GOT1: Difference between revisions
Jump to navigation
Jump to search
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''[[Aspartate aminotransferase]], cytoplasmic''' is an [[enzyme]] that in humans is encoded by the ''GOT1'' [[gene]].<ref name="pmid1974457">{{cite journal |vauthors=Bousquet-Lemercier B, Pol S, Pave-Preux M, Hanoune J, Barouki R | title = Properties of human liver cytosolic aspartate aminotransferase mRNAs generated by alternative polyadenylation site selection | journal = Biochemistry | volume = 29 | issue = 22 | pages = 5293–9 |date=Sep 1990 | pmid = 1974457 | pmc = | doi =10.1021/bi00474a011 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: GOT1 glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2805| accessdate = }}</ref> | ||
}} | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the [[urea cycle|urea]] and [[tricarboxylic acid cycle]]s. The two enzymes are homodimeric and show close homology.<ref name="entrez">{{cite web | title = Entrez Gene: GOT1 glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)| url = | | summary_text = Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the [[urea cycle|urea]] and [[tricarboxylic acid cycle]]s. The two enzymes are homodimeric and show close homology.<ref name="entrez">{{cite web | title = Entrez Gene: GOT1 glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2805| accessdate = }}</ref> | ||
}} | }} | ||
==Interactive pathway map== | |||
{{GlycolysisGluconeogenesis_WP534|highlight=GOT1}} | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | author=Panteghini M |title=Aspartate aminotransferase isoenzymes. |journal=Clin. Biochem. |volume=23 |issue= 4 |pages= | *{{cite journal | author=Panteghini M |title=Aspartate aminotransferase isoenzymes. |journal=Clin. Biochem. |volume=23 |issue= 4 |pages= 311–9 |year= 1990 |pmid= 2225456 |doi=10.1016/0009-9120(90)80062-N }} | ||
*{{cite journal | | *{{cite journal |vauthors=Doonan S, Barra D, Bossa F |title=Structural and genetic relationships between cytosolic and mitochondrial isoenzymes. |journal=Int. J. Biochem. |volume=16 |issue= 12 |pages= 1193–9 |year= 1985 |pmid= 6397370 |doi=10.1016/0020-711X(84)90216-7 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Kamei S, Ohkubo A, Yamanaka M |title=Apoenzyme of aspartate aminotransferase isozymes in serum and its diagnostic usefullness for hepatic diseases. |journal=Clin. Chim. Acta |volume=96 |issue= 1–2 |pages= 97–105 |year= 1979 |pmid= 225064 |doi=10.1016/0009-8981(79)90058-5 }} | ||
*{{cite journal |vauthors=Doyle JM, Schininà ME, Bossa F, Doonan S |title=The amino acid sequence of cytosolic aspartate aminotransferase from human liver. |journal=Biochem. J. |volume=270 |issue= 3 |pages= 651–7 |year= 1990 |pmid= 2241899 |doi= | pmc=1131781 }} | |||
*{{cite journal | | *{{cite journal |vauthors=Pol S, Bousquet-Lemercier B, Pavé-Preux M |title=Chromosomal localization of human aspartate aminotransferase genes by in situ hybridization. |journal=Hum. Genet. |volume=83 |issue= 2 |pages= 159–64 |year= 1989 |pmid= 2777255 |doi=10.1007/BF00286710 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Pol S, Bousquet-Lemercier B, Pave-Preux M |title=Nucleotide sequence and tissue distribution of the human mitochondrial aspartate aminotransferase mRNA. |journal=Biochem. Biophys. Res. Commun. |volume=157 |issue= 3 |pages= 1309–15 |year= 1989 |pmid= 3207426 |doi=10.1016/S0006-291X(88)81017-9 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Andersson B, Wentland MA, Ricafrente JY |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107–13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Yu W, Andersson B, Worley KC |title=Large-scale concatenation cDNA sequencing. |journal=Genome Res. |volume=7 |issue= 4 |pages= 353–8 |year= 1997 |pmid= 9110174 |doi= 10.1101/gr.7.4.353| pmc=139146 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Wang CY, Huang YQ, Shi JD |title=Genetic homogeneity, high-resolution mapping, and mutation analysis of the urofacial (Ochoa) syndrome and exclusion of the glutamate oxaloacetate transaminase gene (GOT1) in the critical region as the disease gene. |journal=Am. J. Med. Genet. |volume=84 |issue= 5 |pages= 454–9 |year= 1999 |pmid= 10360399 |doi=10.1002/(SICI)1096-8628(19990611)84:5<454::AID-AJMG9>3.0.CO;2-D |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Miyake Y, Eguchi H, Shinchi K |title=Glucose intolerance and serum aminotransferase activities in Japanese men. |journal=J. Hepatol. |volume=38 |issue= 1 |pages= 18–23 |year= 2003 |pmid= 12480555 |doi=10.1016/S0168-8278(02)00323-9 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Deloukas P, Earthrowl ME, Grafham DV |title=The DNA sequence and comparative analysis of human chromosome 10. |journal=Nature |volume=429 |issue= 6990 |pages= 375–81 |year= 2004 |pmid= 15164054 |doi= 10.1038/nature02462 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Wu KL, Lu SN, Changchien CS |title=Sequential changes of serum aminotransferase levels in patients with severe acute respiratory syndrome. |journal=Am. J. Trop. Med. Hyg. |volume=71 |issue= 2 |pages= 125–8 |year= 2004 |pmid= 15306699 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Totan A, Greabu M, Totan C, Spinu T |title=Salivary aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase: possible markers in periodontal diseases? |journal=Clin. Chem. Lab. Med. |volume=44 |issue= 5 |pages= 612–5 |year= 2006 |pmid= 16681433 |doi= 10.1515/CCLM.2006.096 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Dubern B, Girardet JP, Tounian P |title=Insulin resistance and ferritin as major determinants of abnormal serum aminotransferase in severely obese children. |journal=International Journal of Pediatric Obesity |volume=1 |issue= 2 |pages= 77–82 |year= 2007 |pmid= 17907318 |doi= 10.1080/17477160600569594}} | ||
*{{cite journal | | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=2805}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = no | |||
| update_citations = yes | |||
}} | |||
{{Transaminases}} | |||
{{ | {{gene-10-stub}} | ||
Latest revision as of 08:55, 31 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Aspartate aminotransferase, cytoplasmic is an enzyme that in humans is encoded by the GOT1 gene.[1][2]
Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and tricarboxylic acid cycles. The two enzymes are homodimeric and show close homology.[2]
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
- ↑ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".
References
- ↑ Bousquet-Lemercier B, Pol S, Pave-Preux M, Hanoune J, Barouki R (Sep 1990). "Properties of human liver cytosolic aspartate aminotransferase mRNAs generated by alternative polyadenylation site selection". Biochemistry. 29 (22): 5293–9. doi:10.1021/bi00474a011. PMID 1974457.
- ↑ 2.0 2.1 "Entrez Gene: GOT1 glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)".
Further reading
- Panteghini M (1990). "Aspartate aminotransferase isoenzymes". Clin. Biochem. 23 (4): 311–9. doi:10.1016/0009-9120(90)80062-N. PMID 2225456.
- Doonan S, Barra D, Bossa F (1985). "Structural and genetic relationships between cytosolic and mitochondrial isoenzymes". Int. J. Biochem. 16 (12): 1193–9. doi:10.1016/0020-711X(84)90216-7. PMID 6397370.
- Kamei S, Ohkubo A, Yamanaka M (1979). "Apoenzyme of aspartate aminotransferase isozymes in serum and its diagnostic usefullness for hepatic diseases". Clin. Chim. Acta. 96 (1–2): 97–105. doi:10.1016/0009-8981(79)90058-5. PMID 225064.
- Doyle JM, Schininà ME, Bossa F, Doonan S (1990). "The amino acid sequence of cytosolic aspartate aminotransferase from human liver". Biochem. J. 270 (3): 651–7. PMC 1131781. PMID 2241899.
- Pol S, Bousquet-Lemercier B, Pavé-Preux M, et al. (1989). "Chromosomal localization of human aspartate aminotransferase genes by in situ hybridization". Hum. Genet. 83 (2): 159–64. doi:10.1007/BF00286710. PMID 2777255.
- Pol S, Bousquet-Lemercier B, Pave-Preux M, et al. (1989). "Nucleotide sequence and tissue distribution of the human mitochondrial aspartate aminotransferase mRNA". Biochem. Biophys. Res. Commun. 157 (3): 1309–15. doi:10.1016/S0006-291X(88)81017-9. PMID 3207426.
- Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Yu W, Andersson B, Worley KC, et al. (1997). "Large-scale concatenation cDNA sequencing". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Wang CY, Huang YQ, Shi JD, et al. (1999). "Genetic homogeneity, high-resolution mapping, and mutation analysis of the urofacial (Ochoa) syndrome and exclusion of the glutamate oxaloacetate transaminase gene (GOT1) in the critical region as the disease gene". Am. J. Med. Genet. 84 (5): 454–9. doi:10.1002/(SICI)1096-8628(19990611)84:5<454::AID-AJMG9>3.0.CO;2-D. PMID 10360399.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Miyake Y, Eguchi H, Shinchi K, et al. (2003). "Glucose intolerance and serum aminotransferase activities in Japanese men". J. Hepatol. 38 (1): 18–23. doi:10.1016/S0168-8278(02)00323-9. PMID 12480555.
- Deloukas P, Earthrowl ME, Grafham DV, et al. (2004). "The DNA sequence and comparative analysis of human chromosome 10". Nature. 429 (6990): 375–81. doi:10.1038/nature02462. PMID 15164054.
- Wu KL, Lu SN, Changchien CS, et al. (2004). "Sequential changes of serum aminotransferase levels in patients with severe acute respiratory syndrome". Am. J. Trop. Med. Hyg. 71 (2): 125–8. PMID 15306699.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Totan A, Greabu M, Totan C, Spinu T (2006). "Salivary aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase: possible markers in periodontal diseases?". Clin. Chem. Lab. Med. 44 (5): 612–5. doi:10.1515/CCLM.2006.096. PMID 16681433.
- Dubern B, Girardet JP, Tounian P (2007). "Insulin resistance and ferritin as major determinants of abnormal serum aminotransferase in severely obese children". International Journal of Pediatric Obesity. 1 (2): 77–82. doi:10.1080/17477160600569594. PMID 17907318.
This article on a gene on human chromosome 10 is a stub. You can help Wikipedia by expanding it. |