COVID-19 electrocardiogram: Difference between revisions

Jump to navigation Jump to search
DrMars (talk | contribs)
Created page with "thumb|Electron micrograph of SARS-CoV-2 virions with visible coronae __NOTOC__ {{COVID-19}} {{CMG}} ; {{AE}}User:DrMars|Mohammadmain Reza..."
 
Aditya Ganti (talk | contribs)
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
[[File:SARS-CoV-2 49534865371.jpg|thumb|Electron micrograph of SARS-CoV-2 virions with visible coronae]]
__NOTOC__
__NOTOC__
'''For COVID-19 frequently asked inpatient questions, click [[COVID-19 frequently asked inpatient questions|here]]'''<br>
'''For COVID-19 frequently asked outpatient questions, click [[COVID-19 frequently asked outpatient questions|here]]'''<br>
{{COVID-19}}
{{COVID-19}}
{{CMG}} ; {{AE}}[[User:DrMars|Mohammadmain Rezazadehsaatlou]] [2],
{{CMG}}; {{AE}} {{Sab}}; {{HK}}; {{Nuha}}


==Overview==
==Overview==
There are no specific [[ECG]] findings associated with [[COVID-19]]. The [[The electrocardiogram|ECG]] findings that have been reported are [[sinus tachycardia]], [[ST elevation|ST-elevation]], diffuse [[T wave]] inversion, [[relative bradycardia]], [[atrial fibrillation]].


==COVID-19 electrocardiogram==
==Electrocardiogram==
*Non specific findings can include [[sinus tachycardia]], [[ST elevation|ST-elevation]] and diffuse [[T wave]] inversion.<ref name="pmid26922692">{{cite journal |vauthors=Alhogbani T |title=Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus |journal=Ann Saudi Med |volume=36 |issue=1 |pages=78–80 |date=2016 |pmid=26922692 |pmc=6074274 |doi=10.5144/0256-4947.2016.78 |url=}}</ref>
* The [[The electrocardiogram|ECG]] may help in identifying preexisting [[cardiac]] abnormalities and precipitating factors, such as [[ischemia]], [[myocarditis]], and [[arrhythmias]].
*Most of the findings are:
**ST-T changes, [[atrial fibrillation]][[Tachy-brady syndrome|,tachy-brady syndrome]].
**Changes consistent with [[acute pericarditis]]; [[COVID-19]] induced [[pericarditis]] may due to expression of [[Angiotensin-converting enzyme 2|ACE2]] receptors in [[epicardial]] [[Adipocyte|adipocites]].<ref name="Amaratunga Corwin2020">{{cite journal|last1=Amaratunga |first1=Eluwana A|last2=Corwin|first2=Douglas S|last3=Moran|first3=Lynn|last4=Snyder|first4=Richard|title=Bradycardia in Patients With COVID-19: A Calm Before the Storm?|journal=Cureus|year=2020|issn=2168-8184|doi=10.7759/cureus.8599}}</ref>
**[[Complete heart block]], [[acute coronary syndromes]], [[myocarditis]], [[decompensated heart failure]], and [[Pulmonary embolism|pulmonary embolisms]].<ref name="Amaratunga Corwin2020">{{cite journal|last1=Amaratunga |first1=Eluwana A|last2=Corwin|first2=Douglas S|last3=Moran|first3=Lynn|last4=Snyder|first4=Richard|title=Bradycardia in Patients With COVID-19: A Calm Before the Storm?|journal=Cureus|year=2020|issn=2168-8184|doi=10.7759/cureus.8599}}</ref>
**[[Sinus rhythm]] with a [[first-degree atrioventricular block]] (AVB) with SITIIIQIII; [[Sinus tachycardia]] with incomplete [[right bundle branch block]].<ref name="HeWu2020" /><ref name="McculloughGoyal2020" />


==References==
*[[COVID-19]] and acute [[myopericarditis]]:
**[[Low QRS voltage|Low voltage]] in the limb leads, [[ST-segment elevation]] and an [[ST-segment depression]] with [[T-wave inversion]]; Severe stages of [[COVID-19]] have been attributed to possible [[hypoxia]] and [[inflammatory]] damage incurred by the [[virus]].<ref name="InciardiLupi2020">{{cite journal|last1=Inciardi|first1=Riccardo M.|last2=Lupi|first2=Laura|last3=Zaccone|first3=Gregorio|last4=Italia|first4=Leonardo|last5=Raffo|first5=Michela|last6=Tomasoni|first6=Daniela|last7=Cani|first7=Dario S.|last8=Cerini|first8=Manuel|last9=Farina|first9=Davide|last10=Gavazzi|first10=Emanuele|last11=Maroldi|first11=Roberto|last12=Adamo|first12=Marianna|last13=Ammirati|first13=Enrico|last14=Sinagra|first14=Gianfranco|last15=Lombardi|first15=Carlo M.|last16=Metra|first16=Marco|title=Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|year=2020|issn=2380-6583|doi=10.1001/jamacardio.2020.1096}}</ref><ref name="HeWu2020">{{cite journal|last1=He|first1=Jia|last2=Wu|first2=Bo|last3=Chen|first3=Yaqin|last4=Tang|first4=Jianjun|last5=Liu|first5=Qiming|last6=Zhou|first6=Shenghua|last7=Chen|first7=Chen|last8=Qin|first8=Qingwu|last9=Huang|first9=Kang|last10=Lv|first10=Jianlei|last11=Chen|first11=Yan|last12=Peng|first12=Daoquan|title=Characteristic Electrocardiographic Manifestations in Patients With COVID-19|journal=Canadian Journal of Cardiology|volume=36|issue=6|year=2020|pages=966.e1–966.e4|issn=0828282X|doi=10.1016/j.cjca.2020.03.028}}</ref><ref name="Amaratunga Corwin2020" /><ref name="McculloughGoyal2020">{{cite journal|last1=Mccullough|first1=S. Andrew|last2=Goyal|first2=Parag|last3=Krishnan|first3=Udhay|last4=Choi|first4=Justin J.|last5=Safford|first5=Monika M.|last6=Okin|first6=Peter M.|title=Electrocardiographic Findings in Coronavirus Disease-19: Insights on Mortality and Underlying Myocardial Processes|journal=Journal of Cardiac Failure|year=2020|issn=10719164|doi=10.1016/j.cardfail.2020.06.005}}</ref>
 
*[[Relative bradycardia]] in patients With [[COVID-19]]:
**The [[pathogenesis]] is poorly understood, [[cardiac pacemaker]] cells may be a target for [[inflammatory]] [[Cytokine|cytokines]] resulting in a change in heart rate dynamics or their responsiveness to [[Neurotransmitter|neurotransmitters]] during [[systemic inflammation]]. Severe deterioration in some patients with [[COVID-19]] being closely related to the [[Cytokine storm|cytokine storm.]]<ref name="YeWang2020">{{cite journal|last1=Ye|first1=Qing|last2=Wang|first2=Bili|last3=Mao|first3=Jianhua|title=The pathogenesis and treatment of the `Cytokine Storm' in COVID-19|journal=Journal of Infection|volume=80|issue=6|year=2020|pages=607–613|issn=01634453|doi=10.1016/j.jinf.2020.03.037}}</ref>
**The [[inflammatory]] [[cytokines]] released during the stage of overwhelming [[immune response]], acting on the [[cardiac pacemaker]] cells could possibly contribute to [[bradycardia]]. It may be that the high levels of pro-[[inflammatory]] [[Cytokine|cytokines]], including [[Interleukin 6|IL-6]] directly act on the [[Sinoatrial node|sinoatrial]] ([[SA]]) node.<ref name="Amaratunga Corwin2020">{{cite journal|last1=Amaratunga |first1=Eluwana A|last2=Corwin|first2=Douglas S|last3=Moran|first3=Lynn|last4=Snyder|first4=Richard|title=Bradycardia in Patients With COVID-19: A Calm Before the Storm?|journal=Cureus|year=2020|issn=2168-8184|doi=10.7759/cureus.8599}}</ref>
 
*Medication induce prolongation of PQ interval,particularly in those with [[Comorbidities|co-morbidities]] and in those who are treated with other [[QT-prolongation|QT-prolonging]] medications.<ref name="ChorinDai2020">{{cite journal|last1=Chorin|first1=Ehud|last2=Dai|first2=Matthew|last3=Shulman|first3=Eric|last4=Wadhwani|first4=Lalit|last5=Bar-Cohen|first5=Roi|last6=Barbhaiya|first6=Chirag|last7=Aizer|first7=Anthony|last8=Holmes|first8=Douglas|last9=Bernstein|first9=Scott|last10=Spinelli|first10=Michael|last11=Park|first11=David S.|last12=Chinitz|first12=Larry A.|last13=Jankelson|first13=Lior|title=The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin|journal=Nature Medicine|volume=26|issue=6|year=2020|pages=808–809|issn=1078-8956|doi=10.1038/s41591-020-0888-2}}</ref>
=='''[[QTc]] Assessment Guidelines'''==
'''Table 1. Risk Score For Drug-Associated [[QTc]] Prolongation'''<ref name="TisdaleJaynes2013">{{cite journal|last1=Tisdale|first1=James E.|last2=Jaynes|first2=Heather A.|last3=Kingery|first3=Joanna R.|last4=Mourad|first4=Noha A.|last5=Trujillo|first5=Tate N.|last6=Overholser|first6=Brian R.|last7=Kovacs|first7=Richard J.|title=Development and Validation of a Risk Score to Predict QT Interval Prolongation in Hospitalized Patients|journal=Circulation: Cardiovascular Quality and Outcomes|volume=6|issue=4|year=2013|pages=479–487|issn=1941-7713|doi=10.1161/CIRCOUTCOMES.113.000152}}</ref>
<br />
{| class="wikitable" style="border: 0px; font-size: 90%; margin: 3px;" align="center"
! rowspan="1" style="background: #4479BA; padding: 5px 5px;" |'''Risk Factors'''
! colspan="1" style="background: #4479BA; padding: 5px 5px;" |'''Points'''
|-
| style="padding: 5px 5px; background: #F5F5F5;" |Age ≥68 y
 
| style="padding: 5px 5px; background: #F5F5F5;" |1


|-
|Female sex
|1
|-
|Loop diuretic
|1
|-
|Serum K+ ≤3.5 mEq/L
|2
|-
|Admission QTc ≥450 ms
|2
|-
|Acute MI
|2
|-
|≥2 QTc-prolonging drugs
|3
|-
|sepsis
|3
|-
|Heart failure
|3
|-
|One QTc-prolonging drug
|3
|-
|Maximum Risk Score
|21
|-
|K+ indicates potassium; and MI, myocardial infarction.
|
|}__NOTOC__
A Tisdale score of ≤ 6 predicts low risk, 7-10 medium risk, and ≥ 11 high risk of drug-associated QT prolongation (Table 2).
{| class="wikitable"
!'''Table 2. Risk Levels For Drug-Associated QT Prolongation'''
|-
|Low risk = ≤6 points
|-
|Moderate risk = 7-10 points
|-
|High-risk = ≥11 points
|}
<br />


[[Category: Infectious disease]]
==References==
{{reflist|2}}

Latest revision as of 15:42, 8 July 2020

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 electrocardiogram On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 electrocardiogram

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 electrocardiogram

CDC on COVID-19 electrocardiogram

COVID-19 electrocardiogram in the news

Blogs on COVID-19 electrocardiogram

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 electrocardiogram

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sabawoon Mirwais, M.B.B.S, M.D.[2]; Syed Hassan A. Kazmi BSc, MD [3]; Nuha Al-Howthi, MD[4]

Overview

There are no specific ECG findings associated with COVID-19. The ECG findings that have been reported are sinus tachycardia, ST-elevation, diffuse T wave inversion, relative bradycardia, atrial fibrillation.

Electrocardiogram

  • Medication induce prolongation of PQ interval,particularly in those with co-morbidities and in those who are treated with other QT-prolonging medications.[7]

QTc Assessment Guidelines

Table 1. Risk Score For Drug-Associated QTc Prolongation[8]

Risk Factors Points
Age ≥68 y 1
Female sex 1
Loop diuretic 1
Serum K+ ≤3.5 mEq/L 2
Admission QTc ≥450 ms 2
Acute MI 2
≥2 QTc-prolonging drugs 3
sepsis 3
Heart failure 3
One QTc-prolonging drug 3
Maximum Risk Score 21
K+ indicates potassium; and MI, myocardial infarction.

A Tisdale score of ≤ 6 predicts low risk, 7-10 medium risk, and ≥ 11 high risk of drug-associated QT prolongation (Table 2).

Table 2. Risk Levels For Drug-Associated QT Prolongation
Low risk = ≤6 points
Moderate risk = 7-10 points
High-risk = ≥11 points


References

  1. Alhogbani T (2016). "Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus". Ann Saudi Med. 36 (1): 78–80. doi:10.5144/0256-4947.2016.78. PMC 6074274. PMID 26922692.
  2. 2.0 2.1 2.2 2.3 Amaratunga, Eluwana A; Corwin, Douglas S; Moran, Lynn; Snyder, Richard (2020). "Bradycardia in Patients With COVID-19: A Calm Before the Storm?". Cureus. doi:10.7759/cureus.8599. ISSN 2168-8184.
  3. 3.0 3.1 He, Jia; Wu, Bo; Chen, Yaqin; Tang, Jianjun; Liu, Qiming; Zhou, Shenghua; Chen, Chen; Qin, Qingwu; Huang, Kang; Lv, Jianlei; Chen, Yan; Peng, Daoquan (2020). "Characteristic Electrocardiographic Manifestations in Patients With COVID-19". Canadian Journal of Cardiology. 36 (6): 966.e1–966.e4. doi:10.1016/j.cjca.2020.03.028. ISSN 0828-282X.
  4. 4.0 4.1 Mccullough, S. Andrew; Goyal, Parag; Krishnan, Udhay; Choi, Justin J.; Safford, Monika M.; Okin, Peter M. (2020). "Electrocardiographic Findings in Coronavirus Disease-19: Insights on Mortality and Underlying Myocardial Processes". Journal of Cardiac Failure. doi:10.1016/j.cardfail.2020.06.005. ISSN 1071-9164.
  5. Inciardi, Riccardo M.; Lupi, Laura; Zaccone, Gregorio; Italia, Leonardo; Raffo, Michela; Tomasoni, Daniela; Cani, Dario S.; Cerini, Manuel; Farina, Davide; Gavazzi, Emanuele; Maroldi, Roberto; Adamo, Marianna; Ammirati, Enrico; Sinagra, Gianfranco; Lombardi, Carlo M.; Metra, Marco (2020). "Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19)". JAMA Cardiology. doi:10.1001/jamacardio.2020.1096. ISSN 2380-6583.
  6. Ye, Qing; Wang, Bili; Mao, Jianhua (2020). "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19". Journal of Infection. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. ISSN 0163-4453.
  7. Chorin, Ehud; Dai, Matthew; Shulman, Eric; Wadhwani, Lalit; Bar-Cohen, Roi; Barbhaiya, Chirag; Aizer, Anthony; Holmes, Douglas; Bernstein, Scott; Spinelli, Michael; Park, David S.; Chinitz, Larry A.; Jankelson, Lior (2020). "The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin". Nature Medicine. 26 (6): 808–809. doi:10.1038/s41591-020-0888-2. ISSN 1078-8956.
  8. Tisdale, James E.; Jaynes, Heather A.; Kingery, Joanna R.; Mourad, Noha A.; Trujillo, Tate N.; Overholser, Brian R.; Kovacs, Richard J. (2013). "Development and Validation of a Risk Score to Predict QT Interval Prolongation in Hospitalized Patients". Circulation: Cardiovascular Quality and Outcomes. 6 (4): 479–487. doi:10.1161/CIRCOUTCOMES.113.000152. ISSN 1941-7713.