VPS35: Difference between revisions
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)) |
m (→Structure: task, replaced: J. Cell. Sci. → J. Cell Sci. using AWB) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Vacuolar protein sorting-associated protein 35''' is a [[protein]] that in humans is encoded by the ''VPS35'' [[gene]].<ref name="pmid11112353">{{cite journal | vauthors = Zhang P, Yu L, Gao J, Fu Q, Dai F, Zhao Y, Zheng L, Zhao S | title = Cloning and characterization of human VPS35 and mouse Vps35 and mapping of VPS35 to human chromosome 16q13-q21 | journal = Genomics | volume = 70 | issue = 2 | pages = 253–7 |date=Jan 2001 | pmid = 11112353 | pmc = | doi = 10.1006/geno.2000.6380 }}</ref><ref name="entrez"/> | ||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
This gene belongs to a group of [[vacuole|vacuolar]] protein sorting (VPS) genes. The encoded protein is a component of a large multimeric complex, termed the [[retromer]] complex, involved in retrograde transport of proteins from [[endosomes]] to the [[Golgi apparatus|trans-Golgi network]]. The close structural similarity between the yeast and human proteins that make up this complex suggests a similarity in function. Expression studies in yeast and mammalian cells indicate that this protein interacts directly with VPS35, which serves as the core of the retromer complex.<ref name="entrez">{{cite web | title = Entrez Gene: VPS35 vacuolar protein sorting 35 homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55737| accessdate = }}</ref> | |||
< | == Structure == | ||
{{ | |||
| | Vps35 is the largest subunit of [[retromer]] with the molecular weight of 92-kDa and functions as the central platform for the assembly of [[VPS26A|Vps26]] and [[VPS29|Vps29]].<ref name="pmid17891154">{{cite journal | vauthors = Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH | title = Functional architecture of the retromer cargo-recognition complex | journal = Nature | volume = 449 | issue = 7165 | pages = 1063–7 |date=October 2007 | pmid = 17891154 | pmc = 2377034 | doi = 10.1038/nature06216 }}</ref> Vps35 resembles many other [[alpha solenoid|helical solenoid proteins]] including AP adaptor protein complexes that are characterized with repeated structural units in a continuous superhelix arrangement involved in coated vesicle trafficking. The curved surface of the 6 even-numbered [[alpha helix|helices]] within solenoid structure with series of ridges separating [[hydrophobic]] grooves function as potential cargo binding sites.<ref name="pmid10198044">{{cite journal | vauthors = Nothwehr SF, Bruinsma P, Strawn LA | title = Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment | journal = Mol. Biol. Cell | volume = 10 | issue = 4 | pages = 875–90 |date=April 1999 | pmid = 10198044 | pmc = 25208 | doi = 10.1091/mbc.10.4.875}}</ref> The C-terminal of Vps35 contains an α-solenoid fold that fits into the metal binding pocket of Vps29.<ref name="pmid15965486">{{cite journal | vauthors = Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ | title = Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly | journal = Nat. Struct. Mol. Biol. | volume = 12 | issue = 7 | pages = 594–602 |date=July 2005 | pmid = 15965486 | doi = 10.1038/nsmb954 }}</ref> | ||
| | |||
A conserved PRLYL motif at the [[N-terminus]] of Vps35 is involved in the binding of Vps26.<ref name="pmid11598206">{{cite journal | vauthors = Reddy JV, Seaman MN | title = Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval | journal = Mol. Biol. Cell | volume = 12 | issue = 10 | pages = 3242–56 |date=October 2001 | pmid = 11598206 | pmc = 60170 | doi = 10.1091/mbc.12.10.3242}}</ref><ref name="pmid17916227">{{cite journal | vauthors = Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P | title = Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly | journal = Traffic | volume = 8 | issue = 12 | pages = 1829–40 |date=December 2007 | pmid = 17916227 | pmc = 2532708 | doi = 10.1111/j.1600-0854.2007.00658.x }}</ref> The structural binding motifs enable this subunit to act as a linker between the [[sorting nexin|SNX]] dimers and Vps trimer complex, and the binding sites targeting to the N-terminal region of SNX subunits are located at the both ends of the trimer. A study has shown that the knockdown of Vps35 in human [[HEp-2]] epithelial cells had defect on the [[endosomal]] recycling of [[transferrin]] by [[DMT1]] due to the mis-sorting of DMT1-II to the lysosomal membrane associated protein ([[LAMP2]]) structures.<ref name="pmid20164305">{{cite journal | vauthors = Tabuchi M, Yanatori I, Kawai Y, Kishi F | title = Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1 | journal = J. Cell Sci. | volume = 123 | issue = Pt 5 | pages = 756–66 |date=March 2010 | pmid = 20164305 | doi = 10.1242/jcs.060574 }}</ref> | |||
==References== | ==References== | ||
{{reflist| | {{reflist|colwidth=35em}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | | {{refbegin|colwidth=35em}} | ||
*{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }} | |||
*{{cite journal | vauthors=Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA |title=A "double adaptor" method for improved shotgun library construction |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107–13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }} | |||
*{{cite journal | | *{{cite journal | vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA |title=Large-Scale Concatenation cDNA Sequencing |journal=Genome Res. |volume=7 |issue= 4 |pages= 353–8 |year= 1997 |pmid= 9110174 |doi= 10.1101/gr.7.4.353| pmc=139146 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Edgar AJ, Polak JM |title=Human homologues of yeast vacuolar protein sorting 29 and 35 |journal=Biochem. Biophys. Res. Commun. |volume=277 |issue= 3 |pages= 622–30 |year= 2000 |pmid= 11062004 |doi= 10.1006/bbrc.2000.3727 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA Cloning Using In Vitro Site-Specific Recombination |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000 | pmc=310948 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI |title=Human Orthologs of Yeast Vacuolar Protein Sorting Proteins Vps26, 29, and 35: Assembly into Multimeric Complexes |journal=Mol. Biol. Cell |volume=11 |issue= 12 |pages= 4105–16 |year= 2001 |pmid= 11102511 |doi= 10.1091/mbc.11.12.4105| pmc=15060 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Vergés M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE |title=The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor |journal=Nat. Cell Biol. |volume=6 |issue= 8 |pages= 763–9 |year= 2004 |pmid= 15247922 |doi= 10.1038/ncb1153 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Mingot JM, Bohnsack MT, Jäkle U, Görlich D |title=Exportin 7 defines a novel general nuclear export pathway |journal=EMBO J. |volume=23 |issue= 16 |pages= 3227–36 |year= 2005 |pmid= 15282546 |doi= 10.1038/sj.emboj.7600338 | pmc=514512 }} | ||
*{{cite journal | | |||
*{{cite journal | | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | |||
{{gene-16-stub}} |
Latest revision as of 22:36, 8 November 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Vacuolar protein sorting-associated protein 35 is a protein that in humans is encoded by the VPS35 gene.[1][2]
This gene belongs to a group of vacuolar protein sorting (VPS) genes. The encoded protein is a component of a large multimeric complex, termed the retromer complex, involved in retrograde transport of proteins from endosomes to the trans-Golgi network. The close structural similarity between the yeast and human proteins that make up this complex suggests a similarity in function. Expression studies in yeast and mammalian cells indicate that this protein interacts directly with VPS35, which serves as the core of the retromer complex.[2]
Structure
Vps35 is the largest subunit of retromer with the molecular weight of 92-kDa and functions as the central platform for the assembly of Vps26 and Vps29.[3] Vps35 resembles many other helical solenoid proteins including AP adaptor protein complexes that are characterized with repeated structural units in a continuous superhelix arrangement involved in coated vesicle trafficking. The curved surface of the 6 even-numbered helices within solenoid structure with series of ridges separating hydrophobic grooves function as potential cargo binding sites.[4] The C-terminal of Vps35 contains an α-solenoid fold that fits into the metal binding pocket of Vps29.[5]
A conserved PRLYL motif at the N-terminus of Vps35 is involved in the binding of Vps26.[6][7] The structural binding motifs enable this subunit to act as a linker between the SNX dimers and Vps trimer complex, and the binding sites targeting to the N-terminal region of SNX subunits are located at the both ends of the trimer. A study has shown that the knockdown of Vps35 in human HEp-2 epithelial cells had defect on the endosomal recycling of transferrin by DMT1 due to the mis-sorting of DMT1-II to the lysosomal membrane associated protein (LAMP2) structures.[8]
References
- ↑ Zhang P, Yu L, Gao J, Fu Q, Dai F, Zhao Y, Zheng L, Zhao S (Jan 2001). "Cloning and characterization of human VPS35 and mouse Vps35 and mapping of VPS35 to human chromosome 16q13-q21". Genomics. 70 (2): 253–7. doi:10.1006/geno.2000.6380. PMID 11112353.
- ↑ 2.0 2.1 "Entrez Gene: VPS35 vacuolar protein sorting 35 homolog (S. cerevisiae)".
- ↑ Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH (October 2007). "Functional architecture of the retromer cargo-recognition complex". Nature. 449 (7165): 1063–7. doi:10.1038/nature06216. PMC 2377034. PMID 17891154.
- ↑ Nothwehr SF, Bruinsma P, Strawn LA (April 1999). "Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment". Mol. Biol. Cell. 10 (4): 875–90. doi:10.1091/mbc.10.4.875. PMC 25208. PMID 10198044.
- ↑ Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ (July 2005). "Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly". Nat. Struct. Mol. Biol. 12 (7): 594–602. doi:10.1038/nsmb954. PMID 15965486.
- ↑ Reddy JV, Seaman MN (October 2001). "Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval". Mol. Biol. Cell. 12 (10): 3242–56. doi:10.1091/mbc.12.10.3242. PMC 60170. PMID 11598206.
- ↑ Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P (December 2007). "Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly". Traffic. 8 (12): 1829–40. doi:10.1111/j.1600-0854.2007.00658.x. PMC 2532708. PMID 17916227.
- ↑ Tabuchi M, Yanatori I, Kawai Y, Kishi F (March 2010). "Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1". J. Cell Sci. 123 (Pt 5): 756–66. doi:10.1242/jcs.060574. PMID 20164305.
Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (1996). "A "double adaptor" method for improved shotgun library construction". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (1997). "Large-Scale Concatenation cDNA Sequencing". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Edgar AJ, Polak JM (2000). "Human homologues of yeast vacuolar protein sorting 29 and 35". Biochem. Biophys. Res. Commun. 277 (3): 622–30. doi:10.1006/bbrc.2000.3727. PMID 11062004.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA Cloning Using In Vitro Site-Specific Recombination". Genome Res. 10 (11): 1788–95. doi:10.1101/gr.143000. PMC 310948. PMID 11076863.
- Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2001). "Human Orthologs of Yeast Vacuolar Protein Sorting Proteins Vps26, 29, and 35: Assembly into Multimeric Complexes". Mol. Biol. Cell. 11 (12): 4105–16. doi:10.1091/mbc.11.12.4105. PMC 15060. PMID 11102511.
- Vergés M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE (2004). "The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor". Nat. Cell Biol. 6 (8): 763–9. doi:10.1038/ncb1153. PMID 15247922.
- Mingot JM, Bohnsack MT, Jäkle U, Görlich D (2005). "Exportin 7 defines a novel general nuclear export pathway". EMBO J. 23 (16): 3227–36. doi:10.1038/sj.emboj.7600338. PMC 514512. PMID 15282546.
This article on a gene on human chromosome 16 is a stub. You can help Wikipedia by expanding it. |