ELP3: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
Matt Pijoan (talk | contribs)
m 1 revision imported
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Elongator complex protein 3''', also named KAT9, is a [[protein]] that in humans is encoded by the ''ELP3'' [[gene]].<ref name="pmid11714725">{{cite journal | vauthors = Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ | title = Purification and characterization of the human elongator complex | journal = J Biol Chem | volume = 277 | issue = 4 | pages = 3047–52 |date=Jan 2002 | pmid = 11714725 | pmc =  | doi = 10.1074/jbc.M110445200 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: ELP3 elongation protein 3 homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55140| accessdate = }}</ref> ELP3 is the catalytic [[histone acetyltransferase]] subunit of the [[RNA polymerase]] II elongator complex, which is a component of the RNA polymerase II (Pol II) [[holoenzyme]] and is involved in transcriptional elongation. ELP3 supports the migration and branching of [[projection neuron]]s through [[acetylation]] of alpha-tubulin in the developing [[cerebral cortex]].<ref>{{cite journal | vauthors = Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L | title = Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin | journal = Cell | volume = 136 | issue = 3 | pages = 551–64 | date = Feb 2009 | pmid = 19185337 | doi = 10.1016/j.cell.2008.11.043 | access-date = }}</ref> In mammals, ELP3 is important for paternal [[DNA demethylation]] after [[Fertilisation|fertilization]].<ref>{{cite journal | vauthors = Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y | title = A role for the elongator complex in zygotic paternal genome demethylation | journal = Nature | volume = 463 | issue = 7280 | pages = 554–8 | date = Jan 2010 | pmid = 20054296 | doi = 10.1038/nature08732 | pmc=2834414}}</ref> ELP3 is potentially involved in cellular redox [[homeostasis]] by mediating the acetylation of [[glucose-6-phosphate dehydrogenase]].<ref>{{cite journal | vauthors = Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D | title = Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress | journal = The EMBO Journal | volume = 33 | issue = 12 | pages = 1304–20 | date = Jun 2014 | pmid = 24769394 | doi = 10.1002/embj.201387224 | pmc=4194121}}</ref> Besides, ELP3 may play a role in [[chromatin remodeling]] and is involved in acetylation of [[Histone H3|histones H3]] and probably [[Histone H4|H4]].
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = Elongation protein 3 homolog (S. cerevisiae)
| HGNCid = 20696
| Symbol = ELP3
| AltSymbols =; FLJ10422
| OMIM =
| ECnumber =
| Homologene = 7105
| MGIid = 1921445
  | GeneAtlas_image1 = PBB_GE_ELP3_221094_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003824 |text = catalytic activity}} {{GNF_GO|id=GO:0005506 |text = iron ion binding}} {{GNF_GO|id=GO:0008080 |text = N-acetyltransferase activity}} {{GNF_GO|id=GO:0016740 |text = transferase activity}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}} {{GNF_GO|id=GO:0046933 |text = hydrogen ion transporting ATP synthase activity, rotational mechanism}} {{GNF_GO|id=GO:0046961 |text = hydrogen ion transporting ATPase activity, rotational mechanism}} {{GNF_GO|id=GO:0051536 |text = iron-sulfur cluster binding}}
| Component = {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0016469 |text = proton-transporting two-sector ATPase complex}}
| Process = {{GNF_GO|id=GO:0015986 |text = ATP synthesis coupled proton transport}}  
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 55140
    | Hs_Ensembl = ENSG00000134014
    | Hs_RefseqProtein = NP_060561
    | Hs_RefseqmRNA = NM_018091
    | Hs_GenLoc_db =
    | Hs_GenLoc_chr = 8
    | Hs_GenLoc_start = 28006328
    | Hs_GenLoc_end = 28104592
    | Hs_Uniprot =
    | Mm_EntrezGene = 74195
    | Mm_Ensembl = ENSMUSG00000022031
    | Mm_RefseqmRNA = NM_028811
    | Mm_RefseqProtein = NP_083087
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 14
    | Mm_GenLoc_start = 64484563
    | Mm_GenLoc_end = 64547185
    | Mm_Uniprot = 
  }}
}}
'''Elongation protein 3 homolog (S. cerevisiae)''', also known as '''ELP3''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ELP3 elongation protein 3 homolog (S. cerevisiae)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55140| accessdate = }}</ref>
 
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
Line 55: Line 8:


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Rengo F, Brevetti G, Piscione F, ''et al.'' |title=[Behavior of some metabolic parameters during post-ischemic and post-contraction vasodilation in normal subjects] |journal=Bollettino della Società italiana di cardiologia |volume=20 |issue= 12 |pages= 1801-6 |year= 1977 |pmid= 10936 |doi=  }}
*{{cite journal  | vauthors=Rengo F, Brevetti G, Piscione F |title=[Behavior of some metabolic parameters during post-ischemic and post-contraction vasodilation in normal subjects] |journal=Bollettino della Società italiana di cardiologia |volume=20 |issue= 12 |pages= 1801–6 |year= 1977 |pmid= 10936 |doi=  |display-authors=etal}}
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal  | author=Ninomiya Y, Okada M, Kotomura N, ''et al.'' |title=Genomic organization and isoforms of the mouse ELP gene. |journal=J. Biochem. |volume=118 |issue= 2 |pages= 380-9 |year= 1996 |pmid= 8543574 |doi=  }}
*{{cite journal  | vauthors=Ninomiya Y, Okada M, Kotomura N |title=Genomic organization and isoforms of the mouse ELP gene. |journal=J. Biochem. |volume=118 |issue= 2 |pages= 380–9 |year= 1996 |pmid= 8543574 |doi=  10.1093/oxfordjournals.jbchem.a124918|display-authors=etal}}
*{{cite journal  | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal  | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}}
*{{cite journal  | author=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788-95 |year= 2001 |pmid= 11076863 |doi=  }}
*{{cite journal  | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000  | pmc=310948 }}
*{{cite journal  | author=Wiemann S, Weil B, Wellenreuther R, ''et al.'' |title=Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. |journal=Genome Res. |volume=11 |issue= 3 |pages= 422-35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.154701 }}
*{{cite journal  | vauthors=Wiemann S, Weil B, Wellenreuther R |title=Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. |journal=Genome Res. |volume=11 |issue= 3 |pages= 422–35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.GR1547R  | pmc=311072 |display-authors=etal}}
*{{cite journal  | author=Simpson JC, Wellenreuther R, Poustka A, ''et al.'' |title=Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. |journal=EMBO Rep. |volume=1 |issue= 3 |pages= 287-92 |year= 2001 |pmid= 11256614 |doi= 10.1093/embo-reports/kvd058 }}
*{{cite journal  | vauthors=Simpson JC, Wellenreuther R, Poustka A |title=Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. |journal=EMBO Rep. |volume=1 |issue= 3 |pages= 287–92 |year= 2001 |pmid= 11256614 |doi= 10.1093/embo-reports/kvd058  | pmc=1083732 |display-authors=etal}}
*{{cite journal | author=Hawkes NA, Otero G, Winkler GS, ''et al.'' |title=Purification and characterization of the human elongator complex. |journal=J. Biol. Chem. |volume=277 |issue= 4 |pages= 3047-52 |year= 2002 |pmid= 11714725 |doi= 10.1074/jbc.M110445200 }}
*{{cite journal  | vauthors=Kim JH, Lane WS, Reinberg D |title=Human Elongator facilitates RNA polymerase II transcription through chromatin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 3 |pages= 1241–6 |year= 2002 |pmid= 11818576 |doi= 10.1073/pnas.251672198 | pmc=122174 }}
*{{cite journal  | author=Kim JH, Lane WS, Reinberg D |title=Human Elongator facilitates RNA polymerase II transcription through chromatin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 3 |pages= 1241-6 |year= 2002 |pmid= 11818576 |doi= 10.1073/pnas.251672198 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | vauthors=Bouwmeester T, Bauch A, Ruffner H |title=A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. |journal=Nat. Cell Biol. |volume=6 |issue= 2 |pages= 97–105 |year= 2004 |pmid= 14743216 |doi= 10.1038/ncb1086 |display-authors=etal}}
*{{cite journal  | author=Bouwmeester T, Bauch A, Ruffner H, ''et al.'' |title=A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. |journal=Nat. Cell Biol. |volume=6 |issue= 2 |pages= 97-105 |year= 2004 |pmid= 14743216 |doi= 10.1038/ncb1086 }}
*{{cite journal  | vauthors=Wiemann S, Arlt D, Huber W |title=From ORFeome to biology: a functional genomics pipeline. |journal=Genome Res. |volume=14 |issue= 10B |pages= 2136–44 |year= 2004 |pmid= 15489336 |doi= 10.1101/gr.2576704 | pmc=528930 |display-authors=etal}}
*{{cite journal  | author=Wiemann S, Arlt D, Huber W, ''et al.'' |title=From ORFeome to biology: a functional genomics pipeline. |journal=Genome Res. |volume=14 |issue= 10B |pages= 2136-44 |year= 2004 |pmid= 15489336 |doi= 10.1101/gr.2576704 }}
*{{cite journal  | vauthors=Kouskouti A, Talianidis I |title=Histone modifications defining active genes persist after transcriptional and mitotic inactivation. |journal=EMBO J. |volume=24 |issue= 2 |pages= 347–57 |year= 2005 |pmid= 15616580 |doi= 10.1038/sj.emboj.7600516 | pmc=545808 }}
*{{cite journal  | author=Kouskouti A, Talianidis I |title=Histone modifications defining active genes persist after transcriptional and mitotic inactivation. |journal=EMBO J. |volume=24 |issue= 2 |pages= 347-57 |year= 2005 |pmid= 15616580 |doi= 10.1038/sj.emboj.7600516 }}
*{{cite journal  | vauthors=Barrios-Rodiles M, Brown KR, Ozdamar B |title=High-throughput mapping of a dynamic signaling network in mammalian cells. |journal=Science |volume=307 |issue= 5715 |pages= 1621–5 |year= 2005 |pmid= 15761153 |doi= 10.1126/science.1105776 |display-authors=etal}}
*{{cite journal  | author=Barrios-Rodiles M, Brown KR, Ozdamar B, ''et al.'' |title=High-throughput mapping of a dynamic signaling network in mammalian cells. |journal=Science |volume=307 |issue= 5715 |pages= 1621-5 |year= 2005 |pmid= 15761153 |doi= 10.1126/science.1105776 }}
*{{cite journal  | vauthors=Mehrle A, Rosenfelder H, Schupp I |title=The LIFEdb database in 2006. |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415–8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 | pmc=1347501 |display-authors=etal}}
*{{cite journal  | author=Mehrle A, Rosenfelder H, Schupp I, ''et al.'' |title=The LIFEdb database in 2006. |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415-8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 }}
*{{cite journal  | vauthors=Han Q, Hou X, Su D |title=hELP3 subunit of the Elongator complex regulates the transcription of HSP70 gene in human cells. |journal=Acta Biochim. Biophys. Sin. (Shanghai) |volume=39 |issue= 6 |pages= 453–61 |year= 2007 |pmid= 17558451 |doi=10.1111/j.1745-7270.2007.00293.x |display-authors=etal}}
*{{cite journal  | author=Han Q, Hou X, Su D, ''et al.'' |title=hELP3 subunit of the Elongator complex regulates the transcription of HSP70 gene in human cells. |journal=Acta Biochim. Biophys. Sin. (Shanghai) |volume=39 |issue= 6 |pages= 453-61 |year= 2007 |pmid= 17558451 |doi=  }}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
 
{{gene-8-stub}}

Latest revision as of 08:47, 10 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Elongator complex protein 3, also named KAT9, is a protein that in humans is encoded by the ELP3 gene.[1][2] ELP3 is the catalytic histone acetyltransferase subunit of the RNA polymerase II elongator complex, which is a component of the RNA polymerase II (Pol II) holoenzyme and is involved in transcriptional elongation. ELP3 supports the migration and branching of projection neurons through acetylation of alpha-tubulin in the developing cerebral cortex.[3] In mammals, ELP3 is important for paternal DNA demethylation after fertilization.[4] ELP3 is potentially involved in cellular redox homeostasis by mediating the acetylation of glucose-6-phosphate dehydrogenase.[5] Besides, ELP3 may play a role in chromatin remodeling and is involved in acetylation of histones H3 and probably H4.


References

  1. Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ (Jan 2002). "Purification and characterization of the human elongator complex". J Biol Chem. 277 (4): 3047–52. doi:10.1074/jbc.M110445200. PMID 11714725.
  2. "Entrez Gene: ELP3 elongation protein 3 homolog (S. cerevisiae)".
  3. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (Feb 2009). "Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin". Cell. 136 (3): 551–64. doi:10.1016/j.cell.2008.11.043. PMID 19185337.
  4. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (Jan 2010). "A role for the elongator complex in zygotic paternal genome demethylation". Nature. 463 (7280): 554–8. doi:10.1038/nature08732. PMC 2834414. PMID 20054296.
  5. Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D (Jun 2014). "Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress". The EMBO Journal. 33 (12): 1304–20. doi:10.1002/embj.201387224. PMC 4194121. PMID 24769394.

Further reading