SF3A1: Difference between revisions
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)) |
Matt Pijoan (talk | contribs) m (1 revision imported) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Splicing factor 3 subunit 1''' is a [[protein]] that in humans is encoded by the ''SF3A1'' [[gene]].<ref name="pmid7489498">{{cite journal |author1=Kramer A |author2=Mulhauser F |author3=Wersig C |author4=Groning K |author5=Bilbe G | title = Mammalian splicing factor SF3a120 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of Saccharomyces cerevisiae | journal = RNA | volume = 1 | issue = 3 | pages = 260–72 |date=January 1996 | pmid = 7489498 | pmc = 1369079 | doi = }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SF3A1 splicing factor 3a, subunit 1, 120kDa| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10291| accessdate = }}</ref> | ||
}} | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = This gene encodes subunit 1 of the splicing factor 3a protein complex. The splicing factor 3a heterotrimer includes subunits 1, 2 and 3 and is necessary for the in vitro conversion of 15S U2 snRNP into an active 17S particle that performs pre-mRNA splicing. Subunit 1 belongs to the SURP protein family; named for the SURP (also called SWAP or Suppressor-of-White-APricot) motifs that are thought to mediate RNA binding. Subunit 1 has tandemly repeated SURP motifs in its amino-terminal half while its carboxy-terminal half contains a proline-rich region and a ubiquitin-like domain. Binding studies with truncated subunit 1 derivatives demonstrated that the two SURP motifs are necessary for binding to subunit 3 while contacts with subunit 2 may occur through sequences carboxy-terminal to the SURP motifs. Alternative splicing results in multiple transcript variants encoding different isoforms.<ref name="entrez" | | summary_text = This gene encodes subunit 1 of the splicing factor 3a protein complex. The splicing factor 3a heterotrimer includes subunits 1, 2 and 3 and is necessary for the in vitro conversion of 15S U2 snRNP into an active 17S particle that performs pre-mRNA splicing. Subunit 1 belongs to the SURP protein family; named for the SURP (also called SWAP or Suppressor-of-White-APricot) motifs that are thought to mediate RNA binding. Subunit 1 has tandemly repeated SURP motifs in its amino-terminal half while its carboxy-terminal half contains a proline-rich region and a ubiquitin-like domain. Binding studies with truncated subunit 1 derivatives demonstrated that the two SURP motifs are necessary for binding to subunit 3 while contacts with subunit 2 may occur through sequences carboxy-terminal to the SURP motifs. Alternative splicing results in multiple transcript variants encoding different isoforms.<ref name="entrez"/> | ||
}} | }} | ||
==Interactions== | |||
SF3A1 has been shown to [[Protein-protein interaction|interact]] with [[SF3A3]]<ref name=pmid11533230>{{cite journal |last=Nesic |first=D |authorlink= |author2=Krämer A |date=October 2001 |title=Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation |journal=Mol. Cell. Biol. |volume=21 |issue=19 |pages=6406–17 |publisher= |location = United States| issn = 0270-7306| pmid = 11533230 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = |doi=10.1128/MCB.21.19.6406-6417.2001 |pmc=99788 }}</ref><ref name=pmid8022796>{{cite journal |last=Chiara |first=M D |authorlink= |author2=Champion-Arnaud P |author3=Buvoli M |author4=Nadal-Ginard B |author5=Reed R |date=July 1994 |title=Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114 |journal=[[PNAS|Proc. Natl. Acad. Sci. U.S.A.]] |volume=91 |issue=14 |pages=6403–7 |publisher= |location = UNITED STATES| issn = 0027-8424| pmid = 8022796 | bibcode =1994PNAS...91.6403C | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = |doi=10.1073/pnas.91.14.6403 |pmc=44210 }}</ref> and [[CDC5L]].<ref name=pmid11101529>{{cite journal |last=Ajuh |first=P |authorlink= |author2=Kuster B |author3=Panov K |author4=Zomerdijk J C |author5=Mann M |author6=Lamond A I |date=Dec 2000 |title=Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry |journal=EMBO J. |volume=19 |issue=23 |pages=6569–81 |publisher= |location = ENGLAND| issn = 0261-4189| pmid = 11101529 |doi = 10.1093/emboj/19.23.6569 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = |pmc=305846 }}</ref> | |||
==References== | ==References== | ||
{{ | {{Reflist}} | ||
==Further reading== | ==Further reading== | ||
{{ | {{Refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | *{{cite journal |vauthors=Chiara MD, Champion-Arnaud P, Buvoli M, etal |title=Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 14 |pages= 6403–7 |year= 1994 |pmid= 8022796 |doi=10.1073/pnas.91.14.6403 | pmc=44210 |bibcode=1994PNAS...91.6403C }} | ||
*{{cite journal | | *{{cite journal |author1=Rain JC |author2=Tartakoff AM |author3=Krämer A |author4=Legrain P |title=Essential domains of the PRP21 splicing factor are implicated in the binding to PRP9 and PRP11 proteins and are conserved through evolution. |journal=RNA |volume=2 |issue= 6 |pages= 535–50 |year= 1996 |pmid= 8718683 |doi= | pmc=1369393 }} | ||
*{{cite journal | *{{cite journal |vauthors=Neubauer G, King A, Rappsilber J, etal |title=Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. |journal=Nat. Genet. |volume=20 |issue= 1 |pages= 46–50 |year= 1998 |pmid= 9731529 |doi= 10.1038/1700 }} | ||
*{{cite journal | | *{{cite journal |title=Toward a complete human genome sequence. |journal=Genome Res. |volume=8 |issue= 11 |pages= 1097–108 |year= 1999 |pmid= 9847074 |doi= 10.1101/gr.8.11.1097}} | ||
*{{cite journal | | *{{cite journal |author1=Krämer A |author2=Grüter P |author3=Gröning K |author4=Kastner B |title=Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. |journal=J. Cell Biol. |volume=145 |issue= 7 |pages= 1355–68 |year= 1999 |pmid= 10385517 |doi=10.1083/jcb.145.7.1355 | pmc=2133165 }} | ||
*{{cite journal | *{{cite journal |vauthors=Dunham I, Shimizu N, Roe BA, etal |title=The DNA sequence of human chromosome 22. |journal=Nature |volume=402 |issue= 6761 |pages= 489–95 |year= 1999 |pmid= 10591208 |doi= 10.1038/990031 |bibcode=1999Natur.402..489D }} | ||
*{{cite journal | | *{{cite journal |author1=Das R |author2=Zhou Z |author3=Reed R |title=Functional association of U2 snRNP with the ATP-independent spliceosomal complex E. |journal=Mol. Cell |volume=5 |issue= 5 |pages= 779–87 |year= 2000 |pmid= 10882114 |doi=10.1016/S1097-2765(00)80318-4 }} | ||
*{{cite journal | | *{{cite journal |author1=Gunther M |author2=Laithier M |author3=Brison O |title=A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening. |journal=Mol. Cell. Biochem. |volume=210 |issue= 1–2 |pages= 131–42 |year= 2000 |pmid= 10976766 |doi=10.1023/A:1007177623283 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ajuh P, Kuster B, Panov K, etal |title=Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. |journal=EMBO J. |volume=19 |issue= 23 |pages= 6569–81 |year= 2001 |pmid= 11101529 |doi= 10.1093/emboj/19.23.6569 | pmc=305846 }} | ||
*{{cite journal | *{{cite journal |vauthors=Suzuki Y, Tsunoda T, Sese J, etal |title=Identification and characterization of the potential promoter regions of 1031 kinds of human genes. |journal=Genome Res. |volume=11 |issue= 5 |pages= 677–84 |year= 2001 |pmid= 11337467 |doi= 10.1101/gr.gr-1640r| pmc=311086 }} | ||
*{{cite journal | *{{cite journal |vauthors=Will CL, Schneider C, MacMillan AM, etal |title=A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. |journal=EMBO J. |volume=20 |issue= 16 |pages= 4536–46 |year= 2001 |pmid= 11500380 |doi= 10.1093/emboj/20.16.4536 | pmc=125580 }} | ||
*{{cite journal | | *{{cite journal |author1=Nesic D |author2=Krämer A |title=Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation. |journal=Mol. Cell. Biol. |volume=21 |issue= 19 |pages= 6406–17 |year= 2001 |pmid= 11533230 |doi=10.1128/MCB.21.19.6406-6417.2001 | pmc=99788 }} | ||
*{{cite journal | *{{cite journal |vauthors=Jurica MS, Licklider LJ, Gygi SR, etal |title=Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. |journal=RNA |volume=8 |issue= 4 |pages= 426–39 |year= 2002 |pmid= 11991638 |doi=10.1017/S1355838202021088 | pmc=1370266 }} | ||
*{{cite journal | *{{cite journal |vauthors=Will CL, Urlaub H, Achsel T, etal |title=Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. |journal=EMBO J. |volume=21 |issue= 18 |pages= 4978–88 |year= 2002 |pmid= 12234937 |doi=10.1093/emboj/cdf480 | pmc=126279 }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M }} | ||
*{{cite journal | *{{cite journal |vauthors=Beausoleil SA, Jedrychowski M, Schwartz D, etal |title=Large-scale characterization of HeLa cell nuclear phosphoproteins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 |bibcode=2004PNAS..10112130B }} | ||
*{{cite journal | | *{{cite journal |author1=Nesic D |author2=Tanackovic G |author3=Krämer A |title=A role for Cajal bodies in the final steps of U2 snRNP biogenesis. |journal=J. Cell Sci. |volume=117 |issue= Pt 19 |pages= 4423–33 |year= 2005 |pmid= 15316075 |doi= 10.1242/jcs.01308 |url=https://archive-ouverte.unige.ch/unige:17542/ATTACHMENT01 }} | ||
*{{cite journal | | *{{cite journal |author1=Lin KT |author2=Lu RM |author3=Tarn WY |title=The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. |journal=Mol. Cell. Biol. |volume=24 |issue= 20 |pages= 9176–85 |year= 2004 |pmid= 15456888 |doi= 10.1128/MCB.24.20.9176-9185.2004 | pmc=517884 }} | ||
*{{cite journal | *{{cite journal |vauthors=Collins JE, Wright CL, Edwards CA, etal |title=A genome annotation-driven approach to cloning the human ORFeome. |journal=Genome Biol. |volume=5 |issue= 10 |pages= R84 |year= 2005 |pmid= 15461802 |doi= 10.1186/gb-2004-5-10-r84 | pmc=545604 }} | ||
*{{ | }} | ||
{{Refend}} | |||
==External links== | |||
* {{UCSC genome browser|SF3A1}} | |||
* {{UCSC gene details|SF3A1}} | |||
{{PDB Gallery|geneid=10291}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | }} | ||
{{ | |||
{{Gene-22-stub}} |
Latest revision as of 12:23, 9 January 2019
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Splicing factor 3 subunit 1 is a protein that in humans is encoded by the SF3A1 gene.[1][2]
This gene encodes subunit 1 of the splicing factor 3a protein complex. The splicing factor 3a heterotrimer includes subunits 1, 2 and 3 and is necessary for the in vitro conversion of 15S U2 snRNP into an active 17S particle that performs pre-mRNA splicing. Subunit 1 belongs to the SURP protein family; named for the SURP (also called SWAP or Suppressor-of-White-APricot) motifs that are thought to mediate RNA binding. Subunit 1 has tandemly repeated SURP motifs in its amino-terminal half while its carboxy-terminal half contains a proline-rich region and a ubiquitin-like domain. Binding studies with truncated subunit 1 derivatives demonstrated that the two SURP motifs are necessary for binding to subunit 3 while contacts with subunit 2 may occur through sequences carboxy-terminal to the SURP motifs. Alternative splicing results in multiple transcript variants encoding different isoforms.[2]
Interactions
SF3A1 has been shown to interact with SF3A3[3][4] and CDC5L.[5]
References
- ↑ Kramer A; Mulhauser F; Wersig C; Groning K; Bilbe G (January 1996). "Mammalian splicing factor SF3a120 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of Saccharomyces cerevisiae". RNA. 1 (3): 260–72. PMC 1369079. PMID 7489498.
- ↑ 2.0 2.1 "Entrez Gene: SF3A1 splicing factor 3a, subunit 1, 120kDa".
- ↑ Nesic, D; Krämer A (October 2001). "Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation". Mol. Cell. Biol. United States. 21 (19): 6406–17. doi:10.1128/MCB.21.19.6406-6417.2001. ISSN 0270-7306. PMC 99788. PMID 11533230.
- ↑ Chiara, M D; Champion-Arnaud P; Buvoli M; Nadal-Ginard B; Reed R (July 1994). "Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114". Proc. Natl. Acad. Sci. U.S.A. UNITED STATES. 91 (14): 6403–7. Bibcode:1994PNAS...91.6403C. doi:10.1073/pnas.91.14.6403. ISSN 0027-8424. PMC 44210. PMID 8022796.
- ↑ Ajuh, P; Kuster B; Panov K; Zomerdijk J C; Mann M; Lamond A I (Dec 2000). "Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry". EMBO J. ENGLAND. 19 (23): 6569–81. doi:10.1093/emboj/19.23.6569. ISSN 0261-4189. PMC 305846. PMID 11101529.
Further reading
- Chiara MD, Champion-Arnaud P, Buvoli M, et al. (1994). "Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114". Proc. Natl. Acad. Sci. U.S.A. 91 (14): 6403–7. Bibcode:1994PNAS...91.6403C. doi:10.1073/pnas.91.14.6403. PMC 44210. PMID 8022796.
- Rain JC; Tartakoff AM; Krämer A; Legrain P (1996). "Essential domains of the PRP21 splicing factor are implicated in the binding to PRP9 and PRP11 proteins and are conserved through evolution". RNA. 2 (6): 535–50. PMC 1369393. PMID 8718683.
- Neubauer G, King A, Rappsilber J, et al. (1998). "Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex". Nat. Genet. 20 (1): 46–50. doi:10.1038/1700. PMID 9731529.
- "Toward a complete human genome sequence". Genome Res. 8 (11): 1097–108. 1999. doi:10.1101/gr.8.11.1097. PMID 9847074.
- Krämer A; Grüter P; Gröning K; Kastner B (1999). "Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP". J. Cell Biol. 145 (7): 1355–68. doi:10.1083/jcb.145.7.1355. PMC 2133165. PMID 10385517.
- Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22". Nature. 402 (6761): 489–95. Bibcode:1999Natur.402..489D. doi:10.1038/990031. PMID 10591208.
- Das R; Zhou Z; Reed R (2000). "Functional association of U2 snRNP with the ATP-independent spliceosomal complex E.". Mol. Cell. 5 (5): 779–87. doi:10.1016/S1097-2765(00)80318-4. PMID 10882114.
- Gunther M; Laithier M; Brison O (2000). "A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening". Mol. Cell. Biochem. 210 (1–2): 131–42. doi:10.1023/A:1007177623283. PMID 10976766.
- Ajuh P, Kuster B, Panov K, et al. (2001). "Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry". EMBO J. 19 (23): 6569–81. doi:10.1093/emboj/19.23.6569. PMC 305846. PMID 11101529.
- Suzuki Y, Tsunoda T, Sese J, et al. (2001). "Identification and characterization of the potential promoter regions of 1031 kinds of human genes". Genome Res. 11 (5): 677–84. doi:10.1101/gr.gr-1640r. PMC 311086. PMID 11337467.
- Will CL, Schneider C, MacMillan AM, et al. (2001). "A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site". EMBO J. 20 (16): 4536–46. doi:10.1093/emboj/20.16.4536. PMC 125580. PMID 11500380.
- Nesic D; Krämer A (2001). "Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation". Mol. Cell. Biol. 21 (19): 6406–17. doi:10.1128/MCB.21.19.6406-6417.2001. PMC 99788. PMID 11533230.
- Jurica MS, Licklider LJ, Gygi SR, et al. (2002). "Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis". RNA. 8 (4): 426–39. doi:10.1017/S1355838202021088. PMC 1370266. PMID 11991638.
- Will CL, Urlaub H, Achsel T, et al. (2002). "Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein". EMBO J. 21 (18): 4978–88. doi:10.1093/emboj/cdf480. PMC 126279. PMID 12234937.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. Bibcode:2004PNAS..10112130B. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
- Nesic D; Tanackovic G; Krämer A (2005). "A role for Cajal bodies in the final steps of U2 snRNP biogenesis". J. Cell Sci. 117 (Pt 19): 4423–33. doi:10.1242/jcs.01308. PMID 15316075.
- Lin KT; Lu RM; Tarn WY (2004). "The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo". Mol. Cell. Biol. 24 (20): 9176–85. doi:10.1128/MCB.24.20.9176-9185.2004. PMC 517884. PMID 15456888.
- Collins JE, Wright CL, Edwards CA, et al. (2005). "A genome annotation-driven approach to cloning the human ORFeome". Genome Biol. 5 (10): R84. doi:10.1186/gb-2004-5-10-r84. PMC 545604. PMID 15461802.
External links
- SF3A1 human gene location in the UCSC Genome Browser.
- SF3A1 human gene details in the UCSC Genome Browser.
This article on a gene on human chromosome 22 is a stub. You can help Wikipedia by expanding it. |