Galloway Mowat syndrome: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 7: Line 7:


==Overview==
==Overview==
Galloway-Mowat syndrome is an extremely rare genetic disorder that is characterized by a variety of physical and developmental abnormalities, particularly neurological abnormalities and early onset progressive kidney disease. Physical features may include microcephaly, (a condition that indicates that the head circumference is significantly smaller than would be expected based upon an infant’s age and gender) and, in some cases, protrusion of part of the stomach through an abnormal opening in the diaphragm (hiatal hernia). Neurological abnormalities can include: various malformations of the brain, seizures, muscle spasms and abnormal movements (dystonia), diminished muscle tone throughout the body (generalized hypotonia), and visual impairment and abnormal eye movements (nystagmus). Infants and children exhibit a delay in obtaining developmental milestones. The majority of affected children do not obtain independent sitting or ambulation or the acquisition of any purposeful hand use or verbal communication. Severe/profound intellectual disability is typically present. Kidney disease is characterized by damage to the clusters of capillaries in the kidneys (focal glomerulosclerosis and/or diffuse mesangial sclerosis) resulting in loss of protein in the urine and abnormal kidney function with associated swelling of the face and peripheries resistant to current medical treatment (steroid resistant nephrotic syndrome). Most affected individuals do not survive beyond teenage years, with the commonest causes of death being nephrotic syndrome or seizures. Galloway-Mowat syndrome appears to be genetically heterogeneous and is believed to be inherited in an autosomal recessive manner, a significant proportion of cases identified to date have been shown to be caused by biallelic alterations (mutations) in the WDR73 gene.
Galloway-Mowat syndrome is very rare genetic disorder that is characterized by a variety of physical and developmental abnormalities, particularly neurological abnormalities and early onset progressive kidney disease. Physical features may include microcephaly, (a condition that indicates that the head circumference is significantly smaller than would be expected based upon an infant’s age and gender) and, in some cases, protrusion of part of the stomach through an abnormal opening in the diaphragm (hiatal hernia). Neurological abnormalities can include: various malformations of the brain, seizures, muscle spasms and abnormal movements (dystonia), diminished muscle tone throughout the body (generalized hypotonia), and visual impairment and abnormal eye movements (nystagmus). Infants and children exhibit a delay in obtaining developmental milestones. The majority of affected children do not obtain independent sitting or ambulation or the acquisition of any purposeful hand use or verbal communication. Severe/profound intellectual disability is typically present. Kidney disease is characterized by damage to the clusters of capillaries in the kidneys (focal glomerulosclerosis and/or diffuse mesangial sclerosis) resulting in loss of protein in the urine and abnormal kidney function with associated swelling of the face and peripheries resistant to current medical treatment (steroid resistant nephrotic syndrome). Most affected individuals do not survive beyond teenage years, with the commonest causes of death being nephrotic syndrome or seizures. Galloway-Mowat syndrome appears to be genetically heterogeneous and is believed to be inherited in an autosomal recessive manner, a significant proportion of cases identified to date have been shown to be caused by biallelic alterations (mutations) in the WDR73 gene.


==Historical Perspective==
==Historical Perspective==
* [Disease name] was first discovered by [name of scientist], a [nationality + occupation], in [year]/during/following [event].
*  


The association between [important risk factor/cause] and [disease name] was made in/during [year/event].<ref name="pmid17371932">{{cite journal |vauthors=Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F |title=Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2) |journal=Pediatrics |volume=119 |issue=4 |pages=e907–19 |date=April 2007 |pmid=17371932 |doi=10.1542/peds.2006-2164 |url=}}</ref>
The association between [important risk factor/cause] and [disease name] was made in/during [year/event].<ref name="pmid17371932">{{cite journal |vauthors=Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F |title=Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2) |journal=Pediatrics |volume=119 |issue=4 |pages=e907–19 |date=April 2007 |pmid=17371932 |doi=10.1542/peds.2006-2164 |url=}}</ref>


In [year], [scientist] was the first to discover the association between [risk factor] and the development of [disease name].
* In 2007, Gibson was the first to discover the association between [risk factor] and the development of [disease name].


In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].
In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].
Line 30: Line 30:
OR
OR


[Disease name] may be classified according to [classification method] into [number] subtypes/groups: [group1], [group2], [group3], and [group4].
* Heart failure may be classified according to [classification method] into [number] subtypes/groups:  
** Mild
** Moderate
** Severe
 


OR
OR

Latest revision as of 04:16, 24 February 2019

WikiDoc Resources for Galloway Mowat syndrome

Articles

Most recent articles on Galloway Mowat syndrome

Most cited articles on Galloway Mowat syndrome

Review articles on Galloway Mowat syndrome

Articles on Galloway Mowat syndrome in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Galloway Mowat syndrome

Images of Galloway Mowat syndrome

Photos of Galloway Mowat syndrome

Podcasts & MP3s on Galloway Mowat syndrome

Videos on Galloway Mowat syndrome

Evidence Based Medicine

Cochrane Collaboration on Galloway Mowat syndrome

Bandolier on Galloway Mowat syndrome

TRIP on Galloway Mowat syndrome

Clinical Trials

Ongoing Trials on Galloway Mowat syndrome at Clinical Trials.gov

Trial results on Galloway Mowat syndrome

Clinical Trials on Galloway Mowat syndrome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Galloway Mowat syndrome

NICE Guidance on Galloway Mowat syndrome

NHS PRODIGY Guidance

FDA on Galloway Mowat syndrome

CDC on Galloway Mowat syndrome

Books

Books on Galloway Mowat syndrome

News

Galloway Mowat syndrome in the news

Be alerted to news on Galloway Mowat syndrome

News trends on Galloway Mowat syndrome

Commentary

Blogs on Galloway Mowat syndrome

Definitions

Definitions of Galloway Mowat syndrome

Patient Resources / Community

Patient resources on Galloway Mowat syndrome

Discussion groups on Galloway Mowat syndrome

Patient Handouts on Galloway Mowat syndrome

Directions to Hospitals Treating Galloway Mowat syndrome

Risk calculators and risk factors for Galloway Mowat syndrome

Healthcare Provider Resources

Symptoms of Galloway Mowat syndrome

Causes & Risk Factors for Galloway Mowat syndrome

Diagnostic studies for Galloway Mowat syndrome

Treatment of Galloway Mowat syndrome

Continuing Medical Education (CME)

CME Programs on Galloway Mowat syndrome

International

Galloway Mowat syndrome en Espanol

Galloway Mowat syndrome en Francais

Business

Galloway Mowat syndrome in the Marketplace

Patents on Galloway Mowat syndrome

Experimental / Informatics

List of terms related to Galloway Mowat syndrome

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Template:Sarfraz

Synonyms and keywords: Galloway Syndrome, Hershberger Syndrome, Hiatal Hernia-Microcephaly-Nephrosis, Galloway Type, Nephrocerebellar Syndrome, Nephrosis-Microcephaly Syndrome, Nephrosis-Neuronal Dysmigration Syndrome, Yoder Dystonia

Overview

Galloway-Mowat syndrome is very rare genetic disorder that is characterized by a variety of physical and developmental abnormalities, particularly neurological abnormalities and early onset progressive kidney disease. Physical features may include microcephaly, (a condition that indicates that the head circumference is significantly smaller than would be expected based upon an infant’s age and gender) and, in some cases, protrusion of part of the stomach through an abnormal opening in the diaphragm (hiatal hernia). Neurological abnormalities can include: various malformations of the brain, seizures, muscle spasms and abnormal movements (dystonia), diminished muscle tone throughout the body (generalized hypotonia), and visual impairment and abnormal eye movements (nystagmus). Infants and children exhibit a delay in obtaining developmental milestones. The majority of affected children do not obtain independent sitting or ambulation or the acquisition of any purposeful hand use or verbal communication. Severe/profound intellectual disability is typically present. Kidney disease is characterized by damage to the clusters of capillaries in the kidneys (focal glomerulosclerosis and/or diffuse mesangial sclerosis) resulting in loss of protein in the urine and abnormal kidney function with associated swelling of the face and peripheries resistant to current medical treatment (steroid resistant nephrotic syndrome). Most affected individuals do not survive beyond teenage years, with the commonest causes of death being nephrotic syndrome or seizures. Galloway-Mowat syndrome appears to be genetically heterogeneous and is believed to be inherited in an autosomal recessive manner, a significant proportion of cases identified to date have been shown to be caused by biallelic alterations (mutations) in the WDR73 gene.

Historical Perspective

The association between [important risk factor/cause] and [disease name] was made in/during [year/event].[1]

  • In 2007, Gibson was the first to discover the association between [risk factor] and the development of [disease name].

In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].

There have been several outbreaks of [disease name], including -----.

In [year], [diagnostic test/therapy] was developed by [scientist] to treat/diagnose [disease name]. Galloway-Mowat syndrome was first described in the medical literature in 1968 in two siblings who had microcephaly, hiatal hernia and kidney disease. Consequently, the disorder was also known as microcephaly-hiatal hernia-nephrotic syndrome. However, additional reports of this disorder have shown that affected individuals have neurological manifestations and kidney disease (nephrotic syndrome) as the main characteristics. Hiatal hernia is no longer considered a “key” feature of the disorder since it does not occur in many affected children.

In 2014, autosomal recessive loss of function mutations in the WDR73 gene were found to account for a significant proportion of Galloway-Mowat syndrome cases.

Classification

There is no established system for the classification of [disease name].

OR

  • Heart failure may be classified according to [classification method] into [number] subtypes/groups:
    • Mild
    • Moderate
    • Severe


OR

[Disease name] may be classified into [large number > 6] subtypes based on [classification method 1], [classification method 2], and [classification method 3]. [Disease name] may be classified into several subtypes based on [classification method 1], [classification method 2], and [classification method 3].

OR

Based on the duration of symptoms, [disease name] may be classified as either acute or chronic.

OR

If the staging system involves specific and characteristic findings and features: According to the [staging system + reference], there are [number] stages of [malignancy name] based on the [finding1], [finding2], and [finding3]. Each stage is assigned a [letter/number1] and a [letter/number2] that designate the [feature1] and [feature2].

OR

The staging of [malignancy name] is based on the [staging system].

OR

There is no established system for the staging of [malignancy name].

Pathophysiology

The exact pathogenesis of [disease name] is not fully understood.

OR

It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].

OR

[Pathogen name] is usually transmitted via the [transmission route] route to the human host.

OR

Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

OR


[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].

OR

The progression to [disease name] usually involves the [molecular pathway].

OR

The pathophysiology of [disease/malignancy] depends on the histological subtype.

Causes

In 2014, Galloway-Mowat syndrome was shown to be caused by alterations (mutations) in the WDR73 gene in a subset of cases. Genes provide instructions for creating proteins that play a critical role in many functions of the body. When a mutation of a gene occurs, the protein product may be faulty, inefficient, or absent. Depending upon the functions of the particular protein, this can affect many organ systems of the body.

Galloway-Mowat syndrome is consistent with autosomal recessive inheritance. Genetic diseases are determined by the combination of genes for a particular trait that are on the chromosomes received from the father and the mother. Recessive genetic disorders occur when an individual inherits the same altered gene for the same trait from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females.

Although the WDR73 gene has been shown to cause Galloway-Mowat syndrome is certain cases, researchers believe that additional, as-yet-unidentified genes may cause the disorder in other cases (genetic heterogeneity).


  • Disease name] may be caused by [cause1], [cause2], or [cause3].
    • bhasvdhvaskjfvksj

OR

Common causes of [disease] include [cause1], [cause2], and [cause3].

OR

The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].

OR

The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.

Differentiating ((Page name)) from Other Diseases

[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].

OR

[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].

Epidemiology and Demographics

Galloway-Mowat syndrome affects males and females in equal numbers. More than 70 cases have been reported in the medical literature. Because cases may go misdiagnosed or undiagnosed, determining the true frequency of Galloway-Mowat syndrome in the general population is difficult. There is a WDR73 founder mutation present at high frequency in the Old Order Amish population, leading to an increased frequency of Galloway-Mowat syndrome within this population. The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.

OR

In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.

OR

In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.


Patients of all age groups may develop [disease name].

OR

The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.

OR

[Disease name] commonly affects individuals younger than/older than [number of years] years of age.

OR

[Chronic disease name] is usually first diagnosed among [age group].

OR

[Acute disease name] commonly affects [age group].


There is no racial predilection to [disease name].

OR

[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].


[Disease name] affects men and women equally.

OR

[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.


The majority of [disease name] cases are reported in [geographical region].

OR

[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].

Risk Factors

There are no established risk factors for [disease name].

OR

The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.

Screening

There is insufficient evidence to recommend routine screening for [disease/malignancy].

OR

According to the [guideline name], screening for [disease name] is not recommended.

OR

According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].

Natural History, Complications, and Prognosis

If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].

OR

Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].

OR

Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.

Diagnosis

Diagnostic Study of Choice

The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of [disease name].

History and Symptoms

The majority of patients with [disease name] are asymptomatic.

OR

The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].

Physical Examination

Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is diagnostic of [disease name].

OR

The presence of [finding(s)] on physical examination is highly suggestive of [disease name].

Laboratory Findings

An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].

OR

Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

OR

[Test] is usually normal among patients with [disease name].

OR

Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].

OR

There are no diagnostic laboratory findings associated with [disease name].

Electrocardiogram

There are no ECG findings associated with [disease name].

OR

An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for [disease name]; the mainstay of therapy is supportive care.

OR

Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of [disease name] are self-limited and require only supportive care.

OR

[Disease name] is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for [disease name] is [therapy].

OR   The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop [disease name].

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

Surgical intervention is not recommended for the management of [disease name].

OR

Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]

OR

The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].

OR

The feasibility of surgery depends on the stage of [malignancy] at diagnosis.

OR

Surgery is the mainstay of treatment for [disease or malignancy].

Primary Prevention

There are no established measures for the primary prevention of [disease name].

OR

There are no available vaccines against [disease name].

OR

Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].

OR

[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].

Secondary Prevention

There are no established measures for the secondary prevention of [disease name].

OR

Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].

References

  1. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F (April 2007). "Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2)". Pediatrics. 119 (4): e907–19. doi:10.1542/peds.2006-2164. PMID 17371932.


Template:WikiDoc Sources