African trypanosomiasis laboratory findings: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
WikiBot (talk | contribs)
m Bot: Removing from Primary care
 
(22 intermediate revisions by 8 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{African trypanosomiasis}}
{{African trypanosomiasis}}
{{CMG}}; {{AOEIC}} Pilar Almonacid; {{JH}}
{{CMG}}; {{AOEIC}} Pilar Almonacid, {{JH}}


==Overview==
==Overview==
The diagnosis of African trypanosomiasis rests upon demonstrating [[trypanosomes]] by microscopic examination of chancre fluid, [[lymph node]] aspirates,[[blood]], [[bone marrow]], or, in the late stages of infection, [[cerebrospinal fluid]].
The diagnosis of [[African trypanosomiasis]] rests on demonstrating [[trypanosomes]] by [[microscopic examination]] of [[chancre]] fluid, [[lymph node]] [[Aspirate|aspirates]], [[blood|blood]], [[bone marrow|bone marrow]], and  [[cerebrospinal fluid]] in the late stages of [[infection]].
 
==Laboratory Findings==  
==Laboratory Findings==  
===Electrolyte and Biomarker Studies===
The diagnosis of [[African trypanosomiasis]] rests on demonstrating [[trypanosomes]] by [[microscopic examination]] of [[chancre]] fluid, [[lymph node]] aspirates, [[blood]], [[bone marrow]] or, in the late stages of [[infection]], in [[cerebrospinal fluid]].
Three serological tests are available for detection of the parasite; the micro-CATT, wb-CATT, and wb-LATEX.  The first uses dried blood while the other two use whole blood samples.  A 2002 study found the wb-CATT to be the most efficient for diagnosis, while the wb-LATEX is a better exam for situations where greater sensitivity is required.<ref>{{cite journal |author=Truc P, Lejon V, Magnus E, ''et al.'' |title=Evaluation of the micro-CATT, CATT/Trypanosoma brucei gambiense, and LATEX/T b gambiense methods for serodiagnosis and surveillance of human African trypanosomiasis in West and Central Africa |journal=Bull. World Health Organ. |volume=80 |issue=11 |pages=882–6 |year=2002 |pmid=12481210 |pmc=2567684 |doi= |url=}}</ref>
===Blood smear===
 
*Acute disease is often diagnosed by visual detection of the ''[[Trypanosoma brucei rhodesiense]] '' [[Parasites|parasite]] on [[peripheral blood smear]].
===Microscopy===
*[[Peripheral blood smear|Peripheral blood smears]] are usually stained with [[Giemsa stain]] for adequate visualization of the [[Parasites|parasite]].
A wet preparation should be examined for the motile trypanosomes, and in addition a smear should be fixed, stained with [[Giemsa]] (or Field), and examined.  Concentration techniques can be used prior to microscopic examination.  For blood samples, these include centrifugation followed by examination of the [[buffy coat]]; mini anion-exchange/centrifugation; and the Quantitative Buffy Coat (QBC) technique.  For other samples such as spinal fluid, concentration techniques include centrifugation followed by examination of the sediment.  Isolation of the parasite by inoculation of rats or mice is a sensitive method, but its use is limited to ''T. b. rhodesiense''.  Antibody detection has sensitivity and specificity that are too variable for clinical decisions.  In addition, in infections with ''T. b. rhodesiense'', seroconversion occurs after the onset of clinical symptoms and thus is of limited use.
{| class="wikitable"
 
!Microscopy
{|
!Findings
|-
|[[Image:African trypanosomiasis.jpg|left|African trypanosomiasis]]
|[[Image:African trypanosomiasis.jpg|left|African trypanosomiasis]]
|A, B: Two areas from a blood smear from a patient with African trypanosomiasis.  Thin blood smear stained with Giemsa. Typical trypomastigote stages (the only stages found in patients), with a posterior kinetoplast, a centrally located nucleus, an undulating membrane, and an anterior flagellum. The two T. brucei species that cause human trypanosomiasis, T. b. gambiense and T. b. rhodesiense, are indistinguishable morphologically. The trypanosomes length range is 14 to 33 µm.
|
|-
* Thin blood smear stained with [[Giemsa stain|Giemsa]].  
|[[Image:African trypanosomiasis 2 and 3.jpg|left|African trypanosomiasis 2 and 3]]
* Typical trypomastigote stages (the only stages found in patients), with a posterior [[kinetoplast]], a centrally located [[Cell nucleus|nucleus]], an undulating membrane, and an anterior [[flagellum]].  
|C, D: Blood smear from a patient with T. b. rhodesiense, Giemsa stain.  D shows the same field as C, with the addition of differential interference contrast (DIC) which better visualizes the flagella (DIC is not necessary for diagnosis!).  41-year-old man who had returned from a trip to Tanzania.  Specimen contributed by Dr. Phil Smith, Omaha, Nebraska.
* The two ''[[Trypanosoma brucei]]'' [[species]] that cause human trypanosomiasis, ''[[Trypanosoma brucei gambiense]]'' and ''[[Trypanosoma brucei rhodesiense]]'', are indistinguishable [[Morphology|morphologically]].  
* The [[Trypanosome|trypanosome's]] length ranges from 14 to 33 µm.
|-
|-
|[[Image:African trypanosomiasis 5.jpg|left|African trypanosomiasis 5]]
|[[Image:African trypanosomiasis 5.jpg|left|African trypanosomiasis 5]]
|E: Blood smear from a patient (a U.S. traveler) with T. b. rhodesiense.  A dividing parasite is seen at the right.  Dividing forms are seen in African trypanosomiasis, but not in American trypanosomiasis (Chagas disease).
|
|-
* Parasite exhibiting division (on right).
|[[Image:African trypanosomiasis 6.jpg|left|African trypanosomiasis 6]]
|F: Blood smear from a patient with T. b. gambiense.  Image contributed by Prof. J. Le Bras, Hôpital Bichat - Claude Bernard, Paris, France.
|-
|}
|}
===Electrolyte and biomarker studies===
*[[Serology]] is not usually helpful in acute [[disease]].
*Detection of anti-trypanosomal [[Immunoglobulin G|IgG antibodies]] is helpful in detection of African trypanosomiasis [[Infection|infections]].
*Three [[Serological testing|serologica]]<nowiki/>l tests are available for detection of the [[Parasites|parasite]]:
**Micro-CATT (uses dried blood)
**wb-CATT (uses whole blood)
**wb-LATEX (uses whole blood)
*wb-CATT is the most efficient test for diagnosis, while wb-LATEX is a better exam for situations in which greater [[sensitivity]] is required.<ref>{{cite journal |author=Truc P, Lejon V, Magnus E, ''et al.'' |title=Evaluation of the micro-CATT, CATT/Trypanosoma brucei gambiense, and LATEX/T b gambiense methods for serodiagnosis and surveillance of human African trypanosomiasis in West and Central Africa |journal=Bull. World Health Organ. |volume=80 |issue=11 |pages=882–6 |year=2002 |pmid=12481210 |pmc=2567684 |doi= |url=}}</ref>
*Detection of [[antibodies]] among [[infants]] may be difficult due to the presence of [[maternal]] [[antibodies]] early following birth. Accordingly, [[Serology|serologic]] testing for [[infants]] is only recommended at least 9 months after birth.


==Gallery==
==Gallery==
Line 50: Line 60:
==References==
==References==
{{reflist|2}}
{{reflist|2}}
{{WH}}
{{WS}}
[[Category:Disease]]
[[Category:Disease]]
[[Category:Up-To-Date]]
[[Category:Dermatology]]
[[Category:Neurology]]
[[Category:Neurology]]
[[Category:Emergency medicine]]
[[Category:Infectious disease]]
[[Category:Infectious disease]]
[[Category:Parasitic diseases]]
[[Category:Euglenozoa]]
[[Category:Sleep disorders]]
[[Category:Neglected diseases]]
[[Category:Insect-borne diseases]]

Latest revision as of 20:19, 29 July 2020

African trypanosomiasis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating African trypanosomiasis from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT Scan

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

African trypanosomiasis laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of African trypanosomiasis laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on African trypanosomiasis laboratory findings

CDC on African trypanosomiasis laboratory findings

African trypanosomiasis laboratory findings in the news

Blogs on African trypanosomiasis laboratory findings

Directions to Hospitals Treating African trypanosomiasis

Risk calculators and risk factors for African trypanosomiasis laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Pilar Almonacid, Jesus Rosario Hernandez, M.D. [2]

Overview

The diagnosis of African trypanosomiasis rests on demonstrating trypanosomes by microscopic examination of chancre fluid, lymph node aspirates, blood, bone marrow, and cerebrospinal fluid in the late stages of infection.

Laboratory Findings

The diagnosis of African trypanosomiasis rests on demonstrating trypanosomes by microscopic examination of chancre fluid, lymph node aspirates, blood, bone marrow or, in the late stages of infection, in cerebrospinal fluid.

Blood smear

Microscopy Findings
African trypanosomiasis
African trypanosomiasis
African trypanosomiasis 5
African trypanosomiasis 5
  • Parasite exhibiting division (on right).

Electrolyte and biomarker studies

  • Serology is not usually helpful in acute disease.
  • Detection of anti-trypanosomal IgG antibodies is helpful in detection of African trypanosomiasis infections.
  • Three serological tests are available for detection of the parasite:
    • Micro-CATT (uses dried blood)
    • wb-CATT (uses whole blood)
    • wb-LATEX (uses whole blood)
  • wb-CATT is the most efficient test for diagnosis, while wb-LATEX is a better exam for situations in which greater sensitivity is required.[1]
  • Detection of antibodies among infants may be difficult due to the presence of maternal antibodies early following birth. Accordingly, serologic testing for infants is only recommended at least 9 months after birth.

Gallery

References

  1. Truc P, Lejon V, Magnus E; et al. (2002). "Evaluation of the micro-CATT, CATT/Trypanosoma brucei gambiense, and LATEX/T b gambiense methods for serodiagnosis and surveillance of human African trypanosomiasis in West and Central Africa". Bull. World Health Organ. 80 (11): 882–6. PMC 2567684. PMID 12481210.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 "Public Health Image Library (PHIL)".

Template:WH Template:WS