Carcinoid syndrome other imaging findings: Difference between revisions

Jump to navigation Jump to search
Jyostna Chouturi (talk | contribs)
No edit summary
Ahmed Younes (talk | contribs)
No edit summary
 
(46 intermediate revisions by 4 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
Please help WikiDoc by adding content here.  It's easy!  Click  [[Help:How_to_Edit_a_Page|here]]  to learn about editing.
{{Carcinoid syndrome}}
{{Carcinoid syndrome}}
{{CMG}}
{{CMG}}{{AE}}{{PSD}}


==Overview==
==Overview==
Other [[imaging studies]] for [[carcinoid tumor]] include [[somatostatin]] [[scintigraphy]] with 111[[Indium]]-[[octreotide]], [[Scintigraphy|bone scintigraphy]] with 99mTc-[[methylene diphosphonate]] (99mTcMDP), 123 I[[Metaiodobenzylguanidine|-metaiodobenzylguanidine (MIBG]]) [[scintigraphy]], [[capsule endoscopy]] (CE), [[enteroscopy]], and [[angiography]].


==Other Imaging Findings==
==Other Imaging Findings==
For localization of both primary lesions and metastasis, the initial imaging method is Octreoscan, where <math>{}^{111}</math>Indium labelled [[somatostatin]] analogues ([[octreotide]]) are used in [[scintigraphy]] for detecting tumors expressing [[somatostatin]] receptors. Median detection rates with octreoscan are about 89%, in contrast to other imaging techniques such as CT scans and MRI with detection rates of about 80%. Usually on CT scan, one will note a spider-like/crab like change in the messentery due to the fibrosis from the release of serotonin. PET scans, which evaluate for increased metabolism of glucose, may also aid in localizing the carcinoid lesion or evaluating for metastases.
Other imaging modalities for [[gastrointestinal]] [[Carcinoid|carcinoids]] include the use of:<ref>Diagnostics: Biochemical Markers, Imaging, and Approach
. National Cancer Institute. http://www.cancer.gov/types/gi-carcinoid-tumors/hp/gi-carcinoid-treatment-pdq#link/_49_toc Accessed on September 23, 2015</ref>
*[[Somatostatin]] [[scintigraphy]] with 111Indium[[Octreotide|-octreotide]]
*[[Bone]] [[scintigraphy]] with 99mTc-[[methylene diphosphonate]] (99mTcMDP)
*123 I-[[Metaiodobenzylguanidine|metaiodobenzylguanidine (MIBG]]) [[scintigraphy]]
*[[Capsule endoscopy]] (CE)
*[[Enteroscopy]]
*[[Positron emission tomography]] [[PET scan|(PET]])/[[CT scan]]
*[[Angiography]]
===Somatostatin Receptor Scintigraphy===
* It is the [[Gold standard (test)|gold standard]] in confirming the location of functioning [[neuroendocrine tumour]] [[tissue]].<ref name="SavelliLucignani2004">{{cite journal|last1=Savelli|first1=Giordano|last2=Lucignani|first2=Giovanni|last3=Seregni|first3=Ettore|last4=Marchian??|first4=Alfonso|last5=Serafini|first5=Gianluca|last6=Aliberti|first6=Gianluca|last7=Villano|first7=Carlo|last8=Maccauro|first8=Marco|last9=Bombardieri|first9=Emilio|title=Feasibility of somatostatin receptor scintigraphy in the detection of occult primary gastro-entero-pancreatic (GEP) neuroendocrine tumours|journal=Nuclear Medicine Communications|volume=25|issue=5|year=2004|pages=445–449|issn=0143-3636|doi=10.1097/00006231-200405000-00004}}</ref>
*There are five differen[[Somatostatin|t somatostatin]] [[receptor]] (SSTR) subtype, more than 70% of [[Neuroendocrine tumor|neuroendocrine tumors]] of both the [[gastrointestinal tract]] and [[pancreas]] express multiple subtypes predominantly 2 and 5.
*[[Midgut]] [[Carcinoid Disease|carcinoids]] predominantly express [[Somatostatin receptor 2|somatostatin receptors from sub-group 2]] (sst2).<ref name="pmid12734860">{{cite journal |vauthors=Hashemi SH, Benjegård SA, Ahlman H, Wängberg B, Forssell-Aronsson E, Billig H, Nilsson O |title=111In-labelled octreotide binding by the somatostatin receptor subtype 2 in neuroendocrine tumours |journal=Br J Surg |volume=90 |issue=5 |pages=549–54 |date=May 2003 |pmid=12734860 |doi=10.1002/bjs.4069 |url=}}</ref>
*The synthetic radiolabeled [[Somatostatin|SSTR]] analog 111In-DTP-d-Phe10-{[[octreotide]]} affords an important method, [[somatostatin receptor]] [[scintigraphy]] (SRS), to localize [[carcinoid tumors]], especially sst(2)-positive and sst(5)-positive [[tumors]],and small primary [[tumors]] and [[metastases]] are diagnosed more readily than with conventional [[imaging]] or imaging techniques requiring multiple sessions.
*Overall [[sensitivity]] of the [[octreotide ]]scan is reported to be as high as 90%.


===Localization===
===Bone Scintigraphy===
Tumour localization may be extremely difficult. Barium swallow and follow-up examination of the intestine may occasionally show the tumour. Capsule video endoscopy has recently been used to localized the tumour. Often laparotomy is the definitive way to localize the tumour.
*[[Scintigraphy|Bone scintigraphy]] with 99mTcMDP is the primary imaging modality for identifying [[bone]] involvement in [[neuroendocrine tumors]] and detection rates are reported to be 90% or higher.  
*[[MIBG|123I-MIBG]] is concentrated by [[carcinoid tumors]] in as many as 70% of cases using the same mechanism as [[norepinephrine]] and is used successfully to visualize [[Carcinoid Disease|carcinoids]].<ref name="pmid12124478">{{cite journal |vauthors=Zuetenhorst JM, Hoefnageli CA, Boot H, Valdés Olmos RA, Taal BG |title=Evaluation of (111)In-pentetreotide, (131)I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease |journal=Nucl Med Commun |volume=23 |issue=8 |pages=735–41 |date=August 2002 |pmid=12124478 |doi= |url=}}</ref>
*However, [[MIBG|123I-MIBG]] appears to be about half as [[Sensitivity|sensitive]] as 111In-[[octreotide]] [[scintigraphy]] in detecting [[Tumors|tumors.]]
 
===Endoscopic Ultrasonography (EUS)===
*[[Endoscopic]] [[ultrasonography]] (EUS) may be [[Sensitivity|a sensitive]] method for the detection of [[gastric]] and [[duodenal]] [[Carcinoid|carcinoids]] and may be superior to conventional ultrasound, particularly in the detection of small [[tumors]] (2 mm–3 mm) that are localized in the [[Bowel|bowel lumen]].
 
===Positron Emission Tomography–Computed Tomography===
*[[PET scan|PET]][[CT scan|-CT scan]] is now playing an ever-increasing role in both [[localizing]] disseminated [[Cancer (medicine)|cancer]] and monitoring the [[disease]] response to [[systemic]] [[Therapy|therapies]].<ref name="pmid15755858">{{cite journal |vauthors=Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, Langstrom B, Bergstrom M, Eriksson B |title=Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography |journal=J. Clin. Endocrinol. Metab. |volume=90 |issue=6 |pages=3392–400 |date=June 2005 |pmid=15755858 |doi=10.1210/jc.2004-1938 |url=}}</ref>
*[[Carcinoid]]-specific agents includes: 5[[Tryptophan|-hydroxy-l-tryptophan]] (5-HTP),64Cu-1,4,8,11-tetra-azacyclo-tetradecane-N,N′,N″, N‴-tera-acetic acid (TETA-OC) and 18F-dopa have been used.
 
===Angiography===
[[MRI]] [[angiography]] has replaced [[angiography]] to a large extent. However, selective [[angiography]] may be useful to:
*Demonstrate the degree of [[tumor]] [[vascularity]]
*[[Angiography]] of the superior and inferior [[mesenteric artery]] has a reasonable sensitivity for the localization of the [[primary tumor]], [[lymph node]] and [[liver]] [[metastases]].
*Delineate the relationship of the [[tumor]] to adjacent major [[vascular]] structures
*Provide information regarding [[vascular]] [[invasion]].


==References==
==References==
{{reflist|2}}
{{Reflist|2}}
{{WS}}
{{WH}}


[[Category:Disease]]
[[Category:Gastroenterology]]
[[Category:Types of cancer]]
[[Category:Endocrinology]]
[[Category:Needs content]]
[[Category:Pulmonology]]
[[Category:Hematology]]
[[Category:Hematology]]
[[Category:Up-To-Date]]
[[Category:Oncology]]
[[Category:Medicine]]
[[Category:Gastroenterology]]
[[Category:Endocrinology]]
[[Category:Endocrinology]]
[[Category:Gastroenterology]]
[[Category:Surgery]]
 
{{WikiDoc Help Menu}}
{{WikiDoc Sources}}

Latest revision as of 19:58, 3 May 2019

Carcinoid syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Carcinoid Syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Carcinoid syndrome other imaging findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Carcinoid syndrome other imaging findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Carcinoid syndrome other imaging findings

CDC on Carcinoid syndrome other imaging findings

Carcinoid syndrome other imaging findings in the news

Blogs on Carcinoid syndrome other imaging findings

Directions to Hospitals Treating Carcinoid syndrome

Risk calculators and risk factors for Carcinoid syndrome other imaging findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Parminder Dhingra, M.D. [2]

Overview

Other imaging studies for carcinoid tumor include somatostatin scintigraphy with 111Indium-octreotide, bone scintigraphy with 99mTc-methylene diphosphonate (99mTcMDP), 123 I-metaiodobenzylguanidine (MIBG) scintigraphy, capsule endoscopy (CE), enteroscopy, and angiography.

Other Imaging Findings

Other imaging modalities for gastrointestinal carcinoids include the use of:[1]

Somatostatin Receptor Scintigraphy

Bone Scintigraphy

Endoscopic Ultrasonography (EUS)

Positron Emission Tomography–Computed Tomography

Angiography

MRI angiography has replaced angiography to a large extent. However, selective angiography may be useful to:

References

  1. Diagnostics: Biochemical Markers, Imaging, and Approach . National Cancer Institute. http://www.cancer.gov/types/gi-carcinoid-tumors/hp/gi-carcinoid-treatment-pdq#link/_49_toc Accessed on September 23, 2015
  2. Savelli, Giordano; Lucignani, Giovanni; Seregni, Ettore; Marchian??, Alfonso; Serafini, Gianluca; Aliberti, Gianluca; Villano, Carlo; Maccauro, Marco; Bombardieri, Emilio (2004). "Feasibility of somatostatin receptor scintigraphy in the detection of occult primary gastro-entero-pancreatic (GEP) neuroendocrine tumours". Nuclear Medicine Communications. 25 (5): 445–449. doi:10.1097/00006231-200405000-00004. ISSN 0143-3636.
  3. Hashemi SH, Benjegård SA, Ahlman H, Wängberg B, Forssell-Aronsson E, Billig H, Nilsson O (May 2003). "111In-labelled octreotide binding by the somatostatin receptor subtype 2 in neuroendocrine tumours". Br J Surg. 90 (5): 549–54. doi:10.1002/bjs.4069. PMID 12734860.
  4. Zuetenhorst JM, Hoefnageli CA, Boot H, Valdés Olmos RA, Taal BG (August 2002). "Evaluation of (111)In-pentetreotide, (131)I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease". Nucl Med Commun. 23 (8): 735–41. PMID 12124478.
  5. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, Langstrom B, Bergstrom M, Eriksson B (June 2005). "Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography". J. Clin. Endocrinol. Metab. 90 (6): 3392–400. doi:10.1210/jc.2004-1938. PMID 15755858.

Template:WS Template:WH