CYP4Z1: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Bot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +)
imported>Jmertel23
replaced with more specific stub
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{protein
{{Infobox_gene}}
|Name=cytochrome P450, family 4, subfamily Z, polypeptide 1
|caption=
|image=
|width=
|HGNCid=20583
|Symbol=CYP4Z1
|AltSymbols=
|EntrezGene=199974
|OMIM=
|RefSeq=NM_178134
|UniProt= Q86W10
|PDB=
|ECnumber=
|Chromosome=1
|Arm=p
|Band=33
|LocusSupplementaryData=
}}
{{SI}}


'''CYP4Z1'''  ('''cy'''tochrome '''P'''450, family '''4''', subfamily '''Z''', polypeptide '''1''')  is a [[protein]] that in humans is encoded by the ''CYP4Z1'' [[gene]].<ref name="pmid15059886">{{cite journal | vauthors = Rieger MA, Ebner R, Bell DR, Kiessling A, Rohayem J, Schmitz M, Temme A, Rieber EP, Weigle B | title = Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma | journal = Cancer Res. | volume = 64 | issue = 7 | pages = 2357–64 |date=April 2004 | pmid = 15059886 | doi = 10.1158/0008-5472.CAN-03-0849 | url =  | issn = }}</ref>


'''CYP4Z1'''  ('''cy'''tochrome '''P'''450, family '''4''', subfamily '''Z''', polypeptide '''1''')  is a [[protein]] which in humans is encoded by the ''CYP4Z1'' [[gene]].<ref name="pmid15059886">{{cite journal | author = Rieger MA, Ebner R, Bell DR, Kiessling A, Rohayem J, Schmitz M, Temme A, Rieber EP, Weigle B | title = Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma | journal = Cancer Res. | volume = 64 | issue = 7 | pages = 2357–64 | year = 2004 | month = April | pmid = 15059886 | doi = 10.1158/0008-5472.CAN-03-0849 | url =  | issn = }}</ref>
== Function ==


This gene encodes a member of the [[cytochrome P450]] superfamily of enzymes. The cytochrome P450 proteins are [[monooxygenase]]s which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This gene is part of a cluster of cytochrome P450 genes on chromosome 1p33.<ref name="entrez_2532">{{cite web | title = Entrez Gene: CYP4Z1 | url =http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=199974 | accessdate = }}</ref>
This gene encodes a member of the [[cytochrome P450]] superfamily of enzymes. The cytochrome P450 proteins are [[monooxygenase]]s which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This gene is part of a cluster of cytochrome P450 genes on chromosome 1p33.<ref name="entrez_2532">{{cite web | title = Entrez Gene: CYP4Z1 | url =https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=199974 | accessdate = }}</ref>


CYP4Z1 is overexpressed in breast cancer cells.<ref name="pmid15059886"/>  It has also been demonstrated that the expression of the CYP4Z1 gene is upregulated by activated [[glucocorticoid receptor | glucocorticoid]] and [[progesterone receptor]]s.<ref name="pmid15797250">{{cite journal | author = Savas U, Hsu MH, Griffin KJ, Bell DR, Johnson EF | title = Conditional regulation of the human CYP4X1 and CYP4Z1 genes | journal = Arch. Biochem. Biophys. | volume = 436 | issue = 2 | pages = 377–85 | year = 2005 | month = April | pmid = 15797250 | doi = 10.1016/j.abb.2005.02.022 | url = | issn = }}</ref>
== Clinical significance ==
 
CYP4Z1 is overexpressed in breast cancer cells.<ref name="pmid15059886"/>  It has also been demonstrated that the expression of the CYP4Z1 gene is upregulated by activated [[glucocorticoid receptor|glucocorticoid]] and [[progesterone receptor]]s.<ref name="pmid15797250">{{cite journal | vauthors = Savas U, Hsu MH, Griffin KJ, Bell DR, Johnson EF | title = Conditional regulation of the human CYP4X1 and CYP4Z1 genes | journal = Arch. Biochem. Biophys. | volume = 436 | issue = 2 | pages = 377–85 |date=April 2005 | pmid = 15797250 | doi = 10.1016/j.abb.2005.02.022 | url = | issn = }}</ref> The overexpression of CYP4Z1 is associated with the breast cancer cells' increased production of [[20-Hydroxyeicosatetraenoic acid]] (20-HETE); it is hypothesized that CYP4Z1 metabolizes [[arachidonic acid]] to 20-HETE and that this overproduction is responsible for increasing the growth and spread of breast cancer cells in human breast cancer.<ref>{{cite journal | vauthors = Yu W, Chai H, Li Y, Zhao H, Xie X, Zheng H, Wang C, Wang X, Yang G, Cai X, Falck JR, Yang J | title = Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer | journal = Toxicology and Applied Pharmacology | volume = 264 | issue = 1 | pages = 73–83 | date = Oct 2012 | pmid = 22841774 | doi = 10.1016/j.taap.2012.07.019 | pmc=3439529}}</ref><ref name = "Zheng_2015">{{cite journal | vauthors = Zheng L, Li X, Gu Y, Lv X, Xi T | title = The 3'UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1 | journal = Breast Cancer Research and Treatment | volume = 150 | issue = 1 | pages = 105–18 | date = Feb 2015 | pmid = 25701119 | doi = 10.1007/s10549-015-3298-2 }}</ref> CPZ4Z1 is likewise overexpressed in ovarian cancer cells.<ref name = "Zheng_2015"/> These studies also suggest that CYP4Z1 will be a valuable marker to distinguish between benign and malignant breast and ovarian growths in humans and/or the prognoses of malignant growths in these tissues.


==References==
==References==
{{Reflist}}
{{Reflist}}
== Further reading ==
{{refbegin | 2}}
* {{cite journal | vauthors = Zöllner A, Dragan CA, Pistorius D, Müller R, Bode HB, Peters FT, Maurer HH, Bureik M | title = Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid | journal = Biological Chemistry | volume = 390 | issue = 4 | pages = 313–7 | date = Apr 2009 | pmid = 19090726 | doi = 10.1515/BC.2009.030 }}
* {{cite journal | vauthors = Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW | title = Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants | journal = Pharmacogenetics | volume = 14 | issue = 1 | pages = 1–18 | date = Jan 2004 | pmid = 15128046 | doi = 10.1097/00008571-200401000-00001 }}
* {{cite journal | vauthors = Simpson AE | title = The cytochrome P450 4 (CYP4) family | journal = General Pharmacology | volume = 28 | issue = 3 | pages = 351–9 | date = Mar 1997 | pmid = 9068972 | doi = 10.1016/S0306-3623(96)00246-7 }}
{{refend}}


{{NLM content}}
{{NLM content}}
{{Cytochrome P450}}


{{Cytochrome P450}}


{{WH}}
{{gene-1-stub}}
{{WS}}

Latest revision as of 19:21, 5 July 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

CYP4Z1 (cytochrome P450, family 4, subfamily Z, polypeptide 1) is a protein that in humans is encoded by the CYP4Z1 gene.[1]

Function

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This gene is part of a cluster of cytochrome P450 genes on chromosome 1p33.[2]

Clinical significance

CYP4Z1 is overexpressed in breast cancer cells.[1] It has also been demonstrated that the expression of the CYP4Z1 gene is upregulated by activated glucocorticoid and progesterone receptors.[3] The overexpression of CYP4Z1 is associated with the breast cancer cells' increased production of 20-Hydroxyeicosatetraenoic acid (20-HETE); it is hypothesized that CYP4Z1 metabolizes arachidonic acid to 20-HETE and that this overproduction is responsible for increasing the growth and spread of breast cancer cells in human breast cancer.[4][5] CPZ4Z1 is likewise overexpressed in ovarian cancer cells.[5] These studies also suggest that CYP4Z1 will be a valuable marker to distinguish between benign and malignant breast and ovarian growths in humans and/or the prognoses of malignant growths in these tissues.

References

  1. 1.0 1.1 Rieger MA, Ebner R, Bell DR, Kiessling A, Rohayem J, Schmitz M, Temme A, Rieber EP, Weigle B (April 2004). "Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma". Cancer Res. 64 (7): 2357–64. doi:10.1158/0008-5472.CAN-03-0849. PMID 15059886.
  2. "Entrez Gene: CYP4Z1".
  3. Savas U, Hsu MH, Griffin KJ, Bell DR, Johnson EF (April 2005). "Conditional regulation of the human CYP4X1 and CYP4Z1 genes". Arch. Biochem. Biophys. 436 (2): 377–85. doi:10.1016/j.abb.2005.02.022. PMID 15797250.
  4. Yu W, Chai H, Li Y, Zhao H, Xie X, Zheng H, Wang C, Wang X, Yang G, Cai X, Falck JR, Yang J (Oct 2012). "Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer". Toxicology and Applied Pharmacology. 264 (1): 73–83. doi:10.1016/j.taap.2012.07.019. PMC 3439529. PMID 22841774.
  5. 5.0 5.1 Zheng L, Li X, Gu Y, Lv X, Xi T (Feb 2015). "The 3'UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1". Breast Cancer Research and Treatment. 150 (1): 105–18. doi:10.1007/s10549-015-3298-2. PMID 25701119.

Further reading

  • Zöllner A, Dragan CA, Pistorius D, Müller R, Bode HB, Peters FT, Maurer HH, Bureik M (Apr 2009). "Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid". Biological Chemistry. 390 (4): 313–7. doi:10.1515/BC.2009.030. PMID 19090726.
  • Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (Jan 2004). "Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants". Pharmacogenetics. 14 (1): 1–18. doi:10.1097/00008571-200401000-00001. PMID 15128046.
  • Simpson AE (Mar 1997). "The cytochrome P450 4 (CYP4) family". General Pharmacology. 28 (3): 351–9. doi:10.1016/S0306-3623(96)00246-7. PMID 9068972.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.