C14orf159: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
<!-- The | {{Infobox_gene}} | ||
{ | '''UPF0317 protein C14orf159, mitochondrial''' is a [[protein]] that in humans is encoded by the ''C14orf159'' [[gene]] (chromosome 14 open reading frame 159).<ref name="entrez">{{cite web | title = Entrez Gene: C14orf159 chromosome 14 open reading frame 159| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80017| accessdate = }}</ref> | ||
| | |||
| | == Orthologs == | ||
| | {{Original research|section|date=January 2011}} | ||
| | The human gene, c14orf159 mRNA, is highly conserved in mammals and birds.<ref>BLAST. NCBI. accessed 19 April 2010. http://blast.ncbi.nlm.nih.gov/Blast.cgi</ref> [[Ortholog]]s gathered from BLAST and BLAT searches reveal that the human c14orf159 mRNA sequence is conserved with a sequence identity of 98% in [[chimpanzee]]s, 88% in [[mouse|mice]], and 81% in [[platypus]] and [[chicken]].<ref>[http://genome.ucsc.edu/ UCSC Genome Browser website, BLAT.] accessed 10 April 2010.</ref><ref>[http://blast.ncbi.nlm.nih.gov/Blast.cgi BLAST. NCBI.] accessed 19 April 2010.</ref> The following table contains a list orthologs that were gathered from BLAST searches. Sequence alignments were performed using blastn to derive sequence identity, score, and E-values between the human c14orf159 variant 1 mRNA and its orthologs. | ||
| | |||
}} | {|border="1" cellpadding="5" cellspacing="0" align="center" | ||
|- | |||
! style="background:#efefef;" | Genus and species | |||
! style="background:#efefef;" | Common name | |||
! style="background:#efefef;" | NCBI accession number | |||
! style="background:#efefef;" | Sequence length (bp) | |||
! style="background:#efefef;" | Sequence identity | |||
! style="background:#efefef;" | Score | |||
! style="background:#efefef;" | E-value | |||
|- | |||
|''[[Human|Homo sapiens]]'' | |||
|Human | |||
|NM_001102366 | |||
|3164 | |||
|100% | |||
| | |||
|0 | |||
|- | |||
|''[[Common chimpanzee|Pan troglodytes]]'' | |||
|Chimpanzee | |||
|XM_510121 | |||
|2974 | |||
|98% | |||
|4281 | |||
|0 | |||
|- | |||
|''[[House mouse|Mus musculus]]'' | |||
|Mouse | |||
|NM_145448 | |||
|3231 | |||
|88% | |||
|495 | |||
|0 | |||
|- | |||
|''[[Platypus|Ornithorhynchus anatinus]]'' | |||
|Platypus | |||
|XM_00154336.1 | |||
|1962 | |||
|81% | |||
|217 | |||
|0 | |||
|- | |||
|''[[Red junglefowl|Gallus gallus]]'' | |||
|Chicken | |||
|XM_421319 | |||
|3389 | |||
|81 | |||
|50 | |||
|0 | |||
|+ Human C14orf159 Orthologs-mRNA | |||
|} | |||
The protein that the human gene c14orf159 encodes has been found to be highly conserved among mammals, birds, amphibians, fish, [[tunicate]]s, [[cnidaria]]ns, and [[echinoderm]]s. However, no protein orthologs have been found in [[nematode]]s, [[arthropod]]s, fungi, protists, plants, bacteria, or [[archea]]. Fungi and bacteria contain the DUF1445 conserved domain which is found in human c14orf159 and its orthologs. BLAST and BLAT searches have been utilized to find orthologs to the c14orf159 protein. The following table lists protein orthologs for the human protein with sequence identity, sequence similarity, scores, and E-values derived from blastp sequence comparisons.<ref>Blastp. NCBI. http://blast.ncbi.nlm.nih.gov/Blast.cgi</ref> | |||
{|border="1" cellpadding="5" cellspacing="0" align="center" | |||
|- | |||
! style="background:#efefef;" | Genus and species | |||
! style="background:#efefef;" | Common name | |||
! style="background:#efefef;" | NCBI accession number | |||
! style="background:#efefef;" | Sequence length-amino acids | |||
! style="background:#efefef;" | Sequence identity | |||
! style="background:#efefef;" | Sequence similarity | |||
! style="background:#efefef;" | Score | |||
! style="background:#efefef;" | E-value | |||
|- | |||
|''Homo sapiens'' | |||
|Human | |||
|NP_001095839.1 | |||
|564 | |||
|100% | |||
|100% | |||
| | |||
|0 | |||
|- | |||
|''Pan troglodytes'' | |||
|Chimpanzee | |||
|XP_510121.2 | |||
|724 | |||
|557/621 (89%) | |||
|561/621 (90%) | |||
|1109 | |||
|0 | |||
|- | |||
|''[[Giant panda|Ailuropoda melanoleuca]]'' | |||
|Panda | |||
|EFB15996.1 | |||
|585 | |||
|413/585 (70%) | |||
|461/585 (78%) | |||
|824 | |||
|0 | |||
|- | |||
|''[[Brown rat|Rattus norvegicus]]'' | |||
|Rat | |||
|XP_343096.2 | |||
|618 | |||
|423/618 (68%) | |||
|470/618 (76%) | |||
|774 | |||
|0 | |||
|- | |||
|''Mus musculus'' | |||
|Mouse | |||
|NP_663423.2 | |||
|617 | |||
|414/623 (66%) | |||
|468/621 (75%) | |||
|796 | |||
|0 | |||
|- | |||
|''[[Horse|Equus caballus]]'' | |||
|Horse | |||
|XP_001916913.1 | |||
|581 | |||
|390/585 (66%) | |||
|433/585 (74%) | |||
|728 | |||
|6E-115 | |||
|- | |||
|''Ornithorhynchus anatinus'' | |||
|Platypus | |||
|XP_001514386.1 | |||
|653 | |||
|358/628 (57%) | |||
|443/628 (70%) | |||
|696 | |||
|0 | |||
|- | |||
|''Gallus gallus'' | |||
|Chicken | |||
|XP_421319.2 | |||
|617 | |||
|330/614 (53%) | |||
|414/614 (67%) | |||
|630 | |||
|0 | |||
|- | |||
|''[[Western clawed frog|Xenopus tropicalis]]'' | |||
|Western clawed frog | |||
|CAJ82045.1 | |||
|616 | |||
|302/611 (49%) | |||
|399/611 (65%) | |||
|582 | |||
|1E-170 | |||
|- | |||
|''[[Zebrafish|Danio rerio]]'' | |||
|Zebrafish | |||
|AAI244131.1 | |||
|621 | |||
|284/607 (46%) | |||
|386/607 (63%) | |||
|530 | |||
|6E-155 | |||
|- | |||
|''[[Branchiostoma floridae]]'' | |||
|Lancelet | |||
|XP_002612376.1 | |||
|615 | |||
|237/611 (38%) | |||
|334/611 (54%) | |||
|397 | |||
|6E-115 | |||
|- | |||
|''[[Ciona intestinalis]]'' | |||
|Vase tunicate | |||
|XP_001173256 | |||
|486 | |||
|161/501 (32%) | |||
|241/501 (48%) | |||
|244 | |||
|5E-69 | |||
|- | |||
|''[[Strongylocentrotus purpuratus]]'' | |||
|California purple sea urchin | |||
|XP_782739.1 | |||
|631 | |||
|9/33 (27%) | |||
|15/33 (45%) | |||
|320 | |||
|5E-87 | |||
|- | |||
|''[[Starlet sea anemone|Nematostella vectensis]]'' | |||
|Starlet sea anemone | |||
|XP_001637867 | |||
|529 | |||
|134/501 (26%) | |||
|211/501 (42%) | |||
|120 | |||
|1E-31 | |||
|- | |||
|+ Human C14orf159 Orthologs-protein | |||
|} | |||
== Post-translational modification == | |||
The protein product of the C14orf159 gene is predicted<ref name="entrez"/> and was found<ref name="urlTable">{{cite web | url = http://www.dkfz.de/LIFEdb/(2ij04255g3tubn45u1j3kl45)/Table.aspx | title = RZPD CloneID DKFZp686J0759 | vauthors = Mehrle A, Rosenfelder H | date = | format = | work = LifeDB: Database for Localization, Interaction, Functional assays and Expression of Proteins| publisher = German Cancer Research Center | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = }}</ref><ref name="pmid15489336">{{cite journal | vauthors = Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H, Poustka A | title = From ORFeome to Biology: A Functional Genomics Pipeline | journal = Genome Res. | volume = 14 | issue = 10B | pages = 2136–44 |date=October 2004 | pmid = 15489336 | pmc = 528930 | doi = 10.1101/gr.2576704 | url = }}</ref> to be [[protein targeting|translocated]] to [[mitochondrion]]. | |||
Post-translational modifications are predicted for the protein c14orf159. All predicted sites in human c14orf159 were compared to orthologs using multiple sequence alignments to determine likelihood of modification.<ref>Prediction of glycosylation across the human proteome and the correlation to protein function. Gupta, R. and S. Brunak. Pacific Symposium on Biocomputing, 7:310-322, 2002 <http://www.cbs.dtu.dk/services/YinOYang/>.</ref><ref>Locating proteins in the cell using TargetP, SignalP, and related tools Olof Emanuelsson, Søren Brunak, Gunnar von Heijne, Henrik Nielsen Nature Protocols 2, 953-971 (2007) http://www.cbs.dtu.dk/services/SignalP/.</ref><ref>Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. R. Gupta, E. Jung, A.A. Gooley, K.L. Williams, S. Brunak and J. Hansen. Glycobiology: 9(10):1009-22, 1999 http://www.cbs.dtu.dk/services/DictyOGlyc/.</ref><ref>Analysis and prediction of mammalian protein glycation. Morten Bo Johansen, Lars Kiemer and Søren Brunak Glycobiology, 16:844-853, 2006 http://www.cbs.dtu.dk/services/NetGlycate/.</ref> | |||
<ref>Sulfinator. Expasy tools. 2010. http://expasy.org/tools/sulfinator/.</ref> | |||
== Regulation == | |||
[[Estrogen receptor alpha]], in the presence of [[estradiol]], binds to the C14orf159 gene and likely regulates its expression.<ref name="pmid17275994">{{cite journal | vauthors = Creekmore AL, Ziegler YS, Bonéy JL, Nardulli AM | title = Estrogen receptor α regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence | journal = Mol. Cell. Endocrinol. | volume = 267 | issue = 1–2 | pages = 106–15 |date=March 2007 | pmid = 17275994 | pmc = 1933484 | doi = 10.1016/j.mce.2007.01.001 | url = }}</ref> | |||
{{ | |||
| | |||
| | |||
}} | |||
==References== | ==References== | ||
{{reflist|2}} | {{reflist|2}} | ||
==External links== | |||
* {{UCSC gene info|C14orf159}} | |||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA Cloning Using In Vitro Site-Specific Recombination |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000 | pmc=310948 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Wiemann S, Weil B, Wellenreuther R |title=Toward a Catalog of Human Genes and Proteins: Sequencing and Analysis of 500 Novel Complete Protein Coding Human cDNAs |journal=Genome Res. |volume=11 |issue= 3 |pages= 422–35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.GR1547R | pmc=311072 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Clark HF, Gurney AL, Abaya E |title=The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265–70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 | pmc=403697 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}} | ||
*{{cite journal | vauthors=Cheng J, Kapranov P, Drenkow J |title=Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution |journal=Science |volume=308 |issue= 5725 |pages= 1149–54 |year= 2005 |pmid= 15790807 |doi= 10.1126/science.1108625 |display-authors=etal}} | |||
*{{cite journal | | *{{cite journal | vauthors=Kimura K, Wakamatsu A, Suzuki Y |title=Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Mehrle A, Rosenfelder H, Schupp I |title=The LIFEdb database in 2006 |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415–8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 | pmc=1347501 |display-authors=etal}} | ||
*{{cite journal | | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{ | {{PBB_Controls | ||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = no | |||
| update_citations = no | |||
}} | |||
[[Category:Human proteins]] |
Latest revision as of 08:54, 30 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
UPF0317 protein C14orf159, mitochondrial is a protein that in humans is encoded by the C14orf159 gene (chromosome 14 open reading frame 159).[1]
Orthologs
This section possibly contains original research. (January 2011) (Learn how and when to remove this template message) |
The human gene, c14orf159 mRNA, is highly conserved in mammals and birds.[2] Orthologs gathered from BLAST and BLAT searches reveal that the human c14orf159 mRNA sequence is conserved with a sequence identity of 98% in chimpanzees, 88% in mice, and 81% in platypus and chicken.[3][4] The following table contains a list orthologs that were gathered from BLAST searches. Sequence alignments were performed using blastn to derive sequence identity, score, and E-values between the human c14orf159 variant 1 mRNA and its orthologs.
Genus and species | Common name | NCBI accession number | Sequence length (bp) | Sequence identity | Score | E-value |
---|---|---|---|---|---|---|
Homo sapiens | Human | NM_001102366 | 3164 | 100% | 0 | |
Pan troglodytes | Chimpanzee | XM_510121 | 2974 | 98% | 4281 | 0 |
Mus musculus | Mouse | NM_145448 | 3231 | 88% | 495 | 0 |
Ornithorhynchus anatinus | Platypus | XM_00154336.1 | 1962 | 81% | 217 | 0 |
Gallus gallus | Chicken | XM_421319 | 3389 | 81 | 50 | 0 |
The protein that the human gene c14orf159 encodes has been found to be highly conserved among mammals, birds, amphibians, fish, tunicates, cnidarians, and echinoderms. However, no protein orthologs have been found in nematodes, arthropods, fungi, protists, plants, bacteria, or archea. Fungi and bacteria contain the DUF1445 conserved domain which is found in human c14orf159 and its orthologs. BLAST and BLAT searches have been utilized to find orthologs to the c14orf159 protein. The following table lists protein orthologs for the human protein with sequence identity, sequence similarity, scores, and E-values derived from blastp sequence comparisons.[5]
Genus and species | Common name | NCBI accession number | Sequence length-amino acids | Sequence identity | Sequence similarity | Score | E-value |
---|---|---|---|---|---|---|---|
Homo sapiens | Human | NP_001095839.1 | 564 | 100% | 100% | 0 | |
Pan troglodytes | Chimpanzee | XP_510121.2 | 724 | 557/621 (89%) | 561/621 (90%) | 1109 | 0 |
Ailuropoda melanoleuca | Panda | EFB15996.1 | 585 | 413/585 (70%) | 461/585 (78%) | 824 | 0 |
Rattus norvegicus | Rat | XP_343096.2 | 618 | 423/618 (68%) | 470/618 (76%) | 774 | 0 |
Mus musculus | Mouse | NP_663423.2 | 617 | 414/623 (66%) | 468/621 (75%) | 796 | 0 |
Equus caballus | Horse | XP_001916913.1 | 581 | 390/585 (66%) | 433/585 (74%) | 728 | 6E-115 |
Ornithorhynchus anatinus | Platypus | XP_001514386.1 | 653 | 358/628 (57%) | 443/628 (70%) | 696 | 0 |
Gallus gallus | Chicken | XP_421319.2 | 617 | 330/614 (53%) | 414/614 (67%) | 630 | 0 |
Xenopus tropicalis | Western clawed frog | CAJ82045.1 | 616 | 302/611 (49%) | 399/611 (65%) | 582 | 1E-170 |
Danio rerio | Zebrafish | AAI244131.1 | 621 | 284/607 (46%) | 386/607 (63%) | 530 | 6E-155 |
Branchiostoma floridae | Lancelet | XP_002612376.1 | 615 | 237/611 (38%) | 334/611 (54%) | 397 | 6E-115 |
Ciona intestinalis | Vase tunicate | XP_001173256 | 486 | 161/501 (32%) | 241/501 (48%) | 244 | 5E-69 |
Strongylocentrotus purpuratus | California purple sea urchin | XP_782739.1 | 631 | 9/33 (27%) | 15/33 (45%) | 320 | 5E-87 |
Nematostella vectensis | Starlet sea anemone | XP_001637867 | 529 | 134/501 (26%) | 211/501 (42%) | 120 | 1E-31 |
Post-translational modification
The protein product of the C14orf159 gene is predicted[1] and was found[6][7] to be translocated to mitochondrion.
Post-translational modifications are predicted for the protein c14orf159. All predicted sites in human c14orf159 were compared to orthologs using multiple sequence alignments to determine likelihood of modification.[8][9][10][11] [12]
Regulation
Estrogen receptor alpha, in the presence of estradiol, binds to the C14orf159 gene and likely regulates its expression.[13]
References
- ↑ 1.0 1.1 "Entrez Gene: C14orf159 chromosome 14 open reading frame 159".
- ↑ BLAST. NCBI. accessed 19 April 2010. http://blast.ncbi.nlm.nih.gov/Blast.cgi
- ↑ UCSC Genome Browser website, BLAT. accessed 10 April 2010.
- ↑ BLAST. NCBI. accessed 19 April 2010.
- ↑ Blastp. NCBI. http://blast.ncbi.nlm.nih.gov/Blast.cgi
- ↑ Mehrle A, Rosenfelder H. "RZPD CloneID DKFZp686J0759". LifeDB: Database for Localization, Interaction, Functional assays and Expression of Proteins. German Cancer Research Center.
- ↑ Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H, Poustka A (October 2004). "From ORFeome to Biology: A Functional Genomics Pipeline". Genome Res. 14 (10B): 2136–44. doi:10.1101/gr.2576704. PMC 528930. PMID 15489336.
- ↑ Prediction of glycosylation across the human proteome and the correlation to protein function. Gupta, R. and S. Brunak. Pacific Symposium on Biocomputing, 7:310-322, 2002 <http://www.cbs.dtu.dk/services/YinOYang/>.
- ↑ Locating proteins in the cell using TargetP, SignalP, and related tools Olof Emanuelsson, Søren Brunak, Gunnar von Heijne, Henrik Nielsen Nature Protocols 2, 953-971 (2007) http://www.cbs.dtu.dk/services/SignalP/.
- ↑ Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. R. Gupta, E. Jung, A.A. Gooley, K.L. Williams, S. Brunak and J. Hansen. Glycobiology: 9(10):1009-22, 1999 http://www.cbs.dtu.dk/services/DictyOGlyc/.
- ↑ Analysis and prediction of mammalian protein glycation. Morten Bo Johansen, Lars Kiemer and Søren Brunak Glycobiology, 16:844-853, 2006 http://www.cbs.dtu.dk/services/NetGlycate/.
- ↑ Sulfinator. Expasy tools. 2010. http://expasy.org/tools/sulfinator/.
- ↑ Creekmore AL, Ziegler YS, Bonéy JL, Nardulli AM (March 2007). "Estrogen receptor α regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence". Mol. Cell. Endocrinol. 267 (1–2): 106–15. doi:10.1016/j.mce.2007.01.001. PMC 1933484. PMID 17275994.
External links
- Human C14orf159 genome location and C14orf159 gene details page in the UCSC Genome Browser.
Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA Cloning Using In Vitro Site-Specific Recombination". Genome Res. 10 (11): 1788–95. doi:10.1101/gr.143000. PMC 310948. PMID 11076863.
- Wiemann S, Weil B, Wellenreuther R, et al. (2001). "Toward a Catalog of Human Genes and Proteins: Sequencing and Analysis of 500 Novel Complete Protein Coding Human cDNAs". Genome Res. 11 (3): 422–35. doi:10.1101/gr.GR1547R. PMC 311072. PMID 11230166.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Clark HF, Gurney AL, Abaya E, et al. (2003). "The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment". Genome Res. 13 (10): 2265–70. doi:10.1101/gr.1293003. PMC 403697. PMID 12975309.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Cheng J, Kapranov P, Drenkow J, et al. (2005). "Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution". Science. 308 (5725): 1149–54. doi:10.1126/science.1108625. PMID 15790807.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
- Mehrle A, Rosenfelder H, Schupp I, et al. (2006). "The LIFEdb database in 2006". Nucleic Acids Res. 34 (Database issue): D415–8. doi:10.1093/nar/gkj139. PMC 1347501. PMID 16381901.