PCNT: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
Matt Pijoan (talk | contribs)
m 1 revision imported
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox gene}}
{{PBB_Controls
'''Pericentrin''' ('''kendrin'''), also known as '''PCNT''' and '''pericentrin-B''' ('''PCNTB'''), is a [[protein]] which in humans is encoded by the ''PCNT'' [[gene]] on chromosome 21.<ref name="entrez">{{cite web | title = Entrez Gene: PCNT pericentrin (kendrin)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5116| accessdate = }}</ref><ref name="pmid8812505">{{cite journal | vauthors = Chen H, Gos A, Morris MA, Antonarakis SE | title = Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter | journal = Genomics | volume = 35 | issue = 3 | pages = 620–4 | date = Aug 1996 | pmid = 8812505 | doi = 10.1006/geno.1996.0411 }}</ref><ref name="pmid10823944">{{cite journal | vauthors = Flory MR, Moser MJ, Monnat RJ, Davis TN | title = Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 97 | issue = 11 | pages = 5919–23 | date = May 2000 | pmid = 10823944 | pmc = 18534 | doi = 10.1073/pnas.97.11.5919 }}</ref><ref name="pmid11171385">{{cite journal | vauthors = Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R | title = Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1 | journal = Journal of Cell Science | volume = 114 | issue = Pt 4 | pages = 797–809 | date = Feb 2001 | pmid = 11171385 }}</ref> This protein [[subcellular localization|localizes]] to the [[centrosome]] and recruits proteins to the [[pericentriolar matrix]] (PCM) to ensure proper centrosome and [[mitotic spindle]] formation, and thus, uninterrupted [[cell cycle]] progression.<ref name="entrez" /><ref name="pmid20567258">{{cite journal | vauthors = Liu Q, Yu J, Zhuo X, Jiang Q, Zhang C | title = Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle | journal = Cell Research | volume = 20 | issue = 8 | pages = 948–62 | date = Aug 2010 | pmid = 20567258 | doi = 10.1038/cr.2010.89 }}</ref><ref name="pmid24466316">{{cite journal | vauthors = Kim S, Rhee K | title = Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis | journal = PLoS ONE | volume = 9 | issue = 1 | pages = e87016 | date = 2014 | pmid = 24466316 | doi = 10.1371/journal.pone.0087016 | pmc=3899370}}</ref><ref name="pmid21270239">{{cite journal | vauthors = Huang-Doran I, Bicknell LS, Finucane FM, Rocha N, Porter KM, Tung YC, Szekeres F, Krook A, Nolan JJ, O'Driscoll M, Bober M, O'Rahilly S, Jackson AP, Semple RK | title = Genetic defects in human pericentrin are associated with severe insulin resistance and diabetes | journal = Diabetes | volume = 60 | issue = 3 | pages = 925–35 | date = Mar 2011 | pmid = 21270239 | doi = 10.2337/db10-1334 | pmc=3046854}}</ref><ref name="pmid18955030">{{cite journal | vauthors = Shimizu S, Matsuzaki S, Hattori T, Kumamoto N, Miyoshi K, Katayama T, Tohyama M | title = DISC1-kendrin interaction is involved in centrosomal microtubule network formation | journal = Biochemical and Biophysical Research Communications | volume = 377 | issue = 4 | pages = 1051–6 | date = Dec 2008 | pmid = 18955030 | doi = 10.1016/j.bbrc.2008.10.100 }}</ref> This gene is implicated in many [[disease]]s and [[disorder (medicine)|disorder]]s, including [[congenital disorder]]s such as [[microcephalic osteodysplastic primordial dwarfism type II]] (MOPDII) and [[Seckel syndrome]].<ref name="pmid20567258"/><ref name="pmid24466316"/>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Structure ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = Pericentrin (kendrin)
| HGNCid = 16068
| Symbol = PCNT
| AltSymbols =; KEN; PCN; PCNT2; PCNTB; PCTN2
| OMIM = 605925
| ECnumber = 
| Homologene = 86942
| MGIid = 102722
| GeneAtlas_image1 = PBB_GE_PCNT_203660_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005516 |text = calmodulin binding}}
| Component = {{GNF_GO|id=GO:0005814 |text = centriole}}
| Process = {{GNF_GO|id=GO:0007051 |text = spindle organization and biogenesis}} {{GNF_GO|id=GO:0042384 |text = cilium biogenesis}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 5116
    | Hs_Ensembl = ENSG00000160299
    | Hs_RefseqProtein = NP_006022
    | Hs_RefseqmRNA = NM_006031
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 21
    | Hs_GenLoc_start = 46568483
    | Hs_GenLoc_end = 46690106
    | Hs_Uniprot = O95613
    | Mm_EntrezGene = 18541
    | Mm_Ensembl = ENSMUSG00000001151
    | Mm_RefseqmRNA = XM_622782
    | Mm_RefseqProtein = XP_622782
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 10
    | Mm_GenLoc_start = 75794980
    | Mm_GenLoc_end = 75886622
    | Mm_Uniprot = A0JBT0
  }}
}}
'''Pericentrin (kendrin)''', also known as '''PCNT''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: PCNT pericentrin (kendrin)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5116| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
PCNT is a 360 kDa protein which contains a series of [[coiled coil]] [[protein domain|domains]] and a highly conserved PCM targeting motif called the PACT domain near its [[C-terminus]].<ref name="entrez"/><ref name="pmid11171385"/><ref name="pmid20567258"/><ref name="pmid24466316"/><ref name="pmid21270239"/><ref>{{cite journal | vauthors = Gillingham AK, Munro S | title = The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin | journal = EMBO Reports | volume = 1 | issue = 6 | pages = 524–9 | date = Dec 2000 | pmid = 11263498 | pmc = 1083777 | doi = 10.1093/embo-reports/kvd105 }}</ref><ref name="pmid23979692">{{cite journal | vauthors = Salemi M, Barone C, Romano C, Salluzzo R, Caraci F, Cantarella RA, Salluzzo MG, Drago F, Romano C, Bosco P | title = Pericentrin expression in Down's syndrome | journal = Neurological Sciences | volume = 34 | issue = 11 | pages = 2023–5 | date = Nov 2013 | pmid = 23979692 | doi = 10.1007/s10072-013-1529-z }}</ref> The PACT domain is responsible for targeting the protein to the [[centrosome]]s and attaching it to the [[centriole]] walls during [[interphase]].<ref name="pmid20567258"/><ref name="pmid24466316"/> In addition, PCNT possesses five [[nuclear export sequence]]s which all contribute to its [[nuclear export]] into the [[cytoplasm]], as well as one [[nuclear localization signal]] composed of three clusters of [[basic (chemistry)|basic]] [[amino acid]]s, all of which contribute to the protein’s nuclear localization.<ref name="pmid20567258"/>
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene binds to calmodulin and is expressed in the centrosome. It is an integral component of the pericentriolar material (PCM). The protein contains a series of coiled-coil domains and a highly conserved PCM targeting motif called the PACT domain near its C-terminus. The protein interacts with the microtubule nucleation component gamma-tubulin and is likely important to normal functioning of the centrosomes, cytoskeleton, and cell-cycle progression.<ref name="entrez">{{cite web | title = Entrez Gene: PCNT pericentrin (kendrin)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5116| accessdate = }}</ref>
}}


==References==
PCNTB, a [[cDNA]] [[homolog]] of PCNT, was identified and described by Li et al. to share a sequence identity of 61% and similarity of 75%. However, compared to PCNT, PCNTB contains an additional coiled coil domain and unique 1000-[[residue (chemistry)|residue]] C-terminus, suggesting that these two may be separate proteins in a new [[CPM (gene)|CPM]] [[superfamily (molecular biology)|superfamily]].<ref name="pmid11171385"/> As with PCNT, the C-terminus of PCNTB contains functional domains for centriole localization and [[CEP215]] binding. The [[N-terminus]] may also contain a functional domain that associates with the C-terminus domain, and this association is required for engagement with the centriole.<ref name="pmid22722493">{{cite journal | vauthors = Lee K, Rhee K | title = Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis | journal = Cell Cycle | volume = 11 | issue = 13 | pages = 2476–85 | date = Jul 2012 | pmid = 22722493 | doi = 10.4161/cc.20878 }}</ref>
{{reflist|2}}
 
==Further reading==
== Function ==
 
The protein encoded by this gene is expressed in the [[cytoplasm]] and centrosome throughout the cell cycle, and to a lesser extent, in the [[Cell nucleus|nucleus]]. It is an integral component of the PCM, which is a centrosome scaffold that anchors [[microtubule]] nucleating complexes and other centrosomal proteins.<ref name="entrez" /><ref name="pmid11171385"/><ref name="pmid20567258"/><ref name="pmid21270239"/><ref name="pmid22722493"/><ref name="pmid24106199">{{cite journal | vauthors = Unal S, Alanay Y, Cetin M, Boduroglu K, Utine E, Cormier-Daire V, Huber C, Ozsurekci Y, Kilic E, Simsek Kiper OP, Gumruk F | title = Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis | journal = Pediatric Blood & Cancer | volume = 61 | issue = 2 | pages = 302–5 | date = Feb 2014 | pmid = 24106199 | doi = 10.1002/pbc.24783 }}</ref> In one model, PCNT [[Multiprotein complex|complex]]es with CEP215 and is [[phosphorylated]] by [[PLK1]], leading to PCM component recruitment and organization, centrosome maturation, and spindle formation.<ref name="pmid24466316"/><ref name="pmid22722493"/> The protein controls the nucleation of microtubules by interacting with the microtubule nucleation component [[Tubulin#.CE.B3-tubulin|γ-tubulin]], thus anchoring the γ-tubulin ring complex to the centrosome, which is essential for bipolar spindle formation and [[chromosome]] assembly in early [[mitosis]].<ref name="entrez" /><ref name="pmid20567258"/><ref name="pmid24466316"/><ref name="pmid21270239"/><ref name="pmid18955030"/> This ensures normal function and organization of the centrosomes, [[mitotic spindles]], and [[cytoskeleton]], and by extension, regulation over cell cycle progression and [[Cell cycle checkpoint|checkpoint]]s.<ref name="entrez" /><ref name="pmid20567258"/><ref name="pmid24466316"/><ref name="pmid21270239"/><ref name="pmid24106199"/> Downregulation of PCNT disrupted mitotic checkpoints and arrested the cell at the [[G2/M checkpoint]], leading to cell death.<ref name="pmid23979692"/><ref name="pmid24106199"/> Moreover, microtubule functioning was also disrupted, resulting in mono- or multipolar spindles, [[metaphase|chromosomal misalignment]], premature [[sister chromatid]] separation, and [[aneuploidy]].<ref name="pmid24466316"/><ref name="pmid24106199"/>
 
PCNT is highly abundant in [[skeletal muscle]], indicating that it may be involved in muscle [[insulin]] action.<ref name="pmid21270239"/> PCNT is also involved in [[neuron]]al development through its interaction with DISC1 to regulate microtubule organization.<ref name="pmid18955030"/>
 
== Clinical significance ==
 
Mutations in the ''PCNT'' gene have been linked to [[Down syndrome]] (DS); two types of [[primordial dwarfism]], MOPDII and Seckel syndrome; [[intrauterine growth retardation]]; [[cardiomyopathy]]; early onset [[type 2 diabetes]]; [[chronic myeloid leukemia]] (CML); [[bipolar affective disorder]]; and other [[congenital disorder]]s .<ref name="pmid20567258"/><ref name="pmid24466316"/><ref name="pmid18955030"/><ref name="pmid23979692"/><ref name="pmid22722493"/><ref name="pmid24106199"/><ref name="pmid24106199"/> In particular, the short stature and small brain size characteristic of MOPDII and Seckel syndrome have been attributed to centrosome dysfunction and cell growth disruption as a result of PCNT malfunction.<ref name="pmid20567258"/> Additionally, [[premature aging]], cerebral involution, [[inflammation|inflammatory]] and [[immune]] responses are linked to DS associated with ''PCNT'' mutations, while severe [[insulin resistance]], [[diabetes]], and [[dyslipidemia]] are featured in MOPDII associated with ''PCNT'' mutations.<ref name="pmid21270239"/><ref name="pmid23979692"/>
 
== Interactions ==
PCNT has been shown to [[Protein-protein interaction|interact]] with:
*[[calmodulin]],<ref name="entrez" />
*[[separase]],<ref name="pmid22722493"/>
*[[CEP215]],<ref name="pmid24466316"/>
*[[CHD3]]/[[CHD4|4]],<ref name="pmid20567258"/>
*[[protein kinase A]],<ref name="pmid20567258"/>
*[[protein kinase C]],<ref name="pmid20567258"/>
*[[DISC1]],<ref name="pmid20567258"/>
*[[gamma tubulin|γ-tubulin complex proteins]],<ref name="pmid20567258"/> and
*[[PCM1]].<ref name="pmid11171385"/><ref name="pmid11171385"/><ref name="pmid20567258"/>
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O, Nagase T | title = Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones | journal = DNA Research | volume = 9 | issue = 3 | pages = 99–106 | date = Jun 2002 | pmid = 12168954 | doi = 10.1093/dnares/9.3.99 }}
| citations =
* {{cite journal | vauthors = Chen H, Gos A, Morris MA, Antonarakis SE | title = Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter | journal = Genomics | volume = 35 | issue = 3 | pages = 620–4 | date = Aug 1996 | pmid = 8812505 | doi = 10.1006/geno.1996.0411 }}
*{{cite journal | author=Nakajima D, Okazaki N, Yamakawa H, ''et al.'' |title=Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones. |journal=DNA Res. |volume=9 |issue= 3 |pages= 99-106 |year= 2003 |pmid= 12168954 |doi= }}
* {{cite journal | vauthors = Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O | title = Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro | journal = DNA Research | volume = 4 | issue = 5 | pages = 307–13 | date = Oct 1997 | pmid = 9455477 | doi = 10.1093/dnares/4.5.307 }}
*{{cite journal | author=Chen H, Gos A, Morris MA, Antonarakis SE |title=Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter. |journal=Genomics |volume=35 |issue= 3 |pages= 620-4 |year= 1996 |pmid= 8812505 |doi= 10.1006/geno.1996.0411 }}
* {{cite journal | vauthors = Diviani D, Langeberg LK, Doxsey SJ, Scott JD | title = Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain | journal = Current Biology | volume = 10 | issue = 7 | pages = 417–20 | date = Apr 2000 | pmid = 10753751 | doi = 10.1016/S0960-9822(00)00422-X }}
*{{cite journal | author=Ishikawa K, Nagase T, Nakajima D, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=4 |issue= 5 |pages= 307-13 |year= 1998 |pmid= 9455477 |doi= }}
* {{cite journal | vauthors = Flory MR, Moser MJ, Monnat RJ, Davis TN | title = Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 97 | issue = 11 | pages = 5919–23 | date = May 2000 | pmid = 10823944 | pmc = 18534 | doi = 10.1073/pnas.97.11.5919 }}
*{{cite journal | author=Diviani D, Langeberg LK, Doxsey SJ, Scott JD |title=Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. |journal=Curr. Biol. |volume=10 |issue= 7 |pages= 417-20 |year= 2000 |pmid= 10753751 |doi= }}
* {{cite journal | vauthors = Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML | title = The DNA sequence of human chromosome 21 | journal = Nature | volume = 405 | issue = 6784 | pages = 311–9 | date = May 2000 | pmid = 10830953 | doi = 10.1038/35012518 }}
*{{cite journal | author=Flory MR, Moser MJ, Monnat RJ, Davis TN |title=Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 11 |pages= 5919-23 |year= 2000 |pmid= 10823944 |doi= }}
* {{cite journal | vauthors = Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R | title = Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1 | journal = Journal of Cell Science | volume = 114 | issue = Pt 4 | pages = 797–809 | date = Feb 2001 | pmid = 11171385 | doi =  }}
*{{cite journal | author=Hattori M, Fujiyama A, Taylor TD, ''et al.'' |title=The DNA sequence of human chromosome 21. |journal=Nature |volume=405 |issue= 6784 |pages= 311-9 |year= 2000 |pmid= 10830953 |doi= 10.1038/35012518 }}
* {{cite journal | vauthors = Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y | title = Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex | journal = Molecular Biology of the Cell | volume = 13 | issue = 9 | pages = 3235–45 | date = Sep 2002 | pmid = 12221128 | pmc = 124155 | doi = 10.1091/mbc.E02-02-0112 }}
*{{cite journal | author=Li Q, Hansen D, Killilea A, ''et al.'' |title=Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. |journal=J. Cell. Sci. |volume=114 |issue= Pt 4 |pages= 797-809 |year= 2001 |pmid= 11171385 |doi=  }}
* {{cite journal | vauthors = Flory MR, Davis TN | title = The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene | journal = Genomics | volume = 82 | issue = 3 | pages = 401–5 | date = Sep 2003 | pmid = 12906865 | doi = 10.1016/S0888-7543(03)00119-8 }}
*{{cite journal | author=Takahashi M, Yamagiwa A, Nishimura T, ''et al.'' |title=Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. |journal=Mol. Biol. Cell |volume=13 |issue= 9 |pages= 3235-45 |year= 2003 |pmid= 12221128 |doi= 10.1091/mbc.E02-02-0112 }}
* {{cite journal | vauthors = Chang F, Re F, Sebastian S, Sazer S, Luban J | title = HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes | journal = Molecular Biology of the Cell | volume = 15 | issue = 4 | pages = 1793–801 | date = Apr 2004 | pmid = 14767062 | pmc = 379276 | doi = 10.1091/mbc.E03-09-0691 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* {{cite journal | vauthors = Miyoshi K, Asanuma M, Miyazaki I, Diaz-Corrales FJ, Katayama T, Tohyama M, Ogawa N | title = DISC1 localizes to the centrosome by binding to kendrin | journal = Biochemical and Biophysical Research Communications | volume = 317 | issue = 4 | pages = 1195–9 | date = May 2004 | pmid = 15094396 | doi = 10.1016/j.bbrc.2004.03.163 }}
*{{cite journal  | author=Flory MR, Davis TN |title=The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. |journal=Genomics |volume=82 |issue= 3 |pages= 401-5 |year= 2004 |pmid= 12906865 |doi= }}
* {{cite journal | vauthors = Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S | title = Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly | journal = The Journal of Cell Biology | volume = 166 | issue = 5 | pages = 637–43 | date = Aug 2004 | pmid = 15337773 | pmc = 2172416 | doi = 10.1083/jcb.200405023 }}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
* {{cite journal | vauthors = Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K, Sugano S | title = Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions | journal = Genome Research | volume = 14 | issue = 9 | pages = 1711–8 | date = Sep 2004 | pmid = 15342556 | pmc = 515316 | doi = 10.1101/gr.2435604 }}
*{{cite journal | author=Chang F, Re F, Sebastian S, ''et al.'' |title=HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes. |journal=Mol. Biol. Cell |volume=15 |issue= 4 |pages= 1793-801 |year= 2004 |pmid= 14767062 |doi= 10.1091/mbc.E03-09-0691 }}
* {{cite journal | vauthors = Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY | title = Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis | journal = The Journal of Biological Chemistry | volume = 280 | issue = 51 | pages = 42237–41 | date = Dec 2005 | pmid = 16251193 | doi = 10.1074/jbc.M510139200 }}
*{{cite journal | author=Miyoshi K, Asanuma M, Miyazaki I, ''et al.'' |title=DISC1 localizes to the centrosome by binding to kendrin. |journal=Biochem. Biophys. Res. Commun. |volume=317 |issue= 4 |pages= 1195-9 |year= 2004 |pmid= 15094396 |doi= 10.1016/j.bbrc.2004.03.163 }}
* {{cite journal | vauthors = Nousiainen M, Silljé HH, Sauer G, Nigg EA, Körner R | title = Phosphoproteome analysis of the human mitotic spindle | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 14 | pages = 5391–6 | date = Apr 2006 | pmid = 16565220 | pmc = 1459365 | doi = 10.1073/pnas.0507066103 }}
*{{cite journal | author=Jurczyk A, Gromley A, Redick S, ''et al.'' |title=Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. |journal=J. Cell Biol. |volume=166 |issue= 5 |pages= 637-43 |year= 2004 |pmid= 15337773 |doi= 10.1083/jcb.200405023 }}
*{{cite journal | author=Suzuki Y, Yamashita R, Shirota M, ''et al.'' |title=Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions. |journal=Genome Res. |volume=14 |issue= 9 |pages= 1711-8 |year= 2004 |pmid= 15342556 |doi= 10.1101/gr.2435604 }}
*{{cite journal | author=Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY |title=Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. |journal=J. Biol. Chem. |volume=280 |issue= 51 |pages= 42237-41 |year= 2006 |pmid= 16251193 |doi= 10.1074/jbc.M510139200 }}
*{{cite journal | author=Nousiainen M, Silljé HH, Sauer G, ''et al.'' |title=Phosphoproteome analysis of the human mitotic spindle. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 14 |pages= 5391-6 |year= 2006 |pmid= 16565220 |doi= 10.1073/pnas.0507066103 }}
}}
{{refend}}
{{refend}}


{{gene-21-stub}}
{{Centrosome}}
{{WikiDoc Sources}}

Latest revision as of 09:13, 9 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Pericentrin (kendrin), also known as PCNT and pericentrin-B (PCNTB), is a protein which in humans is encoded by the PCNT gene on chromosome 21.[1][2][3][4] This protein localizes to the centrosome and recruits proteins to the pericentriolar matrix (PCM) to ensure proper centrosome and mitotic spindle formation, and thus, uninterrupted cell cycle progression.[1][5][6][7][8] This gene is implicated in many diseases and disorders, including congenital disorders such as microcephalic osteodysplastic primordial dwarfism type II (MOPDII) and Seckel syndrome.[5][6]

Structure

PCNT is a 360 kDa protein which contains a series of coiled coil domains and a highly conserved PCM targeting motif called the PACT domain near its C-terminus.[1][4][5][6][7][9][10] The PACT domain is responsible for targeting the protein to the centrosomes and attaching it to the centriole walls during interphase.[5][6] In addition, PCNT possesses five nuclear export sequences which all contribute to its nuclear export into the cytoplasm, as well as one nuclear localization signal composed of three clusters of basic amino acids, all of which contribute to the protein’s nuclear localization.[5]

PCNTB, a cDNA homolog of PCNT, was identified and described by Li et al. to share a sequence identity of 61% and similarity of 75%. However, compared to PCNT, PCNTB contains an additional coiled coil domain and unique 1000-residue C-terminus, suggesting that these two may be separate proteins in a new CPM superfamily.[4] As with PCNT, the C-terminus of PCNTB contains functional domains for centriole localization and CEP215 binding. The N-terminus may also contain a functional domain that associates with the C-terminus domain, and this association is required for engagement with the centriole.[11]

Function

The protein encoded by this gene is expressed in the cytoplasm and centrosome throughout the cell cycle, and to a lesser extent, in the nucleus. It is an integral component of the PCM, which is a centrosome scaffold that anchors microtubule nucleating complexes and other centrosomal proteins.[1][4][5][7][11][12] In one model, PCNT complexes with CEP215 and is phosphorylated by PLK1, leading to PCM component recruitment and organization, centrosome maturation, and spindle formation.[6][11] The protein controls the nucleation of microtubules by interacting with the microtubule nucleation component γ-tubulin, thus anchoring the γ-tubulin ring complex to the centrosome, which is essential for bipolar spindle formation and chromosome assembly in early mitosis.[1][5][6][7][8] This ensures normal function and organization of the centrosomes, mitotic spindles, and cytoskeleton, and by extension, regulation over cell cycle progression and checkpoints.[1][5][6][7][12] Downregulation of PCNT disrupted mitotic checkpoints and arrested the cell at the G2/M checkpoint, leading to cell death.[10][12] Moreover, microtubule functioning was also disrupted, resulting in mono- or multipolar spindles, chromosomal misalignment, premature sister chromatid separation, and aneuploidy.[6][12]

PCNT is highly abundant in skeletal muscle, indicating that it may be involved in muscle insulin action.[7] PCNT is also involved in neuronal development through its interaction with DISC1 to regulate microtubule organization.[8]

Clinical significance

Mutations in the PCNT gene have been linked to Down syndrome (DS); two types of primordial dwarfism, MOPDII and Seckel syndrome; intrauterine growth retardation; cardiomyopathy; early onset type 2 diabetes; chronic myeloid leukemia (CML); bipolar affective disorder; and other congenital disorders .[5][6][8][10][11][12][12] In particular, the short stature and small brain size characteristic of MOPDII and Seckel syndrome have been attributed to centrosome dysfunction and cell growth disruption as a result of PCNT malfunction.[5] Additionally, premature aging, cerebral involution, inflammatory and immune responses are linked to DS associated with PCNT mutations, while severe insulin resistance, diabetes, and dyslipidemia are featured in MOPDII associated with PCNT mutations.[7][10]

Interactions

PCNT has been shown to interact with:

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 "Entrez Gene: PCNT pericentrin (kendrin)".
  2. Chen H, Gos A, Morris MA, Antonarakis SE (Aug 1996). "Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter". Genomics. 35 (3): 620–4. doi:10.1006/geno.1996.0411. PMID 8812505.
  3. Flory MR, Moser MJ, Monnat RJ, Davis TN (May 2000). "Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin". Proceedings of the National Academy of Sciences of the United States of America. 97 (11): 5919–23. doi:10.1073/pnas.97.11.5919. PMC 18534. PMID 10823944.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (Feb 2001). "Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1". Journal of Cell Science. 114 (Pt 4): 797–809. PMID 11171385.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 Liu Q, Yu J, Zhuo X, Jiang Q, Zhang C (Aug 2010). "Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle". Cell Research. 20 (8): 948–62. doi:10.1038/cr.2010.89. PMID 20567258.
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 Kim S, Rhee K (2014). "Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis". PLoS ONE. 9 (1): e87016. doi:10.1371/journal.pone.0087016. PMC 3899370. PMID 24466316.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Huang-Doran I, Bicknell LS, Finucane FM, Rocha N, Porter KM, Tung YC, Szekeres F, Krook A, Nolan JJ, O'Driscoll M, Bober M, O'Rahilly S, Jackson AP, Semple RK (Mar 2011). "Genetic defects in human pericentrin are associated with severe insulin resistance and diabetes". Diabetes. 60 (3): 925–35. doi:10.2337/db10-1334. PMC 3046854. PMID 21270239.
  8. 8.0 8.1 8.2 8.3 Shimizu S, Matsuzaki S, Hattori T, Kumamoto N, Miyoshi K, Katayama T, Tohyama M (Dec 2008). "DISC1-kendrin interaction is involved in centrosomal microtubule network formation". Biochemical and Biophysical Research Communications. 377 (4): 1051–6. doi:10.1016/j.bbrc.2008.10.100. PMID 18955030.
  9. Gillingham AK, Munro S (Dec 2000). "The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin". EMBO Reports. 1 (6): 524–9. doi:10.1093/embo-reports/kvd105. PMC 1083777. PMID 11263498.
  10. 10.0 10.1 10.2 10.3 Salemi M, Barone C, Romano C, Salluzzo R, Caraci F, Cantarella RA, Salluzzo MG, Drago F, Romano C, Bosco P (Nov 2013). "Pericentrin expression in Down's syndrome". Neurological Sciences. 34 (11): 2023–5. doi:10.1007/s10072-013-1529-z. PMID 23979692.
  11. 11.0 11.1 11.2 11.3 11.4 Lee K, Rhee K (Jul 2012). "Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis". Cell Cycle. 11 (13): 2476–85. doi:10.4161/cc.20878. PMID 22722493.
  12. 12.0 12.1 12.2 12.3 12.4 12.5 Unal S, Alanay Y, Cetin M, Boduroglu K, Utine E, Cormier-Daire V, Huber C, Ozsurekci Y, Kilic E, Simsek Kiper OP, Gumruk F (Feb 2014). "Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis". Pediatric Blood & Cancer. 61 (2): 302–5. doi:10.1002/pbc.24783. PMID 24106199.

Further reading