CKMT2: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Creatine kinase S-type, mitochondrial''' is an [[enzyme]] that in humans is encoded by the ''CKMT2'' [[gene]].<ref name="pmid2324105">{{cite journal | vauthors = Haas RC, Strauss AW | title = Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes | journal = J Biol Chem | volume = 265 | issue = 12 | pages = 6921–7 |date=May 1990 | pmid = 2324105 | pmc = | doi = }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: CKMT2 creatine kinase, mitochondrial 2 (sarcomeric)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1160| accessdate = }}</ref> | ||
}} | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Mitochondrial creatine kinase (MtCK) is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine. | | summary_text = Mitochondrial creatine kinase (MtCK) is responsible for the transfer of high energy phosphate from [[mitochondria]] to the [[cytosolic]] carrier, [[creatine]]. The "energy-rich" gamma-phosphate group of [[Adenosine triphosphate|ATP]] that is generated by [[oxidative phosphorylation]] inside mitochondria is trans-phosphorylated to creatine (Cr) to give phospho-creatine (PCr), which then is exported from the mitochondria into the cytosol, where it is made available to cytosolic [[creatine kinase]]s (CK) for ''in situ'' regeneration of the ATP that has been used for cellular work. Cr then is returning to the mitochondria where it stimulates mitochondrial respiration and again is charged-up by mitochondrial ATP via MtCK. This process is termed the [[Phosphocreatine shuttle|PCr/Cr-shuttle]] or circuit. | ||
MtCK belongs to the creatine kinase (CK) [[isoenzyme]] family. It exists as two isoenzymes, sarcomeric MtCK and ubiquitous MtCK, encoded by separate genes. Mitochondrial creatine kinase occurs in two different oligomeric forms: [[dimer (chemistry)|dimers]] and [[octamers]], in contrast to the exclusively dimeric cytosolic creatine kinase isoenzymes. Sarcomeric mitochondrial creatine kinase has 80% [[Homology (biology)|homology]] with the coding exons of ubiquitous mitochondrial creatine kinase. This gene contains sequences homologous to several motifs that are shared among some nuclear genes encoding mitochondrial proteins and thus may be essential for the coordinated activation of these genes during mitochondrial biogenesis.<ref name="entrez" /> | |||
}} | }} | ||
==References== | ==References== | ||
{{reflist| | {{reflist}} | ||
==External links== | |||
* {{UCSC gene info|CKMT2}} | |||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Payne RM, Strauss AW |title=Expression of the mitochondrial creatine kinase genes |journal=Mol. Cell. Biochem. |volume=133-134 |issue= |pages= 235–43 |year= 1995 |pmid= 7808456 |doi=10.1007/BF01267957 }} | ||
*{{cite journal | author=Qin W | *{{cite journal | author=Qin W |title=Molecular characterization of the creatine kinases and some historical perspectives |journal=Mol. Cell. Biochem. |volume=184 |issue= 1–2 |pages= 153–67 |year= 1998 |pmid= 9746319 |doi=10.1023/A:1006807515892 |name-list-format=vanc| author2=Khuchua Z | author3=Cheng J | display-authors=3 | last4=Boero | first4=Jaime | last5=Payne | first5=R. Mark | last6=Strauss | first6=Arnold W. }} | ||
*{{cite journal | author=Klein SC |title=Regulatory element analysis and structural characterization of the human sarcomeric mitochondrial creatine kinase gene |journal=J. Biol. Chem. |volume=266 |issue= 27 |pages= 18058–65 |year= 1991 |pmid= 1917943 |doi= |name-list-format=vanc| author2=Haas RC | author3=Perryman MB | display-authors=3 | last4=Billadello | first4=JJ | last5=Strauss | first5=AW }} | |||
*{{cite journal | author= | *{{cite journal | author=Haas RC |title=Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase |journal=J. Biol. Chem. |volume=264 |issue= 5 |pages= 2890–7 |year= 1989 |pmid= 2914937 |doi= |name-list-format=vanc| author2=Korenfeld C | author3=Zhang ZF | display-authors=3 | last4=Perryman | first4=B | last5=Roman | first5=D | last6=Strauss | first6=AW }} | ||
*{{cite journal | author=Richard I |title=The gene for creatine kinase, mitochondrial 2 (sarcomeric; CKMT2), maps to chromosome 5q13.3 |journal=Genomics |volume=18 |issue= 1 |pages= 134–6 |year= 1994 |pmid= 8276398 |doi= 10.1006/geno.1993.1437 |name-list-format=vanc| author2=Devaud C | author3=Cherif D | display-authors=3 | last4=Cohen | first4=Daniel | last5=Beckmann | first5=Jacques S. }} | |||
*{{cite journal | author= | *{{cite journal | vauthors=Qin W, Khuchua Z, Klein SC, Strauss AW |title=Elements regulating cardiomyocyte expression of the human sarcomeric mitochondrial creatine kinase gene in transgenic mice |journal=J. Biol. Chem. |volume=272 |issue= 40 |pages= 25210–6 |year= 1997 |pmid= 9312135 |doi=10.1074/jbc.272.40.25210 }} | ||
*{{cite journal | author=Qin W |title=Oxidative myocytes of heart and skeletal muscle express abundant sarcomeric mitochondrial creatine kinase |journal=Histochem. J. |volume=31 |issue= 6 |pages= 357–65 |year= 1999 |pmid= 10462222 |doi=10.1023/A:1003748108062 |name-list-format=vanc| author2=Khuchua Z | author3=Boero J | display-authors=3 | last4=Mark Payne | first4=R. | last5=Strauss | first5=Arnold W. }} | |||
*{{cite journal | author= | *{{cite journal | author=Kanemitsu F |title=Characterization of two types of mitochondrial creatine kinase isolated from normal human cardiac muscle and brain tissue |journal=Electrophoresis |volume=21 |issue= 2 |pages= 266–70 |year= 2000 |pmid= 10674997 |doi= 10.1002/(SICI)1522-2683(20000101)21:2<266::AID-ELPS266>3.0.CO;2-9 |name-list-format=vanc| author2=Mizushima J | author3=Kageoka T | display-authors=3 | last4=Okigaki | first4=Tohru | last5=Taketa | first5=Kazuhisha | last6=Kira | first6=Shohei }} | ||
*{{cite journal | vauthors=Schlattner U, Wallimann T |title=Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding |journal=J. Biol. Chem. |volume=275 |issue= 23 |pages= 17314–20 |year= 2000 |pmid= 10748055 |doi= 10.1074/jbc.M001919200 }} | |||
*{{cite journal | vauthors=Schlattner U, Wallimann T |title=A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance |journal=J. Bioenerg. Biomembr. |volume=32 |issue= 1 |pages= 123–31 |year= 2002 |pmid= 11768757 |doi=10.1023/A:1005576831968 }} | |||
*{{cite journal | author= | *{{cite journal | author=Schlattner U |title=Creatine kinase and creatine transporter in normal, wounded, and diseased skin |journal=J. Invest. Dermatol. |volume=118 |issue= 3 |pages= 416–23 |year= 2002 |pmid= 11874479 |doi= 10.1046/j.0022-202x.2001.01697.x |name-list-format=vanc| author2=Möckli N | author3=Speer O | display-authors=3 | last4=Werner | first4=Sabine | last5=Wallimann | first5=Theo }} | ||
*{{cite journal | vauthors=Wendt S, Schlattner U, Wallimann T |title=Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues |journal=J. Biol. Chem. |volume=278 |issue= 2 |pages= 1125–30 |year= 2003 |pmid= 12401781 |doi= 10.1074/jbc.M208572200 }} | |||
*{{cite journal | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |name-list-format=vanc| author2=Feingold EA | author3=Grouse LH | display-authors=3 | last4=Derge | first4=JG | last5=Klausner | first5=RD | last6=Collins | first6=FS | last7=Wagner | first7=L | last8=Shenmen | first8=CM | last9=Schuler | first9=GD }} | |||
*{{cite journal | | *{{cite journal | author=Ota T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |name-list-format=vanc| author2=Suzuki Y | author3=Nishikawa T | display-authors=3 | last4=Otsuki | first4=Tetsuji | last5=Sugiyama | first5=Tomoyasu | last6=Irie | first6=Ryotaro | last7=Wakamatsu | first7=Ai | last8=Hayashi | first8=Koji | last9=Sato | first9=Hiroyuki }} | ||
*{{cite journal | | *{{cite journal | author=Schlattner U |title=C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase |journal=J. Biol. Chem. |volume=279 |issue= 23 |pages= 24334–42 |year= 2004 |pmid= 15044463 |doi= 10.1074/jbc.M314158200 |name-list-format=vanc| author2=Gehring F | author3=Vernoux N | display-authors=3 | last4=Tokarska-Schlattner | first4=M | last5=Neumann | first5=D | last6=Marcillat | first6=O | last7=Vial | first7=C | last8=Wallimann | first8=T }} | ||
*{{cite journal | author=Schlattner U | *{{cite journal | author=Gerhard DS |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |name-list-format=vanc| author2=Wagner L | author3=Feingold EA | display-authors=3 | last4=Shenmen | first4=CM | last5=Grouse | first5=LH | last6=Schuler | first6=G | last7=Klein | first7=SL | last8=Old | first8=S | last9=Rasooly | first9=R }} | ||
*{{cite journal | author=Guerrero K |title=Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle |journal=Am. J. Physiol. Regul. Integr. Comp. Physiol. |volume=289 |issue= 4 |pages= R1144–54 |year= 2005 |pmid= 16020522 |doi= 10.1152/ajpregu.00229.2005 |name-list-format=vanc| author2=Wuyam B | author3=Mezin P | display-authors=3 | last4=Vivodtzev | first4=I | last5=Vendelin | first5=M | last6=Borel | first6=JC | last7=Hacini | first7=R | last8=Chavanon | first8=O | last9=Imbeaud | first9=S }} | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=1160}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{ | {{gene-5-stub}} | ||
Latest revision as of 09:44, 30 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Creatine kinase S-type, mitochondrial is an enzyme that in humans is encoded by the CKMT2 gene.[1][2]
Mitochondrial creatine kinase (MtCK) is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine. The "energy-rich" gamma-phosphate group of ATP that is generated by oxidative phosphorylation inside mitochondria is trans-phosphorylated to creatine (Cr) to give phospho-creatine (PCr), which then is exported from the mitochondria into the cytosol, where it is made available to cytosolic creatine kinases (CK) for in situ regeneration of the ATP that has been used for cellular work. Cr then is returning to the mitochondria where it stimulates mitochondrial respiration and again is charged-up by mitochondrial ATP via MtCK. This process is termed the PCr/Cr-shuttle or circuit. MtCK belongs to the creatine kinase (CK) isoenzyme family. It exists as two isoenzymes, sarcomeric MtCK and ubiquitous MtCK, encoded by separate genes. Mitochondrial creatine kinase occurs in two different oligomeric forms: dimers and octamers, in contrast to the exclusively dimeric cytosolic creatine kinase isoenzymes. Sarcomeric mitochondrial creatine kinase has 80% homology with the coding exons of ubiquitous mitochondrial creatine kinase. This gene contains sequences homologous to several motifs that are shared among some nuclear genes encoding mitochondrial proteins and thus may be essential for the coordinated activation of these genes during mitochondrial biogenesis.[2]
References
External links
- Human CKMT2 genome location and CKMT2 gene details page in the UCSC Genome Browser.
Further reading
- Payne RM, Strauss AW (1995). "Expression of the mitochondrial creatine kinase genes". Mol. Cell. Biochem. 133-134: 235–43. doi:10.1007/BF01267957. PMID 7808456.
- Qin W, Khuchua Z, Cheng J, et al. (1998). "Molecular characterization of the creatine kinases and some historical perspectives". Mol. Cell. Biochem. 184 (1–2): 153–67. doi:10.1023/A:1006807515892. PMID 9746319.
- Klein SC, Haas RC, Perryman MB, et al. (1991). "Regulatory element analysis and structural characterization of the human sarcomeric mitochondrial creatine kinase gene". J. Biol. Chem. 266 (27): 18058–65. PMID 1917943.
- Haas RC, Korenfeld C, Zhang ZF, et al. (1989). "Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase". J. Biol. Chem. 264 (5): 2890–7. PMID 2914937.
- Richard I, Devaud C, Cherif D, et al. (1994). "The gene for creatine kinase, mitochondrial 2 (sarcomeric; CKMT2), maps to chromosome 5q13.3". Genomics. 18 (1): 134–6. doi:10.1006/geno.1993.1437. PMID 8276398.
- Qin W, Khuchua Z, Klein SC, Strauss AW (1997). "Elements regulating cardiomyocyte expression of the human sarcomeric mitochondrial creatine kinase gene in transgenic mice". J. Biol. Chem. 272 (40): 25210–6. doi:10.1074/jbc.272.40.25210. PMID 9312135.
- Qin W, Khuchua Z, Boero J, et al. (1999). "Oxidative myocytes of heart and skeletal muscle express abundant sarcomeric mitochondrial creatine kinase". Histochem. J. 31 (6): 357–65. doi:10.1023/A:1003748108062. PMID 10462222.
- Kanemitsu F, Mizushima J, Kageoka T, et al. (2000). "Characterization of two types of mitochondrial creatine kinase isolated from normal human cardiac muscle and brain tissue". Electrophoresis. 21 (2): 266–70. doi:10.1002/(SICI)1522-2683(20000101)21:2<266::AID-ELPS266>3.0.CO;2-9. PMID 10674997.
- Schlattner U, Wallimann T (2000). "Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding". J. Biol. Chem. 275 (23): 17314–20. doi:10.1074/jbc.M001919200. PMID 10748055.
- Schlattner U, Wallimann T (2002). "A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance". J. Bioenerg. Biomembr. 32 (1): 123–31. doi:10.1023/A:1005576831968. PMID 11768757.
- Schlattner U, Möckli N, Speer O, et al. (2002). "Creatine kinase and creatine transporter in normal, wounded, and diseased skin". J. Invest. Dermatol. 118 (3): 416–23. doi:10.1046/j.0022-202x.2001.01697.x. PMID 11874479.
- Wendt S, Schlattner U, Wallimann T (2003). "Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues". J. Biol. Chem. 278 (2): 1125–30. doi:10.1074/jbc.M208572200. PMID 12401781.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Schlattner U, Gehring F, Vernoux N, et al. (2004). "C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase". J. Biol. Chem. 279 (23): 24334–42. doi:10.1074/jbc.M314158200. PMID 15044463.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Guerrero K, Wuyam B, Mezin P, et al. (2005). "Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle". Am. J. Physiol. Regul. Integr. Comp. Physiol. 289 (4): R1144–54. doi:10.1152/ajpregu.00229.2005. PMID 16020522.
This article on a gene on human chromosome 5 is a stub. You can help Wikipedia by expanding it. |