ECHS1: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
imported>Neodop added Category:Mitochondrial proteins using HotCat |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
'''Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial''', also known as '''ECHS1''', is a [[human]] [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1892| accessdate = }}</ref> | |||
}} | |||
'''Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial''', also known as '''ECHS1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = | | summary_text = The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1892| accessdate = }}</ref> | ||
}} | }} | ||
==Structure== | |||
The ECHS1 gene is approximately 11 kb in length, and is composed of eight [[exons]], with exons I and VIII containing the 5'- and 3'-untranslated regions, respectively. There are two major transcription start sites, located 62 and 63 bp upstream of the translation codon, were mapped by primer extension analysis. The 5'-flanking region of the ECHS1 gene is GC-rich and contains several copies of the SP1 binding motive but no typical TATA or CAAT boxes are apparent. Alu repeat elements have been identified within the region -1052/-770 relative to the cap site and in [[intron]] 7.<ref>{{Cite journal | |||
| pmid = 9073515 | |||
| year = 1997 | |||
| author1 = Janssen | |||
| first1 = U | |||
| title = Human mitochondrial enoyl-CoA hydratase gene (ECHS1): Structural organization and assignment to chromosome 10q26.2-q26.3 | |||
| journal = Genomics | |||
| volume = 40 | |||
| issue = 3 | |||
| pages = 470–5 | |||
| last2 = Davis | |||
| first2 = E. M. | |||
| last3 = Le Beau | |||
| first3 = M. M. | |||
| last4 = Stoffel | |||
| first4 = W | |||
| doi = 10.1006/geno.1996.4597 | |||
}}</ref> The precursor [[polypeptide]] contains 290 [[amino acid]] residues, with an N-terminal presequence of 29 residues, a 5'-untranslated sequence of 21 bp and a 3'-untranslated sequence of 391 bp.<ref name= "Kanazawa">{{Cite journal | |||
| pmid = 8012501 | |||
| year = 1993 | |||
| author1 = Kanazawa | |||
| first1 = M | |||
| title = Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase | |||
| journal = Enzyme & protein | |||
| volume = 47 | |||
| issue = 1 | |||
| pages = 9–13 | |||
| last2 = Ohtake | |||
| first2 = A | |||
| last3 = Abe | |||
| first3 = H | |||
| last4 = Yamamoto | |||
| first4 = S | |||
| last5 = Satoh | |||
| first5 = Y | |||
| last6 = Takayanagi | |||
| first6 = M | |||
| last7 = Niimi | |||
| first7 = H | |||
| last8 = Mori | |||
| first8 = M | |||
| last9 = Hashimoto | |||
| first9 = T | |||
}}</ref> | |||
==Function== | |||
Enoyl-CoA hydratase (ECH) catalyzes the second step in [[beta-oxidation]] pathway of fatty acid metabolism. The enzyme is involved in the formation of a β-hydroxyacyl-CoA [[thioester]]. The two catalytic glutamic acid residues are believed to act in concert to activate a water molecule, while Gly-141 is proposed to be involved in substrate activation. There are two potent [[Enzyme inhibitor|inhibitors]] of ECHS, which irreversibly inactivate the enzyme via covalent adduct formation.<ref>{{Cite journal | |||
| pmid = 12467702 | |||
| year = 2003 | |||
| author1 = Agnihotri | |||
| first1 = G | |||
| title = Enoyl-CoA hydratase. Reaction, mechanism, and inhibition | |||
| journal = Bioorganic & Medicinal Chemistry | |||
| volume = 11 | |||
| issue = 1 | |||
| pages = 9–20 | |||
| last2 = Liu | |||
| first2 = H. W. | |||
| doi=10.1016/s0968-0896(02)00333-4 | |||
}}</ref> | |||
==Clinical significance== | |||
Enoyl-CoA hydratase short chain has been confirmed to interact with [[STAT3]], such that ECHS1 specifically represses STAT3 activity by inhibiting STAT3 phosphorylation.<ref>{{Cite journal | |||
| pmid = 23416296 | |||
| year = 2013 | |||
| author1 = Chang | |||
| first1 = Y | |||
| title = ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling | |||
| journal = FEBS Letters | |||
| volume = 587 | |||
| issue = 6 | |||
| pages = 607–13 | |||
| last2 = Wang | |||
| first2 = S. X. | |||
| last3 = Wang | |||
| first3 = Y. B. | |||
| last4 = Zhou | |||
| first4 = J | |||
| last5 = Li | |||
| first5 = W. H. | |||
| last6 = Wang | |||
| first6 = N | |||
| last7 = Fang | |||
| first7 = D. F. | |||
| last8 = Li | |||
| first8 = H. Y. | |||
| last9 = Li | |||
| first9 = A. L. | |||
| last10 = Zhang | |||
| first10 = X. M. | |||
| last11 = Zhang | |||
| first11 = W. N. | |||
| doi = 10.1016/j.febslet.2013.02.005 | |||
}}</ref> STAT3 can act as both an oncogene and a tumor suppressor. ECHS1 itself has shown to occur in many cancers, particularly in [[hypatocellular carcinoma]] (HCC) development;<ref>{{Cite journal | |||
| pmid = 23879543 | |||
| year = 2013 | |||
| author1 = Zhu | |||
| first1 = X. S. | |||
| title = Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma cell proliferation via suppression of Akt activity | |||
| journal = Critical reviews in eukaryotic gene expression | |||
| volume = 23 | |||
| issue = 3 | |||
| pages = 275–82 | |||
| last2 = Dai | |||
| first2 = Y. C. | |||
| last3 = Chen | |||
| first3 = Z. X. | |||
| last4 = Xie | |||
| first4 = J. P. | |||
| last5 = Zeng | |||
| first5 = W | |||
| last6 = Lin | |||
| first6 = Y. Y. | |||
| last7 = Tan | |||
| first7 = Q. H. | |||
| doi=10.1615/critreveukaryotgeneexpr.2013007531 | |||
}}</ref> both exogenous and endogenous forms of ECHS1 bind to HBs and induce apoptosis as a result. This means that ECHS1 may be used in the future as a therapy for patients with HBV-related [[hepatitis]] or HCC.<ref>{{Cite journal | |||
| pmid = 23178449 | |||
| year = 2013 | |||
| author1 = Xiao | |||
| first1 = C. X. | |||
| title = ECHS1 acts as a novel HBs ''Ag''-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells | |||
| journal = Cancer Letters | |||
| volume = 330 | |||
| issue = 1 | |||
| pages = 67–73 | |||
| last2 = Yang | |||
| first2 = X. N. | |||
| last3 = Huang | |||
| first3 = Q. W. | |||
| last4 = Zhang | |||
| first4 = Y. Q. | |||
| last5 = Lin | |||
| first5 = B. Y. | |||
| last6 = Liu | |||
| first6 = J. J. | |||
| last7 = Liu | |||
| first7 = Y. P. | |||
| last8 = Jazag | |||
| first8 = A | |||
| last9 = Guleng | |||
| first9 = B | |||
| last10 = Ren | |||
| first10 = J. L. | |||
| doi = 10.1016/j.canlet.2012.11.030 | |||
}}</ref> | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Hochstrasser DF, Frutiger S, Paquet N |title=Human liver protein map: a reference database established by microsequencing and gel comparison. |journal=Electrophoresis |volume=13 |issue= 12 |pages= 992–1001 |year= 1993 |pmid= 1286669 |doi=10.1002/elps.11501301201 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Dawson SJ, White LA |title=Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin. |journal=J. Infect. |volume=24 |issue= 3 |pages= 317–20 |year= 1992 |pmid= 1602151 |doi=10.1016/S0163-4453(05)80037-4 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Li J, Norwood DL, Mao LF, Schulz H |title=Mitochondrial metabolism of valproic acid. |journal=Biochemistry |volume=30 |issue= 2 |pages= 388–94 |year= 1991 |pmid= 1988037 |doi=10.1021/bi00216a012 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Jackson S, Schaefer J, Middleton B, Turnbull DM |title=Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase. |journal=Biochem. Biophys. Res. Commun. |volume=214 |issue= 1 |pages= 247–53 |year= 1995 |pmid= 7669045 |doi=10.1006/bbrc.1995.2281 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Kanazawa M, Ohtake A, Abe H |title=Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase. |journal=Enzyme Protein |volume=47 |issue= 1 |pages= 9–13 |year= 1994 |pmid= 8012501 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Janssen U, Davis EM, Le Beau MM, Stoffel W |title=Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. |journal=Genomics |volume=40 |issue= 3 |pages= 470–5 |year= 1997 |pmid= 9073515 |doi= 10.1006/geno.1996.4597 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Hubbard MJ, McHugh NJ |title=Human ERp29: isolation, primary structural characterisation and two-dimensional gel mapping. |journal=Electrophoresis |volume=21 |issue= 17 |pages= 3785–96 |year= 2001 |pmid= 11271497 |doi= 10.1002/1522-2683(200011)21:17<3785::AID-ELPS3785>3.0.CO;2-2 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Jiang LQ, Wen SJ, Wang HY, Chen LY |title=Screening the proteins that interact with calpain in a human heart cDNA library using a yeast two-hybrid system. |journal=Hypertens. Res. |volume=25 |issue= 4 |pages= 647–52 |year= 2003 |pmid= 12358155 |doi=10.1291/hypres.25.647 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Deloukas P, Earthrowl ME, Grafham DV |title=The DNA sequence and comparative analysis of human chromosome 10. |journal=Nature |volume=429 |issue= 6990 |pages= 375–81 |year= 2004 |pmid= 15164054 |doi= 10.1038/nature02462 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Bruneel A, Labas V, Mailloux A |title=Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. |journal=Proteomics |volume=5 |issue= 15 |pages= 3876–84 |year= 2006 |pmid= 16130169 |doi= 10.1002/pmic.200401239 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ewing RM, Chu P, Elisma F |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Takahashi M, Watari E, Shinya E |title=Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. |journal=Antiviral Res. |volume=75 |issue= 2 |pages= 152–8 |year= 2007 |pmid= 17395278 |doi= 10.1016/j.antiviral.2007.02.002 |display-authors=etal}} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=1892}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
[[Category:Mitochondrial proteins]] | |||
Latest revision as of 16:08, 18 October 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial, also known as ECHS1, is a human gene.[1]
The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.[1]
Structure
The ECHS1 gene is approximately 11 kb in length, and is composed of eight exons, with exons I and VIII containing the 5'- and 3'-untranslated regions, respectively. There are two major transcription start sites, located 62 and 63 bp upstream of the translation codon, were mapped by primer extension analysis. The 5'-flanking region of the ECHS1 gene is GC-rich and contains several copies of the SP1 binding motive but no typical TATA or CAAT boxes are apparent. Alu repeat elements have been identified within the region -1052/-770 relative to the cap site and in intron 7.[2] The precursor polypeptide contains 290 amino acid residues, with an N-terminal presequence of 29 residues, a 5'-untranslated sequence of 21 bp and a 3'-untranslated sequence of 391 bp.[3]
Function
Enoyl-CoA hydratase (ECH) catalyzes the second step in beta-oxidation pathway of fatty acid metabolism. The enzyme is involved in the formation of a β-hydroxyacyl-CoA thioester. The two catalytic glutamic acid residues are believed to act in concert to activate a water molecule, while Gly-141 is proposed to be involved in substrate activation. There are two potent inhibitors of ECHS, which irreversibly inactivate the enzyme via covalent adduct formation.[4]
Clinical significance
Enoyl-CoA hydratase short chain has been confirmed to interact with STAT3, such that ECHS1 specifically represses STAT3 activity by inhibiting STAT3 phosphorylation.[5] STAT3 can act as both an oncogene and a tumor suppressor. ECHS1 itself has shown to occur in many cancers, particularly in hypatocellular carcinoma (HCC) development;[6] both exogenous and endogenous forms of ECHS1 bind to HBs and induce apoptosis as a result. This means that ECHS1 may be used in the future as a therapy for patients with HBV-related hepatitis or HCC.[7]
References
- ↑ 1.0 1.1 "Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial".
- ↑ Janssen, U; Davis, E. M.; Le Beau, M. M.; Stoffel, W (1997). "Human mitochondrial enoyl-CoA hydratase gene (ECHS1): Structural organization and assignment to chromosome 10q26.2-q26.3". Genomics. 40 (3): 470–5. doi:10.1006/geno.1996.4597. PMID 9073515.
- ↑ Kanazawa, M; Ohtake, A; Abe, H; Yamamoto, S; Satoh, Y; Takayanagi, M; Niimi, H; Mori, M; Hashimoto, T (1993). "Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase". Enzyme & protein. 47 (1): 9–13. PMID 8012501.
- ↑ Agnihotri, G; Liu, H. W. (2003). "Enoyl-CoA hydratase. Reaction, mechanism, and inhibition". Bioorganic & Medicinal Chemistry. 11 (1): 9–20. doi:10.1016/s0968-0896(02)00333-4. PMID 12467702.
- ↑ Chang, Y; Wang, S. X.; Wang, Y. B.; Zhou, J; Li, W. H.; Wang, N; Fang, D. F.; Li, H. Y.; Li, A. L.; Zhang, X. M.; Zhang, W. N. (2013). "ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling". FEBS Letters. 587 (6): 607–13. doi:10.1016/j.febslet.2013.02.005. PMID 23416296.
- ↑ Zhu, X. S.; Dai, Y. C.; Chen, Z. X.; Xie, J. P.; Zeng, W; Lin, Y. Y.; Tan, Q. H. (2013). "Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma cell proliferation via suppression of Akt activity". Critical reviews in eukaryotic gene expression. 23 (3): 275–82. doi:10.1615/critreveukaryotgeneexpr.2013007531. PMID 23879543.
- ↑ Xiao, C. X.; Yang, X. N.; Huang, Q. W.; Zhang, Y. Q.; Lin, B. Y.; Liu, J. J.; Liu, Y. P.; Jazag, A; Guleng, B; Ren, J. L. (2013). "ECHS1 acts as a novel HBs Ag-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells". Cancer Letters. 330 (1): 67–73. doi:10.1016/j.canlet.2012.11.030. PMID 23178449.
Further reading
- Hochstrasser DF, Frutiger S, Paquet N, et al. (1993). "Human liver protein map: a reference database established by microsequencing and gel comparison". Electrophoresis. 13 (12): 992–1001. doi:10.1002/elps.11501301201. PMID 1286669.
- Dawson SJ, White LA (1992). "Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin". J. Infect. 24 (3): 317–20. doi:10.1016/S0163-4453(05)80037-4. PMID 1602151.
- Li J, Norwood DL, Mao LF, Schulz H (1991). "Mitochondrial metabolism of valproic acid". Biochemistry. 30 (2): 388–94. doi:10.1021/bi00216a012. PMID 1988037.
- Jackson S, Schaefer J, Middleton B, Turnbull DM (1995). "Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase". Biochem. Biophys. Res. Commun. 214 (1): 247–53. doi:10.1006/bbrc.1995.2281. PMID 7669045.
- Kanazawa M, Ohtake A, Abe H, et al. (1994). "Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase". Enzyme Protein. 47 (1): 9–13. PMID 8012501.
- Janssen U, Davis EM, Le Beau MM, Stoffel W (1997). "Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3". Genomics. 40 (3): 470–5. doi:10.1006/geno.1996.4597. PMID 9073515.
- Hubbard MJ, McHugh NJ (2001). "Human ERp29: isolation, primary structural characterisation and two-dimensional gel mapping". Electrophoresis. 21 (17): 3785–96. doi:10.1002/1522-2683(200011)21:17<3785::AID-ELPS3785>3.0.CO;2-2. PMID 11271497.
- Jiang LQ, Wen SJ, Wang HY, Chen LY (2003). "Screening the proteins that interact with calpain in a human heart cDNA library using a yeast two-hybrid system". Hypertens. Res. 25 (4): 647–52. doi:10.1291/hypres.25.647. PMID 12358155.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Deloukas P, Earthrowl ME, Grafham DV, et al. (2004). "The DNA sequence and comparative analysis of human chromosome 10". Nature. 429 (6990): 375–81. doi:10.1038/nature02462. PMID 15164054.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Bruneel A, Labas V, Mailloux A, et al. (2006). "Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis". Proteomics. 5 (15): 3876–84. doi:10.1002/pmic.200401239. PMID 16130169.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
- Takahashi M, Watari E, Shinya E, et al. (2007). "Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells". Antiviral Res. 75 (2): 152–8. doi:10.1016/j.antiviral.2007.02.002. PMID 17395278.