Mechanical ventilation protocol: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{Mechanical ventilation}}
{{Mechanical ventilation}}
{{CMG}} {{AE}} {{VVS}}
{{CMG}} {{AE}} {{VVS}}
==Mechanical Ventilation Protocol==
 
== Overview ==
Candidacy for mechanical ventilation is based on specific criteria and clinical condition of the patient. [[Body weight]] of the patient and [[Human height|height]] also play important role in determining the optimal ventilator settings. Similar to initiation of mechanical ventilation there are specific criteria for weaning the patient off from the ventilator and doing a spontaneous breathing trial. 
 
==Protocol==
* Mechanical ventilation protocol:<ref name="pmid25909310">{{cite journal |vauthors=Loss SH, de Oliveira RP, Maccari JG, Savi A, Boniatti MM, Hetzel MP, Dallegrave DM, Balzano Pde C, Oliveira ES, Höher JA, Torelly AP, Teixeira C |title=The reality of patients requiring prolonged mechanical ventilation: a multicenter study |journal=Rev Bras Ter Intensiva |volume=27 |issue=1 |pages=26–35 |date= 2015 |pmid=25909310 |pmc=4396894 |doi=10.5935/0103-507X.20150006 |url=}}</ref><ref name="pmid23808249">{{cite journal |vauthors=Grebennikov VA, Kriakvina OA, Bolunova ES, Degtiareva MV |title=[Prognostic criteria of the premature infants weaning from mechanical ventilation during trigger ventilation] |language=Russian |journal=Anesteziol Reanimatol |volume= |issue=1 |pages=26–30 |date= 2013 |pmid=23808249 |doi= |url=}}</ref><ref name="pmid23542044">{{cite journal |vauthors=Valenzuela J, Araneda P, Cruces P |title=Weaning from mechanical ventilation in paediatrics. State of the art |journal=Arch. Bronconeumol. |volume=50 |issue=3 |pages=105–12 |date=March 2014 |pmid=23542044 |doi=10.1016/j.arbres.2013.02.003 |url=}}</ref><ref name="pmid25089275">{{cite journal |vauthors=Al Ashry HS, Modrykamien AM |title=Humidification during mechanical ventilation in the adult patient |journal=Biomed Res Int |volume=2014 |issue= |pages=715434 |date= 2014 |pmid=25089275 |pmc=4096064 |doi=10.1155/2014/715434 |url=}}</ref><ref name="pmid26998745">{{cite journal |vauthors=Wielenga JM, van den Hoogen A, van Zanten HA, Helder O, Bol B, Blackwood B |title=Protocolized versus non-protocolized weaning for reducing the duration of invasive mechanical ventilation in newborn infants |journal=Cochrane Database Syst Rev |volume=3 |issue= |pages=CD011106 |date=March 2016 |pmid=26998745 |doi=10.1002/14651858.CD011106.pub2 |url=}}</ref><ref name="pmid25528350">{{cite journal |vauthors=Toft P, Olsen HT, Jørgensen HK, Strøm T, Nibro HL, Oxlund J, Wian KA, Ytrebø LM, Kroken BA, Chew M |title=Non-sedation versus sedation with a daily wake-up trial in critically ill patients receiving mechanical ventilation (NONSEDA Trial): study protocol for a randomised controlled trial |journal=Trials |volume=15 |issue= |pages=499 |date=December 2014 |pmid=25528350 |pmc=4307177 |doi=10.1186/1745-6215-15-499 |url=}}</ref>
===Inclusion Criteria===
===Inclusion Criteria===
* PaO<sub>2</sub> <= 300 ( corrected for [[altitude]])
* [[PaO2|PaO<sub>2</sub>]] <= 300 ( corrected for [[altitude]])
* Bilateral (patchy, diffuse or homogenous) infiltrates consistent with [[pulmonary edema]]
* Bilateral (patchy, diffuse or homogenous) infiltrates consistent with [[pulmonary edema]]
* No clinical evidence of [[left atrial hypertension]]
* No clinical evidence of left atrial hypertension


===Ventilator Setup ===
===Ventilator Setup ===
Line 15: Line 20:
* Selecting the ventilator mode
* Selecting the ventilator mode
* Set ventilator settings to achieve initial V<sub>t</sub> = 8 ml/kg of predicted body weight
* Set ventilator settings to achieve initial V<sub>t</sub> = 8 ml/kg of predicted body weight
* Reduce VT by 1 ml/kg at intervals ≤ 2 hours until V<sub>T</sub> = 6ml/kg PBW.
* Reduce VT by 1 ml/kg at intervals ≤ 2 hours until V<sub>T</sub> = 6ml/kg.
* Set initial rate to approximate baseline minute ventilation (not > 35 breaths per minute).
* Set initial rate to approximate baseline minute ventilation (not > 35 [[Breath|breaths]] per minute).
* Adjust V<sub>T</sub> and [[respiratory rate]] to achieve pH and plateau pressure goals below.
* Adjust V<sub>T</sub> and [[respiratory rate]] to achieve pH and plateau pressure goals below.


====Oxygenation Goal====
====Oxygenation Goal====
* PaO2 55-80 mmHg or SpO2 88-95% is the goal.
* PaO2 55-80 mmHg or SpO2 88-95% is the goal.
* Use a minimum PEEP of 5 cm H2O.
* Use a minimum [[Positive end-expiratory pressure|PEEP]] of 5 cm H2O.
* Consider use of incremental FiO2/PEEP combinations to achieve goal.
* Consider use of incremental FiO2/PEEP combinations to achieve goal.


Line 56: Line 61:
* If pH is less than 7.30 ([[acidosis]])
* If pH is less than 7.30 ([[acidosis]])
a. Range of  7.15 - 7.30
a. Range of  7.15 - 7.30
: Increase respiratory rate until pH > 7.30 or PaCO<sub>2</sub>
: Increase [[respiratory rate]] until pH > 7.30  
: Maximum rate can be 35
: Maximum rate can be 35 breaths/min
b. Less than 7.15
b. Less than 7.15
: Increase respiratory rate to 35
: Increase respiratory rate to 35
: V<sub>T</sub> can be increased in 1 ml/kg until pH >7.15 (Pplat target of 30 may be exceeded)
: [[Tidal volume|V<sub>T</sub>]] can be increased in 1 ml/kg until pH >7.15 (Pplat target of 30 may be exceeded)
: Bicarbonate can be given
: Bicarbonate can be given
* If pH is more than 7.45 ([[alkalosis]])
* If pH is more than 7.45 ([[alkalosis]])
Line 66: Line 71:


==== I:E Ratio Goal ====
==== I:E Ratio Goal ====
Recommend that duration of inspiration be less than equal to duration of expiration.
Recommend that duration of [[inspiration]] be less than equal to duration of [[expiration]].


=== Weaning ===
=== Weaning ===
Line 73: Line 78:
* PEEP and FiO2 ≤ values of previous day.
* PEEP and FiO2 ≤ values of previous day.
* Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
* Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
* Systolic BP ≥ 90 mm Hg without [[vasopressor]] support.
* [[Systolic blood pressure|Systolic BP]] ≥ 90 mm Hg without [[vasopressor]] support.
* No [[neuromuscular blocking agents]] or blockade.
* No [[neuromuscular blocking agents]] or blockade.


Line 90: Line 95:
e. No respiratory distress (distress= 2 or more)
e. No respiratory distress (distress= 2 or more)
::HR > 120% of baseline
::HR > 120% of baseline
::Marked accessory muscle use
::Marked accessory [[muscle]] use
::Abdominal paradox
::[[Abdominal]] paradox
::Diaphoresis
::[[Diaphoresis]]
::Marked dyspnea
::Marked [[dyspnea]]


3. If tolerated for at least 30 minutes, consider extubation.
3. If tolerated for at least 30 minutes, consider extubation.
Line 107: Line 112:
[[Category:Prehospital care]]
[[Category:Prehospital care]]
[[Category:Pulmonology]]
[[Category:Pulmonology]]
[[Category:Needs content]]
[[Category:Needs overview]]

Latest revision as of 14:44, 4 April 2018

Mechanical ventilation Microchapters

Home

Patient Information

Overview

Historical Perspective

Types of Ventilators

Indications for Use

Ventilator variables

Choosing Amongst Ventilator Modes

Initial Ventilator Settings

Protocol

Complications

Modification of Settings

Connection to Ventilators

Terminology

Mechanical ventilation protocol On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Mechanical ventilation protocol

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Mechanical ventilation protocol

CDC on Mechanical ventilation protocol

Mechanical ventilation protocol in the news

Blogs on Mechanical ventilation protocol

Directions to Hospitals Treating Mechanical ventilation

Risk calculators and risk factors for Mechanical ventilation protocol

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Vishnu Vardhan Serla M.B.B.S. [2]

Overview

Candidacy for mechanical ventilation is based on specific criteria and clinical condition of the patient. Body weight of the patient and height also play important role in determining the optimal ventilator settings. Similar to initiation of mechanical ventilation there are specific criteria for weaning the patient off from the ventilator and doing a spontaneous breathing trial.

Protocol

Inclusion Criteria

  • PaO2 <= 300 ( corrected for altitude)
  • Bilateral (patchy, diffuse or homogenous) infiltrates consistent with pulmonary edema
  • No clinical evidence of left atrial hypertension

Ventilator Setup

  • Calculate predicted body weight. It is calculated using the formula
Males = 50 + 2.3[height(in inches)-60]
Females = 45.5 + 2.3[height(in inches)-60]
  • Selecting the ventilator mode
  • Set ventilator settings to achieve initial Vt = 8 ml/kg of predicted body weight
  • Reduce VT by 1 ml/kg at intervals ≤ 2 hours until VT = 6ml/kg.
  • Set initial rate to approximate baseline minute ventilation (not > 35 breaths per minute).
  • Adjust VT and respiratory rate to achieve pH and plateau pressure goals below.

Oxygenation Goal

  • PaO2 55-80 mmHg or SpO2 88-95% is the goal.
  • Use a minimum PEEP of 5 cm H2O.
  • Consider use of incremental FiO2/PEEP combinations to achieve goal.
Lower PEEP/Higher FiO2
FiO2 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.7 0.8 0.9 0.9 0.9 1.0
PEEP 5 5 8 8 10 10 10 12 14 14 14 16 18 18-24
Higher PEEP/Lower FiO2
FiO2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 - 0.8 0.8 0.9 1.0 1.0
PEEP 5 8 10 12 14 14 16 16 18 20 22 22 22 24

Plateau Pressure Goal

  • Plateau pressure goal(Pplat) is <= 30 cm H2O
  • Check Pplat every 4th hourly after change in PEEP ot VT
  • If Pplat > 30 cm of H2O
Decrease VT by 1ml/kg
  • If Pplat < 25 cm of H2O and VT < 6ml/kg
Increase VT by 1ml/kg unbtil Pplat > 25 cm H2O or VT = 6 ml/kg
  • If Pplat < 30 cm and breath stacking or dys-synchrony occurs
Increase VT in 1 ml/kg increments to 7 or 8 ml/kg, if Pplat remains <=30 cm of H2O

PH Goal

  • pH should be maintained at 7.30 - 7.45
  • If pH is less than 7.30 (acidosis)

a. Range of 7.15 - 7.30

Increase respiratory rate until pH > 7.30
Maximum rate can be 35 breaths/min

b. Less than 7.15

Increase respiratory rate to 35
VT can be increased in 1 ml/kg until pH >7.15 (Pplat target of 30 may be exceeded)
Bicarbonate can be given
Decrease the ventilation rate if possible

I:E Ratio Goal

Recommend that duration of inspiration be less than equal to duration of expiration.

Weaning

A spontaneous breathing trial has to be done daily when

  • FiO2 ≤ 0.40 and PEEP ≤ 8.
  • PEEP and FiO2 ≤ values of previous day.
  • Patient has acceptable spontaneous breathing efforts. (May decrease vent rate by 50% for 5 minutes to detect effort.)
  • Systolic BP ≥ 90 mm Hg without vasopressor support.
  • No neuromuscular blocking agents or blockade.

Spontaneous Breathing Trial

If all above criteria are met and patient has been in the observed for at least 12 hours, initiate a trial of upto 120 minutes of spontaneous breathing with FiO2 < 0.5 and PEEP < 5

1. Place on T-piece, trach collar, or CPAP ≤ 5 cm H2O with PS < 5

2. Assess for tolerance as below for up to two hours.

a. SpO2 ≥ 90: and/or PaO2 ≥ 60 mm Hg b. Spontaneous VT ≥ 4 ml/kg predicted body weight c. RR ≤ 35/min d. pH ≥ 7.3 e. No respiratory distress (distress= 2 or more)

HR > 120% of baseline
Marked accessory muscle use
Abdominal paradox
Diaphoresis
Marked dyspnea

3. If tolerated for at least 30 minutes, consider extubation.

4. If not tolerated resume pre-weaning settings.

References

  1. Loss SH, de Oliveira RP, Maccari JG, Savi A, Boniatti MM, Hetzel MP, Dallegrave DM, Balzano Pde C, Oliveira ES, Höher JA, Torelly AP, Teixeira C (2015). "The reality of patients requiring prolonged mechanical ventilation: a multicenter study". Rev Bras Ter Intensiva. 27 (1): 26–35. doi:10.5935/0103-507X.20150006. PMC 4396894. PMID 25909310.
  2. Grebennikov VA, Kriakvina OA, Bolunova ES, Degtiareva MV (2013). "[Prognostic criteria of the premature infants weaning from mechanical ventilation during trigger ventilation]". Anesteziol Reanimatol (in Russian) (1): 26–30. PMID 23808249.
  3. Valenzuela J, Araneda P, Cruces P (March 2014). "Weaning from mechanical ventilation in paediatrics. State of the art". Arch. Bronconeumol. 50 (3): 105–12. doi:10.1016/j.arbres.2013.02.003. PMID 23542044.
  4. Al Ashry HS, Modrykamien AM (2014). "Humidification during mechanical ventilation in the adult patient". Biomed Res Int. 2014: 715434. doi:10.1155/2014/715434. PMC 4096064. PMID 25089275.
  5. Wielenga JM, van den Hoogen A, van Zanten HA, Helder O, Bol B, Blackwood B (March 2016). "Protocolized versus non-protocolized weaning for reducing the duration of invasive mechanical ventilation in newborn infants". Cochrane Database Syst Rev. 3: CD011106. doi:10.1002/14651858.CD011106.pub2. PMID 26998745.
  6. Toft P, Olsen HT, Jørgensen HK, Strøm T, Nibro HL, Oxlund J, Wian KA, Ytrebø LM, Kroken BA, Chew M (December 2014). "Non-sedation versus sedation with a daily wake-up trial in critically ill patients receiving mechanical ventilation (NONSEDA Trial): study protocol for a randomised controlled trial". Trials. 15: 499. doi:10.1186/1745-6215-15-499. PMC 4307177. PMID 25528350.

Template:WH Template:WS