HIST1H2AC: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
{{Underlinked|date=August 2017}} | |||
{{ | {{Infobox_gene}} | ||
| | '''Histone H2A type 1-C''' is a [[protein]] that in humans is encoded by the ''HIST1H2AC'' [[gene]].<ref name="pmid9119399">{{cite journal |vauthors=Albig W, Kioschis P, Poustka A, Meergans K, Doenecke D | title = Human histone gene organization: nonregular arrangement within a large cluster | journal = Genomics | volume = 40 | issue = 2 | pages = 314–22 |date=Apr 1997 | pmid = 9119399 | pmc = | doi = 10.1006/geno.1996.4592 }}</ref><ref name="pmid12408966">{{cite journal |vauthors=Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ | title = The human and mouse replication-dependent histone genes | journal = Genomics | volume = 80 | issue = 5 | pages = 487–98 |date=Oct 2002 | pmid = 12408966 | pmc = | doi =10.1016/S0888-7543(02)96850-3 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: HIST1H2AC histone cluster 1, H2ac| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8334| accessdate = }}</ref> | ||
}} | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6.<ref name="entrez">{{cite web | title = Entrez Gene: HIST1H2AC histone cluster 1, H2ac| url = | | summary_text = Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6.<ref name="entrez">{{cite web | title = Entrez Gene: HIST1H2AC histone cluster 1, H2ac| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8334| accessdate = }}</ref> | ||
}} | }} | ||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | *{{cite journal |vauthors=Ruddy DA, Kronmal GS, Lee VK, etal |title=A 1.1-Mb transcript map of the hereditary hemochromatosis locus. |journal=Genome Res. |volume=7 |issue= 5 |pages= 441–56 |year= 1997 |pmid= 9149941 |doi= 10.1101/gr.7.5.441}} | ||
*{{cite journal |vauthors=Albig W, Doenecke D |title=The human histone gene cluster at the D6S105 locus. |journal=Hum. Genet. |volume=101 |issue= 3 |pages= 284–94 |year= 1998 |pmid= 9439656 |doi=10.1007/s004390050630 }} | |||
*{{cite journal | | *{{cite journal |vauthors=El Kharroubi A, Piras G, Zensen R, Martin MA |title=Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. |journal=Mol. Cell. Biol. |volume=18 |issue= 5 |pages= 2535–44 |year= 1998 |pmid= 9566873 |doi= 10.1128/mcb.18.5.2535| pmc=110633 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Deng L, de la Fuente C, Fu P, etal |title=Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. |journal=Virology |volume=277 |issue= 2 |pages= 278–95 |year= 2001 |pmid= 11080476 |doi= 10.1006/viro.2000.0593 }} | ||
*{{cite journal | *{{cite journal |vauthors=Deng L, Wang D, de la Fuente C, etal |title=Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. |journal=Virology |volume=289 |issue= 2 |pages= 312–26 |year= 2001 |pmid= 11689053 |doi= 10.1006/viro.2001.1129 }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | *{{cite journal |vauthors=Lusic M, Marcello A, Cereseto A, Giacca M |title=Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. |journal=EMBO J. |volume=22 |issue= 24 |pages= 6550–61 |year= 2004 |pmid= 14657027 |doi= 10.1093/emboj/cdg631 | pmc=291826 }} | ||
*{{cite journal |vauthors=Zhang Y, Griffin K, Mondal N, Parvin JD |title=Phosphorylation of histone H2A inhibits transcription on chromatin templates. |journal=J. Biol. Chem. |volume=279 |issue= 21 |pages= 21866–72 |year= 2004 |pmid= 15010469 |doi= 10.1074/jbc.M400099200 }} | |||
*{{cite journal | | *{{cite journal |vauthors=Aihara H, Nakagawa T, Yasui K, etal |title=Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. |journal=Genes Dev. |volume=18 |issue= 8 |pages= 877–88 |year= 2004 |pmid= 15078818 |doi= 10.1101/gad.1184604 | pmc=395847 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Wang H, Wang L, Erdjument-Bromage H, etal |title=Role of histone H2A ubiquitination in Polycomb silencing. |journal=Nature |volume=431 |issue= 7010 |pages= 873–8 |year= 2004 |pmid= 15386022 |doi= 10.1038/nature02985 }} | ||
*{{cite journal | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }} | ||
*{{cite journal | *{{cite journal |vauthors=Andersen JS, Lam YW, Leung AK, etal |title=Nucleolar proteome dynamics. |journal=Nature |volume=433 |issue= 7021 |pages= 77–83 |year= 2005 |pmid= 15635413 |doi= 10.1038/nature03207 }} | ||
*{{cite journal | *{{cite journal |vauthors=Hagiwara T, Hidaka Y, Yamada M |title=Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. |journal=Biochemistry |volume=44 |issue= 15 |pages= 5827–34 |year= 2005 |pmid= 15823041 |doi= 10.1021/bi047505c }} | ||
*{{cite journal | *{{cite journal |vauthors=Bonenfant D, Coulot M, Towbin H, etal |title=Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. |journal=Mol. Cell. Proteomics |volume=5 |issue= 3 |pages= 541–52 |year= 2006 |pmid= 16319397 |doi= 10.1074/mcp.M500288-MCP200 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Cao R, Tsukada Y, Zhang Y |title=Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. |journal=Mol. Cell |volume=20 |issue= 6 |pages= 845–54 |year= 2006 |pmid= 16359901 |doi= 10.1016/j.molcel.2005.12.002 }} | ||
*{{cite journal | *{{cite journal |vauthors=Boyne MT, Pesavento JJ, Mizzen CA, Kelleher NL |title=Precise characterization of human histones in the H2A gene family by top down mass spectrometry. |journal=J. Proteome Res. |volume=5 |issue= 2 |pages= 248–53 |year= 2006 |pmid= 16457589 |doi= 10.1021/pr050269n }} | ||
*{{cite journal | | *{{cite journal |vauthors=Bergink S, Salomons FA, Hoogstraten D, etal |title=DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. |journal=Genes Dev. |volume=20 |issue= 10 |pages= 1343–52 |year= 2006 |pmid= 16702407 |doi= 10.1101/gad.373706 | pmc=1472908 }} | ||
*{{cite journal | | |||
*{{cite journal | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=8334}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{ | {{gene-6-stub}} | ||
Latest revision as of 13:38, 31 August 2017
This article needs more links to other articles to help integrate it into the encyclopedia. (August 2017) (Learn how and when to remove this template message) |
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Histone H2A type 1-C is a protein that in humans is encoded by the HIST1H2AC gene.[1][2][3]
Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6.[3]
References
- ↑ Albig W, Kioschis P, Poustka A, Meergans K, Doenecke D (Apr 1997). "Human histone gene organization: nonregular arrangement within a large cluster". Genomics. 40 (2): 314–22. doi:10.1006/geno.1996.4592. PMID 9119399.
- ↑ Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ (Oct 2002). "The human and mouse replication-dependent histone genes". Genomics. 80 (5): 487–98. doi:10.1016/S0888-7543(02)96850-3. PMID 12408966.
- ↑ 3.0 3.1 "Entrez Gene: HIST1H2AC histone cluster 1, H2ac".
Further reading
- Ruddy DA, Kronmal GS, Lee VK, et al. (1997). "A 1.1-Mb transcript map of the hereditary hemochromatosis locus". Genome Res. 7 (5): 441–56. doi:10.1101/gr.7.5.441. PMID 9149941.
- Albig W, Doenecke D (1998). "The human histone gene cluster at the D6S105 locus". Hum. Genet. 101 (3): 284–94. doi:10.1007/s004390050630. PMID 9439656.
- El Kharroubi A, Piras G, Zensen R, Martin MA (1998). "Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter". Mol. Cell. Biol. 18 (5): 2535–44. doi:10.1128/mcb.18.5.2535. PMC 110633. PMID 9566873.
- Deng L, de la Fuente C, Fu P, et al. (2001). "Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones". Virology. 277 (2): 278–95. doi:10.1006/viro.2000.0593. PMID 11080476.
- Deng L, Wang D, de la Fuente C, et al. (2001). "Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA". Virology. 289 (2): 312–26. doi:10.1006/viro.2001.1129. PMID 11689053.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Lusic M, Marcello A, Cereseto A, Giacca M (2004). "Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter". EMBO J. 22 (24): 6550–61. doi:10.1093/emboj/cdg631. PMC 291826. PMID 14657027.
- Zhang Y, Griffin K, Mondal N, Parvin JD (2004). "Phosphorylation of histone H2A inhibits transcription on chromatin templates". J. Biol. Chem. 279 (21): 21866–72. doi:10.1074/jbc.M400099200. PMID 15010469.
- Aihara H, Nakagawa T, Yasui K, et al. (2004). "Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo". Genes Dev. 18 (8): 877–88. doi:10.1101/gad.1184604. PMC 395847. PMID 15078818.
- Wang H, Wang L, Erdjument-Bromage H, et al. (2004). "Role of histone H2A ubiquitination in Polycomb silencing". Nature. 431 (7010): 873–8. doi:10.1038/nature02985. PMID 15386022.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Andersen JS, Lam YW, Leung AK, et al. (2005). "Nucleolar proteome dynamics". Nature. 433 (7021): 77–83. doi:10.1038/nature03207. PMID 15635413.
- Hagiwara T, Hidaka Y, Yamada M (2005). "Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes". Biochemistry. 44 (15): 5827–34. doi:10.1021/bi047505c. PMID 15823041.
- Bonenfant D, Coulot M, Towbin H, et al. (2006). "Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry". Mol. Cell. Proteomics. 5 (3): 541–52. doi:10.1074/mcp.M500288-MCP200. PMID 16319397.
- Cao R, Tsukada Y, Zhang Y (2006). "Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing". Mol. Cell. 20 (6): 845–54. doi:10.1016/j.molcel.2005.12.002. PMID 16359901.
- Boyne MT, Pesavento JJ, Mizzen CA, Kelleher NL (2006). "Precise characterization of human histones in the H2A gene family by top down mass spectrometry". J. Proteome Res. 5 (2): 248–53. doi:10.1021/pr050269n. PMID 16457589.
- Bergink S, Salomons FA, Hoogstraten D, et al. (2006). "DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A". Genes Dev. 20 (10): 1343–52. doi:10.1101/gad.373706. PMC 1472908. PMID 16702407.
This article on a gene on human chromosome 6 is a stub. You can help Wikipedia by expanding it. |
- Pages with broken file links
- Articles with too few wikilinks from August 2017
- Articles with invalid date parameter in template
- All articles with too few wikilinks
- Articles covered by WikiProject Wikify from August 2017
- All articles covered by WikiProject Wikify
- Genes on human chromosome
- All stub articles
- Human chromosome 6 gene stubs