Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, F0, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the F6 subunit of the F0 complex, required for F1 and Fo interactions. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene.[3]
The F6 subunit is part of the peripheral stalk that links the F1 and FO complexes together, and which acts as a stator to prevent certain subunits from rotating with the central rotary element. The peripheral stalk differs in subunit composition between mitochondrial, chloroplast and bacterialF-ATPases. In mitochondria, the peripheral stalk is composed of one copy each of subunits OSCP (oligomycin sensitivity conferral protein), F6, B and D.[4] There is no homologue of subunit F6 in bacterial or chloroplast F-ATPase, whose peripheral stalks are composed of one copy of the delta subunit (homologous to OSCP), and two copies of subunit B in bacteria, or one copy each of subunits B and B' in chloroplasts and photosyntheticbacteria.
References
↑Higuti T, Tsurumi C, Kawamura Y, Tsujita H, Osaka F, Yoshihara Y, Tani I, Tanaka K, Ichihara A (Jul 1991). "Molecular cloning of cDNA for the import precursor of human coupling factor 6 of H(+)-ATP synthase in mitochondria". Biochemical and Biophysical Research Communications. 178 (2): 793–9. doi:10.1016/0006-291X(91)90178-A. PMID1830479.
↑Javed AA, Ogata K, Sanadi DR (Jan 1991). "Human mitochondrial ATP synthase: cloning cDNA for the nuclear-encoded precursor of coupling factor 6". Gene. 97 (2): 307–10. doi:10.1016/0378-1119(91)90068-M. PMID1825642.
↑Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D (Aug 2005). "Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit". Journal of Molecular Biology. 351 (4): 824–38. doi:10.1016/j.jmb.2005.06.012. PMID16045926.
Leyva JA, Bianchet MA, Amzel LM (2003). "Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review)". Molecular Membrane Biology. 20 (1): 27–33. doi:10.1080/0968768031000066532. PMID12745923.
Hochstrasser DF, Frutiger S, Paquet N, Bairoch A, Ravier F, Pasquali C, Sanchez JC, Tissot JD, Bjellqvist B, Vargas R (Dec 1992). "Human liver protein map: a reference database established by microsequencing and gel comparison". Electrophoresis. 13 (12): 992–1001. doi:10.1002/elps.11501301201. PMID1286669.
Yan WL, Lerner TJ, Haines JL, Gusella JF (Nov 1994). "Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3)". Genomics. 24 (2): 375–7. doi:10.1006/geno.1994.1631. PMID7698763.
Elston T, Wang H, Oster G (Jan 1998). "Energy transduction in ATP synthase". Nature. 391 (6666): 510–3. doi:10.1038/35185. PMID9461222.
Webster KA, Oliver NA, Wallace DC (Mar 1982). "Assignment of an oligomycin-resistance locus to human chromosome 10". Somatic Cell Genetics. 8 (2): 223–44. doi:10.1007/BF01538679. PMID9732751.
Wang H, Oster G (Nov 1998). "Energy transduction in the F1 motor of ATP synthase". Nature. 396 (6708): 279–82. doi:10.1038/24409. PMID9834036.