CYP2B6: Difference between revisions
No edit summary |
imported>Nemo bis (Added free to read link in citations with OAbot #oabot) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{Infobox_gene}} | ||
| | '''Cytochrome P450 2B6''' is an [[enzyme]] that in humans is encoded by the ''CYP2B6'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: cytochrome P450| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1555| accessdate = }}</ref> CYP2B6 is a member of the [[Cytochrome P450]] group of enzymes. Along with [[CYP2A6]], it is involved with metabolizing [[nicotine]], along with many other substances.<ref name="entrez"/> | ||
| | |||
| | |||
== Function == | |||
This gene, CYP2B6, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are [[monooxygenase]]s which catalyze many reactions involved in drug [[metabolism]] and synthesis of cholesterol, steroids and other lipids. This protein localizes to the [[endoplasmic reticulum]] and its expression is induced by [[phenobarbital]]. The enzyme is known to metabolize some [[xenobiotic]]s, such as the anti-cancer drugs cyclophosphamide and ifosphamide.<ref name="entrez"/> | |||
== Gene == | |||
Transcript variants for this gene have been described; however, it has not been resolved whether these transcripts are in fact produced by this gene or by a closely related [[pseudogene]], CYP2B7. Both the gene and the pseudogene are located in the middle of a CYP2A pseudogene found in a large cluster of cytochrome P450 genes from the CYP2A, CYP2B and CYP2F subfamilies on chromosome 19q.<ref name="entrez"/> | |||
{{Clear}} | |||
== CYP2B6 ligands == | |||
Following is a table of selected [[enzyme substrate|substrates]], [[enzyme induction and inhibition|inducers]] and [[enzyme induction and inhibition|inhibitors]] of CYP2B6. | |||
Inhibitors of CYP2B6 can be classified by their [[potency (pharmacology)|potency]], such as: | |||
*'''Strong inhibitor''' being one that causes at least a 5-fold increase in the plasma [[area under the curve (pharmacokinetics)|AUC values]], or more than 80% decrease in [[clearance (medicine)|clearance]].<ref name=":0">{{Cite web|url=http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm#classInhibit|title=Drug Interactions & Labeling - Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers|last=Center for Drug Evaluation and Research|website=www.fda.gov|language=en|access-date=2016-06-01}}</ref> | |||
*'''Moderate inhibitor''' being one that causes at least a 2-fold increase in the plasma AUC values, or 50-80% decrease in clearance.<ref name=":0" /> | |||
*'''Weak inhibitor''' being one that causes at least a 1.25-fold but less than 2-fold increase in the plasma AUC values, or 20-50% decrease in clearance.<ref name=":0" /> | |||
{| class="wikitable" width=100% | {| class="wikitable" width=100% | ||
! Substrates !! Inhibitors !! Inducers | ! Substrates !! Inhibitors !! Inducers | ||
|- style="vertical-align: top;" | |- style="vertical-align: top;" | ||
| | | <!--substrates--> | ||
* [[alfentanil]]<ref name=FASS/> ([[opioid]] [[analgesic]]) | |||
* [[bupropion]]<ref name="Flockhart">{{cite web|url=http://medicine.iupui.edu/flockhart/table.htm|title=Drug Interactions: Cytochrome P<sub>450</sub> Drug Interaction Table|year=2007|publisher=[[Indiana University School of Medicine]]|author=Flockhart DA}} Retrieved on December 25, 2008.</ref><ref name=FASS/> ([[antidepressant]]) | |||
* [[cyclophosphamide]]<ref name=FASS/><ref name=Flockhart/> ([[alkylating antineoplastic agent]]) | |||
* [[efavirenz]]<ref name=FASS/><ref name=Flockhart/> ([[NNRTI]]) | |||
* [[ifosfamide]]<ref name=FASS/><ref name=Flockhart/> ([[alkylating antineoplastic agent]]) | |||
* [[ketamine]]<ref name="pmid27763887">{{cite journal | vauthors = Rao LK, Flaker AM, Friedel CC, Kharasch ED | title = Role of Cytochrome P4502B6 Polymorphisms in Ketamine Metabolism and Clearance | journal = The Journal of the American Society of Anesthesiologists | volume = 125 | issue = 12 | pages = 1103-1112 | year = 2016 | pmid = 27763887 | doi = 10.1097/ALN.0000000000001392 }}</ref> ([[dissociative anaesthetic]]) | |||
* [[methadone]]<ref name=Flockhart/> ([[opiate replacement therapy]]) | |||
* [[methoxetamine]]<ref name="pmid23774830">{{cite journal | vauthors = Meyer MR, Bach M, Welter J, Bovens M, Turcant A, Maurer HH | title = Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn | journal = Anal Bioanal Chem | volume = 405 | issue = 19 | pages = 6307–21 | year = 2013 | pmid = 23774830 | doi = 10.1007/s00216-013-7051-6 }}</ref> ([[dissociative|dissociative agent]], [[NMDA receptor antagonist]]) | |||
* [[nevirapine]]<ref name=FASS/> ([[NNRTI]]) | |||
* [[propofol]]<ref name=FASS/> ([[anesthetic]]) | |||
* [[selegiline]]<ref name="pmid17101742" /> | |||
* [[sertraline]]<ref name="pmid15547048">{{cite journal | vauthors = Obach RS, Cox LM, Tremaine LM | title = Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study | journal = Drug Metab. Dispos. | volume = 33 | issue = 2 | pages = 262–70 | year = 2005 | pmid = 15547048 | doi = 10.1124/dmd.104.002428 }}</ref> ([[antidepressant]]) | |||
* [[sorafenib]]<ref name=Flockhart/> ([[protein kinase]] inhibitor) | |||
* [[tamoxifen]]<ref name=FASS/> ([[selective estrogen receptor modulator|SERM]]) | |||
* [[valproic acid]]<ref name=FASS/> ([[anticonvulsant]]) | |||
''' | || '''Strong''':<!--inhibitors--> | ||
* [[orphenadrine]]<ref name=FASS>[http://www.fass.se/LIF/produktfakta/fakta_lakare_artikel.jsp?articleID=18352 Swedish environmental classification of pharmaceuticals] - [[FASS (drug catalog)]] - Facts for prescribers (Fakta för förskrivare). Retrieved July 2011</ref><ref name="pmid9172960">{{cite journal | vauthors = Guo Z, Raeissi S, White RB, Stevens JC | title = Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes | journal = Drug Metab. Dispos. | volume = 25 | issue = 3 | pages = 390–3 | year = 1997 | pmid = 9172960 | doi = }}</ref> ([[anticholinergic]]) | |||
'''<!--Inhibitors of-->Unspecified potency''' | |||
* [[chlorpyrifos]] ([[insecticide]]) | |||
* [[clopidogrel]] ([[antiplatelet]])<ref name="pmid17101742" /> | |||
* [[clotrimazole]] ([[antifungal]])<ref name="pmid17101742" /> | |||
* [[curcumin]] ([[dietary supplement|supplement]])<ref name="pmid18480186">{{cite journal | vauthors = Volak LP, Ghirmai S, Cashman JR, Court MH | title = Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor | journal = Drug Metab. Dispos. | volume = 36 | issue = 8 | pages = 1594–605 |date=August 2008 | pmid = 18480186 | pmc = 2574793 | doi = 10.1124/dmd.108.020552 | url = | issn = }}</ref><ref name="pmid17433521">{{cite journal | vauthors = Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP | title = Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products | journal = Toxicology | volume = 235 | issue = 1-2 | pages = 83–91 | year = 2007 | pmid = 17433521 | doi = 10.1016/j.tox.2007.03.007 | url = }}</ref> (constituent of [[turmeric]]) | |||
* [[ethinylestradiol]] ([[estrogen (medication)|estrogen]], [[hormonal contraceptive|contraceptive]]) | |||
* [[fluoxetine]] ([[antidepressant]])<ref name="pmid10997936" /> | |||
* [[fluvoxamine]] ([[antidepressant]])<ref name="pmid10997936">{{cite journal | vauthors = Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ | title = CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants | journal = Drug Metab. Dispos. | volume = 28 | issue = 10 | pages = 1176–83 | year = 2000 | pmid = 10997936 | doi = | url = }}</ref> | |||
* [[itraconazole]] ([[antifungal]])<ref name="pmid17101742" /> | |||
* [[ketoconazole]] ([[antifungal]])<ref name="pmid10997936" /> | |||
* [[memantine]]<ref>http://www.medscape.com/viewarticle/748581_4</ref> ([[NMDA antagonist]]) | |||
* [[paroxetine]] ([[antidepressant]])<ref name="pmid10997936" /> | |||
* [[raloxifene]] ([[selective estrogen receptor modulator|SERM]])<ref name="pmid17101742">{{cite journal | vauthors = Walsky RL, Astuccio AV, Obach RS | title = Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6 | journal = J Clin Pharmacol | volume = 46 | issue = 12 | pages = 1426–38 | year = 2006 | pmid = 17101742 | doi = 10.1177/0091270006293753 | url = }}</ref> | |||
* [[sertraline]] ([[antidepressant]])<ref name="pmid17101742" /><ref name="pmid10997936" /> | |||
* [[thioTEPA]]<ref name=Flockhart/> ([[anticancer]]) | |||
* [[ticlopidine]]<ref name=Flockhart/> ([[antiplatelet]]) | |||
< | || <!--Inducers--> | ||
* [[carbamazepine]]<ref name=FASS/> ([[anticonvulsant]], [[mood stabilizer]]) | |||
* [[phenobarbital]]<ref name=Flockhart/> ([[anticonvulsant]] ) | |||
* [[phenytoin]]<ref name=Flockhart/> ([[antiepileptic]]) | |||
* [[rifampicin]]<ref name=FASS/><ref name=Flockhart/> ([[bactericidal]]) | |||
* [[efavirenz]]<ref name=FASS/> ([[virostatic]]) | |||
|- | |||
|} | |||
==References== | |||
{{reflist}} | |||
==Further reading== | |||
|- | {{refbegin | 2}} | ||
|} | *{{cite journal |vauthors=Gounden V, van Niekerk C, Snyman T, George JA |title=Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. |journal=AIDS Res Ther |volume=7 |issue= |pages= 32 |year= 2010 |pmid= 20723261 |doi= 10.1186/1742-6405-7-32 |pmc=2933581 }} | ||
*{{cite journal |vauthors=Yang K, Koh KH, Jeong H |title=Induction of CYP2B6 and CYP3A4 expression by 1-aminobenzotriazole (ABT) in human hepatocytes |journal=Drug Metab Lett |volume=4 |issue= 3 |pages= 129–33 |year= 2010 |pmid= 20642445 |doi= 10.2174/187231210791698410}} | |||
*{{cite journal |vauthors=Ngaimisi E, Mugusi S, Minzi OM |title=Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients |journal=Clin. Pharmacol. Ther. |volume=88 |issue= 5 |pages= 676–84 |year= 2010 |pmid= 20881953 |doi= 10.1038/clpt.2010.172 |display-authors=etal}} | |||
*{{cite journal |vauthors=Smith G, Stubbins MJ, Harries LW, Wolf CR |title=Molecular genetics of the human cytochrome P450 monooxygenase superfamily |journal=Xenobiotica |volume=28 |issue= 12 |pages= 1129–65 |year= 1998 |pmid= 9890157 |doi= 10.1080/004982598238868 }} | |||
*{{cite journal |vauthors=Svärd J, Spiers JP, Mulcahy F, Hennessy M |title=Nuclear Receptor-Mediated Induction of CYP450 by Antiretrovirals: Functional Consequences of NR1I2 (PXR) Polymorphisms and Differential Prevalence in Whites and Sub-Saharan Africans |journal=J. Acquir. Immune Defic. Syndr. |volume= 55|issue= 5|pages= HASH(0x271b490) |year= 2010 |pmid= 20861742 |doi= 10.1097/QAI.0b013e3181f52f0c }} | |||
*{{cite journal |vauthors=Melanson SE, Stevenson K, Kim H |title=Allelic variations in CYP2B6 and CYP2C19 and survival of patients receiving cyclophosphamide prior to myeloablative hematopoietic stem cell transplantation |journal=Am. J. Hematol. |volume=85 |issue= 12 |pages= 967–71 |year= 2010 |pmid= 21108329 |doi= 10.1002/ajh.21889 |display-authors=etal}} | |||
*{{cite journal |vauthors=Yuan ZH, Liu Q, Zhang Y |title=CYP2B6 gene single nucleotide polymorphisms and leukemia susceptibility |journal=Ann. Hematol. |volume= 90|issue= 3|pages= HASH(0x2bd3fb0) |year= 2010 |pmid= 20878158 |doi= 10.1007/s00277-010-1085-z |display-authors=etal}} | |||
*{{cite journal |vauthors=Nelson DR, Zeldin DC, Hoffman SM |title=Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants |journal=Pharmacogenetics |volume=14 |issue= 1 |pages= 1–18 |year= 2004 |pmid= 15128046 |doi= 10.1097/00008571-200401000-00001|display-authors=etal}} | |||
*{{cite journal |vauthors=Mo SL, Liu YH, Duan W |title=Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6 |journal=Curr. Drug Metab. |volume=10 |issue= 7 |pages= 730–53 |year= 2009 |pmid= 19702527 |doi= 10.2174/138920009789895534|display-authors=etal}} | |||
*{{cite journal |vauthors=Figueroa SC, de Gatta MF, GarcÃa LH |title=The convergence of therapeutic drug monitoring and pharmacogenetic testing to optimize efavirenz therapy |journal=Ther Drug Monit |volume=32 |issue= 5 |pages= 579–85 |year= 2010 |pmid= 20720517 |doi= 10.1097/FTD.0b013e3181f0634c |display-authors=etal}} | |||
*{{cite journal |vauthors=Ribaudo HJ, Liu H, Schwab M |title=Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study |journal=J. Infect. Dis. |volume=202 |issue= 5 |pages= 717–22 |year= 2010 |pmid= 20662624 |doi= 10.1086/655470 |pmc=2919241 |display-authors=etal}} | |||
*{{cite journal |vauthors=Shimada M, Miyagawa T, Kawashima M |title=An approach based on a genome-wide association study reveals candidate loci for narcolepsy |journal=Hum. Genet. |volume=128 |issue= 4 |pages= 433–41 |year= 2010 |pmid= 20677014 |doi= 10.1007/s00439-010-0862-z |display-authors=etal}} | |||
*{{cite journal |vauthors=Jamshidi Y, Moreton M, McKeown DA |title=Tribal ethnicity and CYP2B6 genetics in Ugandan and Zimbabwean populations in the UK: implications for efavirenz dosing in HIV infection |journal=J. Antimicrob. Chemother. |volume=65 |issue= 12 |pages= 2614–9 |year= 2010 |pmid= 20952418 |doi= 10.1093/jac/dkq369 |display-authors=etal}} | |||
*{{cite journal |vauthors=Lindfelt T, O'Brien J, Song JC |title=Efavirenz plasma concentrations and cytochrome 2B6 polymorphisms |journal=Ann Pharmacother |volume=44 |issue= 10 |pages= 1572–8 |year= 2010 |pmid= 20841522 |doi= 10.1345/aph.1P141 |display-authors=etal}} | |||
*{{cite journal |vauthors=Chung JY, Cho JY, Lim HS |title=Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin |journal=Drug Metab. Dispos. |volume=39 |issue= 1 |pages= 92–7 |year= 2011 |pmid= 20876786 |doi= 10.1124/dmd.110.035246 |display-authors=etal}} | |||
*{{cite journal |vauthors=He C, Kraft P, Chasman DI |title=A large-scale candidate gene association study of age at menarche and age at natural menopause |journal=Hum. Genet. |volume=128 |issue= 5 |pages= 515–27 |year= 2010 |pmid= 20734064 |doi= 10.1007/s00439-010-0878-4 |pmc=2967297 |display-authors=etal}} | |||
*{{cite journal |vauthors=Lampreabe I, Gainza de los Rios FJ, Arrieta Gutiérrez A |title=Toward personalized medicine in renal transplantation |journal=Transplant. Proc. |volume=42 |issue= 8 |pages= 2864–7 |year= 2010 |pmid= 20970553 |doi= 10.1016/j.transproceed.2010.08.009 |display-authors=etal}} | |||
*{{cite journal |vauthors=Elens L, Vandercam B, Yombi JC |title=Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients |journal=Pharmacogenomics |volume=11 |issue= 9 |pages= 1223–34 |year= 2010 |pmid= 20860463 |doi= 10.2217/pgs.10.94 |display-authors=etal}} | |||
*{{cite journal |vauthors=Chou M, Bertrand J, Segeral O |title=Population pharmacokinetic-pharmacogenetic study of nevirapine in HIV-infected Cambodian patients |journal=Antimicrob. Agents Chemother. |volume=54 |issue= 10 |pages= 4432–9 |year= 2010 |pmid= 20696882 |doi= 10.1128/AAC.00512-10 |pmc=2944557 |display-authors=etal|url=http://www.hal.inserm.fr/inserm-00517725/document }} | |||
*{{cite journal |vauthors=Bunten H, Liang WJ, Pounder DJ |title=OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths |journal=Clin. Pharmacol. Ther. |volume=88 |issue= 3 |pages= 383–9 |year= 2010 |pmid= 20668445 |doi= 10.1038/clpt.2010.127 |display-authors=etal}} | |||
{{refend}} | |||
==External links== | == External links == | ||
* {{MeshName|CYP2B6}} | * {{MeshName|CYP2B6}} | ||
* {{UCSC gene info|CYP2B6}} | |||
{{ | {{NLM content}} | ||
{{Cytochrome P450}} | {{Cytochrome P450}} | ||
{{Enzymes}} | |||
{{Portal bar|Molecular and Cellular Biology|border=no}} | |||
[[Category:Cytochrome P450]] | [[Category:Cytochrome P450]] | ||
[[Category:EC 1.14.14]] | |||
Latest revision as of 12:21, 4 November 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene.[1] CYP2B6 is a member of the Cytochrome P450 group of enzymes. Along with CYP2A6, it is involved with metabolizing nicotine, along with many other substances.[1]
Function
This gene, CYP2B6, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by phenobarbital. The enzyme is known to metabolize some xenobiotics, such as the anti-cancer drugs cyclophosphamide and ifosphamide.[1]
Gene
Transcript variants for this gene have been described; however, it has not been resolved whether these transcripts are in fact produced by this gene or by a closely related pseudogene, CYP2B7. Both the gene and the pseudogene are located in the middle of a CYP2A pseudogene found in a large cluster of cytochrome P450 genes from the CYP2A, CYP2B and CYP2F subfamilies on chromosome 19q.[1]
CYP2B6 ligands
Following is a table of selected substrates, inducers and inhibitors of CYP2B6.
Inhibitors of CYP2B6 can be classified by their potency, such as:
- Strong inhibitor being one that causes at least a 5-fold increase in the plasma AUC values, or more than 80% decrease in clearance.[2]
- Moderate inhibitor being one that causes at least a 2-fold increase in the plasma AUC values, or 50-80% decrease in clearance.[2]
- Weak inhibitor being one that causes at least a 1.25-fold but less than 2-fold increase in the plasma AUC values, or 20-50% decrease in clearance.[2]
References
- ↑ 1.0 1.1 1.2 1.3 "Entrez Gene: cytochrome P450".
- ↑ 2.0 2.1 2.2 Center for Drug Evaluation and Research. "Drug Interactions & Labeling - Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers". www.fda.gov. Retrieved 2016-06-01.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 Swedish environmental classification of pharmaceuticals - FASS (drug catalog) - Facts for prescribers (Fakta för förskrivare). Retrieved July 2011
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 Flockhart DA (2007). "Drug Interactions: Cytochrome P450 Drug Interaction Table". Indiana University School of Medicine. Retrieved on December 25, 2008.
- ↑ Rao LK, Flaker AM, Friedel CC, Kharasch ED (2016). "Role of Cytochrome P4502B6 Polymorphisms in Ketamine Metabolism and Clearance". The Journal of the American Society of Anesthesiologists. 125 (12): 1103–1112. doi:10.1097/ALN.0000000000001392. PMID 27763887.
- ↑ Meyer MR, Bach M, Welter J, Bovens M, Turcant A, Maurer HH (2013). "Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn". Anal Bioanal Chem. 405 (19): 6307–21. doi:10.1007/s00216-013-7051-6. PMID 23774830.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 Walsky RL, Astuccio AV, Obach RS (2006). "Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6". J Clin Pharmacol. 46 (12): 1426–38. doi:10.1177/0091270006293753. PMID 17101742.
- ↑ Obach RS, Cox LM, Tremaine LM (2005). "Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study". Drug Metab. Dispos. 33 (2): 262–70. doi:10.1124/dmd.104.002428. PMID 15547048.
- ↑ Guo Z, Raeissi S, White RB, Stevens JC (1997). "Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes". Drug Metab. Dispos. 25 (3): 390–3. PMID 9172960.
- ↑ Volak LP, Ghirmai S, Cashman JR, Court MH (August 2008). "Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor". Drug Metab. Dispos. 36 (8): 1594–605. doi:10.1124/dmd.108.020552. PMC 2574793. PMID 18480186.
- ↑ Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP (2007). "Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products". Toxicology. 235 (1–2): 83–91. doi:10.1016/j.tox.2007.03.007. PMID 17433521.
- ↑ 12.0 12.1 12.2 12.3 12.4 Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ (2000). "CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants". Drug Metab. Dispos. 28 (10): 1176–83. PMID 10997936.
- ↑ http://www.medscape.com/viewarticle/748581_4
Further reading
- Gounden V, van Niekerk C, Snyman T, George JA (2010). "Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients". AIDS Res Ther. 7: 32. doi:10.1186/1742-6405-7-32. PMC 2933581. PMID 20723261.
- Yang K, Koh KH, Jeong H (2010). "Induction of CYP2B6 and CYP3A4 expression by 1-aminobenzotriazole (ABT) in human hepatocytes". Drug Metab Lett. 4 (3): 129–33. doi:10.2174/187231210791698410. PMID 20642445.
- Ngaimisi E, Mugusi S, Minzi OM, et al. (2010). "Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients". Clin. Pharmacol. Ther. 88 (5): 676–84. doi:10.1038/clpt.2010.172. PMID 20881953.
- Smith G, Stubbins MJ, Harries LW, Wolf CR (1998). "Molecular genetics of the human cytochrome P450 monooxygenase superfamily". Xenobiotica. 28 (12): 1129–65. doi:10.1080/004982598238868. PMID 9890157.
- Svärd J, Spiers JP, Mulcahy F, Hennessy M (2010). "Nuclear Receptor-Mediated Induction of CYP450 by Antiretrovirals: Functional Consequences of NR1I2 (PXR) Polymorphisms and Differential Prevalence in Whites and Sub-Saharan Africans". J. Acquir. Immune Defic. Syndr. 55 (5): HASH(0x271b490). doi:10.1097/QAI.0b013e3181f52f0c. PMID 20861742.
- Melanson SE, Stevenson K, Kim H, et al. (2010). "Allelic variations in CYP2B6 and CYP2C19 and survival of patients receiving cyclophosphamide prior to myeloablative hematopoietic stem cell transplantation". Am. J. Hematol. 85 (12): 967–71. doi:10.1002/ajh.21889. PMID 21108329.
- Yuan ZH, Liu Q, Zhang Y, et al. (2010). "CYP2B6 gene single nucleotide polymorphisms and leukemia susceptibility". Ann. Hematol. 90 (3): HASH(0x2bd3fb0). doi:10.1007/s00277-010-1085-z. PMID 20878158.
- Nelson DR, Zeldin DC, Hoffman SM, et al. (2004). "Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants". Pharmacogenetics. 14 (1): 1–18. doi:10.1097/00008571-200401000-00001. PMID 15128046.
- Mo SL, Liu YH, Duan W, et al. (2009). "Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6". Curr. Drug Metab. 10 (7): 730–53. doi:10.2174/138920009789895534. PMID 19702527.
- Figueroa SC, de Gatta MF, GarcÃa LH, et al. (2010). "The convergence of therapeutic drug monitoring and pharmacogenetic testing to optimize efavirenz therapy". Ther Drug Monit. 32 (5): 579–85. doi:10.1097/FTD.0b013e3181f0634c. PMID 20720517.
- Ribaudo HJ, Liu H, Schwab M, et al. (2010). "Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study". J. Infect. Dis. 202 (5): 717–22. doi:10.1086/655470. PMC 2919241. PMID 20662624.
- Shimada M, Miyagawa T, Kawashima M, et al. (2010). "An approach based on a genome-wide association study reveals candidate loci for narcolepsy". Hum. Genet. 128 (4): 433–41. doi:10.1007/s00439-010-0862-z. PMID 20677014.
- Jamshidi Y, Moreton M, McKeown DA, et al. (2010). "Tribal ethnicity and CYP2B6 genetics in Ugandan and Zimbabwean populations in the UK: implications for efavirenz dosing in HIV infection". J. Antimicrob. Chemother. 65 (12): 2614–9. doi:10.1093/jac/dkq369. PMID 20952418.
- Lindfelt T, O'Brien J, Song JC, et al. (2010). "Efavirenz plasma concentrations and cytochrome 2B6 polymorphisms". Ann Pharmacother. 44 (10): 1572–8. doi:10.1345/aph.1P141. PMID 20841522.
- Chung JY, Cho JY, Lim HS, et al. (2011). "Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin". Drug Metab. Dispos. 39 (1): 92–7. doi:10.1124/dmd.110.035246. PMID 20876786.
- He C, Kraft P, Chasman DI, et al. (2010). "A large-scale candidate gene association study of age at menarche and age at natural menopause". Hum. Genet. 128 (5): 515–27. doi:10.1007/s00439-010-0878-4. PMC 2967297. PMID 20734064.
- Lampreabe I, Gainza de los Rios FJ, Arrieta Gutiérrez A, et al. (2010). "Toward personalized medicine in renal transplantation". Transplant. Proc. 42 (8): 2864–7. doi:10.1016/j.transproceed.2010.08.009. PMID 20970553.
- Elens L, Vandercam B, Yombi JC, et al. (2010). "Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients". Pharmacogenomics. 11 (9): 1223–34. doi:10.2217/pgs.10.94. PMID 20860463.
- Chou M, Bertrand J, Segeral O, et al. (2010). "Population pharmacokinetic-pharmacogenetic study of nevirapine in HIV-infected Cambodian patients". Antimicrob. Agents Chemother. 54 (10): 4432–9. doi:10.1128/AAC.00512-10. PMC 2944557. PMID 20696882.
- Bunten H, Liang WJ, Pounder DJ, et al. (2010). "OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths". Clin. Pharmacol. Ther. 88 (3): 383–9. doi:10.1038/clpt.2010.127. PMID 20668445.
External links
- CYP2B6 at the US National Library of Medicine Medical Subject Headings (MeSH)
- Human CYP2B6 genome location and CYP2B6 gene details page in the UCSC Genome Browser.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.