Toxic multinodular goiter differential diagnosis: Difference between revisions

Jump to navigation Jump to search
Aravind Reddy Kothagadi (talk | contribs)
Ahmed Younes (talk | contribs)
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Toxic multinodular goiter}}
[[Image:Home_logo1.png|right|250px|link=https://www.wikidoc.org/index.php/Toxic_multinodular_goiter]]
{{CMG}}; {{AE}}  
{{CMG}}; {{AE}} {{ARK}}


==Overview==
==Overview==
*[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
Toxic multinodular goiter must be differentiated from other thyroid disorders. The most common differentials include [[Graves' disease|Grave's disease]], thyrotoxic phase of [[subacute thyroiditis]] and [[Toxic Adenoma|toxic adenoma]].
*[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].


==Differentiating Toxic multinodular goiter from other Diseases==
==Differentiating Toxic multinodular goiter from other Diseases==
*Toxic multinodular goiter may be differentiated from other thyroid disorders as follows:
Toxic multinodular goiter may be differentiated from other thyroid disorders as follows:
**Differentiation based on Functional (Nuclear) Imaging for Thyrotoxicosis:


==== Differentiation based on Functional (Nuclear) Imaging for Thyrotoxicosis ====
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
| colspan="6" style="background: #4479BA; text-align: center;" | {{fontcolor|#FFF|'''Functional (Nuclear) Imaging for Thyrotoxicosis'''}}
| colspan="6" style="background: #4479BA; text-align: center;" | {{fontcolor|#FFF|'''Functional (Nuclear) Imaging for Thyrotoxicosis'''}}
Line 41: Line 40:
|}
|}


 
==== Differentiation based on Imaging and TSH receptor antibodies ====
:*Differentiation based on Imaging and TSH receptor antibodies:
 
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
! colspan="1" rowspan="1" style="background: #4479BA; padding: 5px 5px;" | {{fontcolor|#FFFFFF|Cause of thyrotoxicosis}}
! colspan="1" rowspan="1" style="background: #4479BA; padding: 5px 5px;" | {{fontcolor|#FFFFFF|Cause of thyrotoxicosis}}
Line 130: Line 127:
|}
|}


 
==== Differentiation based on overall findings ====
:*Differentiation based on findings:
 
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
! colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" | {{fontcolor|#FFFFFF|Disease}}
! colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" | {{fontcolor|#FFFFFF|Disease}}
Line 178: Line 173:
| style="padding: 5px 5px; background: #F5F5F5;" |[[Thyroid-stimulating hormone]] and [[HCG]] have a common alpha-subunit and a beta-subunit with considerable homology. As a result, [[HCG]] has weak thyroid-stimulating activity and high [[titer]] [[HCG]] may mimic hyperthyroidism.<ref name="pmid19605510">{{cite journal |vauthors=Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA |title=Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors |journal=Ann. Oncol. |volume=21 |issue=1 |pages=104–8 |year=2010 |pmid=19605510 |doi=10.1093/annonc/mdp265 |url=}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" |[[Thyroid-stimulating hormone]] and [[HCG]] have a common alpha-subunit and a beta-subunit with considerable homology. As a result, [[HCG]] has weak thyroid-stimulating activity and high [[titer]] [[HCG]] may mimic hyperthyroidism.<ref name="pmid19605510">{{cite journal |vauthors=Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA |title=Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors |journal=Ann. Oncol. |volume=21 |issue=1 |pages=104–8 |year=2010 |pmid=19605510 |doi=10.1093/annonc/mdp265 |url=}}</ref>
|}
|}


{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align="center"
{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align="center"

Latest revision as of 19:08, 25 February 2019

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aravind Reddy Kothagadi M.B.B.S[2]

Overview

Toxic multinodular goiter must be differentiated from other thyroid disorders. The most common differentials include Grave's disease, thyrotoxic phase of subacute thyroiditis and toxic adenoma.

Differentiating Toxic multinodular goiter from other Diseases

Toxic multinodular goiter may be differentiated from other thyroid disorders as follows:

Differentiation based on Functional (Nuclear) Imaging for Thyrotoxicosis

Functional (Nuclear) Imaging for Thyrotoxicosis
Diagnosis Degree of Thyrotoxicosis Radioactive iodine Uptake Scintigraphy Image
Toxic multinodular goiter +/++ Normal or +/++ Enlarged gland with multiple "hot" or "cold" nodules
Grave's disease ++++ ++++ Enlarged gland with homogenous uptake
Thyrotoxic phase of subacute thyroiditis ++++ <1% at 4 or 24 hr. Absent isotope uptake
Toxic adenoma +/++ Normal or +/++ Dominant "hot" nodule with low or absent uptake in the surrounding normal gland.

Differentiation based on Imaging and TSH receptor antibodies

Cause of thyrotoxicosis TSH receptor antibodies Thyroid US Color flow Doppler Radioactive iodine uptake/Scan Other features
Toxic nodular goiter - Multiple nodules - Hot nodules at thyroid scan -
Graves' disease + Hypoechoic pattern Ophthalmopathy, dermopathy, acropachy
Toxic adenoma - Single nodule - Hot nodule -
Subacute thyroiditis - Heterogeneous hypoechoic areas Reduced/absent flow Neck pain, fever, and
elevated inflammatory index
Painless thyroiditis - Hypoechoic pattern Reduced/absent flow -
Amiodarone induced thyroiditis-Type 1 - Diffuse or nodular goiter ↓/Normal/↑ ↓ but higher than in Type 2 High urinary iodine
Amiodarone induced thyroiditis-Type 2 - Normal Absent ↓/absent High urinary iodine
Central hyperthyroidism - Diffuse or nodular goiter Normal/↑ Inappropriately normal or high TSH
Trophoblastic disease - Diffuse or nodular goiter Normal/↑ -
Factitious thyrotoxicosis - Variable Reduced/absent flow ↓ Serum thyroglobulin
Struma ovarii - Variable Reduced/absent flow Abdominal RAIU

Differentiation based on overall findings

Disease Findings
Toxic adenoma and toxic multinodular goiter Toxic adenoma and toxic multinodular goiter are results of focal/diffuse hyperplasia of thyroid follicular cells independent of TSH regulation. Findings of single or multiple nodules are seen on physical examination or thyroid scan.[1]
Thyroiditis Direct chemical toxicity with inflammation Amiodarone, sunitinib, pazopanib, axitinib, and other tyrosine kinase inhibitors may also be associated with a destructive thyroiditis.[2][3]
Radiation thyroiditis Patients treated with radioiodine may develop thyroid pain and tenderness 5 to 10 days later, due to radiation-induced injury and necrosis of thyroid follicular cells and associated inflammation.
Drugs that interfere with the immune system Interferon-alfa is a well-known cause of thyroid abnormality. It mostly leads to the development of de novo antithyroid antibodies.[4]
Lithium Patients treated with lithium are at a high risk of developing painless thyroiditis and Graves' disease.
Palpation thyroiditis Manipulation of the thyroid gland during thyroid biopsy or neck surgery and vigorous palpation during the physical examination may cause transient hyperthyroidism.
Exogenous and ectopic hyperthyroidism Factitious ingestion of thyroid hormone The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.[5]
Acute hyperthyroidism from a levothyroxine overdose The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.[6]
Struma ovarii Functioning thyroid tissue is present in an ovarian neoplasm.
Functional thyroid cancer metastases Large bony metastases from widely metastatic follicular thyroid cancer cause symptomatic hyperthyroidism.
Hashitoxicosis It is an autoimmune thyroid disease that initially presents with hyperthyroidism and a high radioiodine uptake caused by TSH-receptor antibodies similar to Graves' disease. It is then followed by the development of hypothyroidism due to the infiltration of the thyroid gland with lymphocytes and the resultant autoimmune-mediated destruction of thyroid tissue, similar to chronic lymphocytic thyroiditis.[7]
Iodine-induced hyperthyroidism It is uncommon but can develop after an iodine load, such as administration of contrast agents used for angiography or computed tomography (CT), or iodine-rich drugs such as amiodarone.
Trophoblastic disease and germ cell tumors Thyroid-stimulating hormone and HCG have a common alpha-subunit and a beta-subunit with considerable homology. As a result, HCG has weak thyroid-stimulating activity and high titer HCG may mimic hyperthyroidism.[8]
Disease Findings
Multinodular goiter Multinodular goiter is the multinodular enlargement of the thyroid gland. They are large nodules of more than 1 cm that produces symptoms of hyperthyroidism.
Grave's disease Grave's disease is an autoimmune disease that affects the thyroid. It frequently results in hyperthyroidism and an enlarged thyroid. Pretibial myxedema and ophthalmopathy are some of the findings of grave's disease.
Hashimoto's disease Hashimoto's disease is an autoimmune disease in which the thyroid gland is attacked by a variety of cell-mediated and antibody-mediated immune processes, causing primary hypothyroidism.
Medullary thyroid carcinoma Medullary thyroid carcinoma is a form of thyroid carcinoma which originates from the parafollicular cells (C cells), which produce the hormone calcitonin.
Thyroid lymphoma Thyroid lymphoma is a rare malignant tumor which manifests as rapidly enlarging neck mass causing respiratory difficulty.
De Quervain's thyroiditis De Quervain's thyroiditis is a subacute granulomatous thyroiditis preceded by an upper respiratory tract infection.
Acute suppurative thyroiditis Acute suppurative thyroiditis is an uncommon thyroid disorder usually caused by bacterial infection.

References

  1. Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G (1991). "High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves' disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland". J. Intern. Med. 229 (5): 415–20. PMID 2040867.
  2. Lambert M, Unger J, De Nayer P, Brohet C, Gangji D (1990). "Amiodarone-induced thyrotoxicosis suggestive of thyroid damage". J. Endocrinol. Invest. 13 (6): 527–30. PMID 2258582.
  3. Ahmadieh H, Salti I (2013). "Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment". Biomed Res Int. 2013: 725410. doi:10.1155/2013/725410. PMC 3824811. PMID 24282820.
  4. Vialettes B, Guillerand MA, Viens P, Stoppa AM, Baume D, Sauvan R, Pasquier J, San Marco M, Olive D, Maraninchi D (1993). "Incidence rate and risk factors for thyroid dysfunction during recombinant interleukin-2 therapy in advanced malignancies". Acta Endocrinol. 129 (1): 31–8. PMID 8351956.
  5. Cohen JH, Ingbar SH, Braverman LE (1989). "Thyrotoxicosis due to ingestion of excess thyroid hormone". Endocr. Rev. 10 (2): 113–24. doi:10.1210/edrv-10-2-113. PMID 2666114.
  6. Jha S, Waghdhare S, Reddi R, Bhattacharya P (2012). "Thyroid storm due to inappropriate administration of a compounded thyroid hormone preparation successfully treated with plasmapheresis". Thyroid. 22 (12): 1283–6. doi:10.1089/thy.2011.0353. PMID 23067331.
  7. Fatourechi V, McConahey WM, Woolner LB (1971). "Hyperthyroidism associated with histologic Hashimoto's thyroiditis". Mayo Clin. Proc. 46 (10): 682–9. PMID 5171000.
  8. Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA (2010). "Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors". Ann. Oncol. 21 (1): 104–8. doi:10.1093/annonc/mdp265. PMID 19605510.

Template:WH Template:WS