissociation inhibitor isoforms. Insulin-dependent redistribution of GDP dissociation inhibitor-2 in 3T3-L1 adipocytes". J. Biol. Chem. 269 (39): 23865–8. PMID 7929030.
- Shisheva A, Doxsey SJ, Buxton JM, Czech MP (1996). "Pericentriolar targeting of GDP-dissociation inhibitor isoform 2". Eur. J. Cell Biol. 68 (2): 143–58. PMID 8575461.
- Shisheva A, Chinni SR, DeMarco C (1999). "General role of GDP dissociation inhibitor 2 in membrane release of Rab proteins: modulations of its functional interactions by in vitro and in vivo structural modifications". Biochemistry. 38 (36): 11711–21. doi:10.1021/bi990200r. PMID 10512627.
- Caillol N, Pasqualini E, Lloubes R, Lombardo D (2000). "Impairment of bile salt-dependent lipase secretion in human pancreatic tumoral SOJ-6 cells". J. Cell. Biochem. 79 (4): 628–47. doi:10.1002/1097-4644(20001215)79:4<628::AID-JCB120>3.0.CO;2-T. PMID 10996854.
- Weitzdoerfer R, Stolzlechner D, Dierssen M, et al. (2002). "Reduction of nucleoside diphosphate kinase B, Rab GDP-dissociation inhibitor beta and histidine triad nucleotide-binding protein in fetal Down syndrome brain". J. Neural Transm. Suppl. (61): 347–59. doi:10.1007/978-3-7091-6262-0_29. PMID 11771757.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Shin BK, Wang H, Yim AM, et al. (2003). "Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function". J. Biol. Chem. 278 (9): 7607–16. doi:10.1074/jbc.M210455200. PMID 12493773.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Theodorescu D, Sapinoso LM, Conaway MR, et al. (2004). "Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer". Clin. Cancer Res. 10 (11): 3800–6. doi:10.1158/1078-0432.CCR-03-0653. PMID 15173088.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Bruneel A, Labas V, Mailloux A, et al. (2006). "Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis". Proteomics. 5 (15): 3876–84. doi:10.1002/pmic.200401239. PMID 16130169.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
- Hu LD, Zou HF, Zhan SX, Cao KM (2007). "Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymph node metastasis". Oncol. Rep. 17 (6): 1383–9. doi:10.3892/or.17.6.1383. PMID 17487395.
- Sun ZL, Zhu Y, Wang FQ, et al. (2007). "Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers". Biochim. Biophys. Acta. 1774 (6): 764–71. doi:10.1016/j.bbapap.2007.04.001. PMID 17507299.
This article on a gene on human chromosome 10 is a stub. You can help Wikipedia by expanding it. |