Chronic neutrophilic leukemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Bot: Removing from Primary care
 
(23 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{Chronic neutrophilic leukemia}}
{{Chronic neutrophilic leukemia}}


{{CMG}}; {{AE}}  
{{CMG}}; {{AE}} {{Homa}}; {{GRR}} {{Nat}}
==Overview==
==Overview==
The exact pathogenesis of [disease name] is not fully understood.
The exact [[pathogenesis]] of Chronic neutrophilic leukemia (CNL) is not fully understood. Some [[cytogenic]] abnormalities like [[trisomy 7]],8,9,21, deletion 11q, 20q6,7  may be seen in CNL patients. The [[mutation]] of [[CSF3R]] is seen in most patients. Moreover of mutation in CSF3R, there are some other [[Genetics|genetic]] [[Mutation|mutations]] which are less common.[[Polycythemia vera]], [[Plasma cell disorder|plasma cell disorders]] and [[nephrotic syndrome]] can be associated with CNL.  
 
OR
 
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
 
OR
 
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
 
OR
 
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
 
OR
 
 
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
 
OR
 
The progression to [disease name] usually involves the [molecular pathway].
 
OR
 
The pathophysiology of [disease/malignancy] depends on the histological subtype.


==Pathophysiology==
==Pathophysiology==
===Pathogenesis===
===Pathogenesis===
*It is understood that clonality has a role in the pathogenesis of CNL.<ref>{{Cite journal
*It is understood that clonality has a role in the [[pathogenesis]] of CNL. [[Cytogenetic]] [[abnormalities]] were seen in the [[diagnostic]] time or [[blast]] [[transformation]] in [[patients]] with CNL. Finding of these [[cytogenetic]] [[abnormalities]] were recommended that [[monoclonality]] involved in the [[pathogenesis]] of CNL.<ref name="LangabeerHaslam2017">{{cite journal|last1=Langabeer|first1=S. E.|last2=Haslam|first2=K.|last3=Kelly|first3=J.|last4=Quinn|first4=J.|last5=Morrell|first5=R.|last6=Conneally|first6=E.|title=Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis|journal=Clinical and Translational Oncology|volume=20|issue=3|year=2017|pages=420–423|issn=1699-048X|doi=10.1007/s12094-017-1722-2}}</ref><ref>{{Cite journal
  | author = [[J. Bohm]], [[S. Kock]], [[H. E. Schaefer]] & [[P. Fisch]]
  | author = [[J. Bohm]], [[S. Kock]], [[H. E. Schaefer]] & [[P. Fisch]]
  | title = Evidence of clonality in chronic neutrophilic leukaemia
  | title = Evidence of clonality in chronic neutrophilic leukaemia
Line 43: Line 18:
  | month = April
  | month = April
  | pmid = 12663642
  | pmid = 12663642
}}</ref>  
}}</ref>
*The cytogenetic abnormalities may be seen in CNL patients are:<ref name="ElliottPardanani2015">{{cite journal|last1=Elliott|first1=Michelle A.|last2=Pardanani|first2=Animesh|last3=Hanson|first3=Curtis A.|last4=Lasho|first4=Terra L.|last5=Finke|first5=Christy M.|last6=Belachew|first6=Alem A.|last7=Tefferi|first7=Ayalew|title=ASXL1mutations are frequent and prognostically detrimental inCSF3R-mutated chronic neutrophilic leukemia|journal=American Journal of Hematology|volume=90|issue=7|year=2015|pages=653–656|issn=03618609|doi=10.1002/ajh.24031}}</ref><ref>{{Cite journal
 
*The [[cytogenetic]] [[abnormalities]] may be seen in CNL [[Patient|patients]] are:<ref name="ElliottPardanani2015">{{cite journal|last1=Elliott|first1=Michelle A.|last2=Pardanani|first2=Animesh|last3=Hanson|first3=Curtis A.|last4=Lasho|first4=Terra L.|last5=Finke|first5=Christy M.|last6=Belachew|first6=Alem A.|last7=Tefferi|first7=Ayalew|title=ASXL1mutations are frequent and prognostically detrimental inCSF3R-mutated chronic neutrophilic leukemia|journal=American Journal of Hematology|volume=90|issue=7|year=2015|pages=653–656|issn=03618609|doi=10.1002/ajh.24031}}</ref><ref>{{Cite journal
  | author = [[John T. Reilly]]
  | author = [[John T. Reilly]]
  | title = Chronic neutrophilic leukaemia: a distinct clinical entity?
  | title = Chronic neutrophilic leukaemia: a distinct clinical entity?
Line 64: Line 40:
  | month = May
  | month = May
  | pmid = 15087070
  | pmid = 15087070
}}</ref><ref>{{Cite journal
| author = [[Donald P. Mc Lornan]], [[Melanie J. Percy]], [[Amy V. Jones]], [[Nicholas C. P. Cross]] & [[Mary Frances Mc Mullin]]
| title = Chronic neutrophilic leukemia with an associated V617F JAK2 tyrosine kinase mutation
| journal = [[Haematologica]]
| volume = 90
| issue = 12
| pages = 1696–1697
| year = 2005
| month = December
| pmid = 16330446
}}</ref>
}}</ref>
**Specific ones:
**Specific ones:
***trisomy 8
***[[Trisomy 8]]
***trisomy 21
***[[Trisomy 21]]
***deletion 11q
***[[Deletion 11q]]
***deletion 20q6
***[[Deletion 20q6]]
**non-specific ones:
**non-specific ones:
***deletion Y, and
***[[Deletion Y]]
***trisomy 7
***[[Trisomy 7]]
***trisomy 9
***[[Trisomy 9]]
***[[JAK2V617F|Detection of JAK2V617F]]


 
*The progression to CNL usually involves the [[CSF3R]] [[mutation]]. [[CSF3R]] [[encodes]] the [[Receptor (biochemistry)|receptor]] of [[CSF3R|CSF3]] . It activates some pathways such as the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and so CSF3 acts as a [[neutrophilic growth factor]]. This [[mutation]] causes autonomous [[cell proliferation]]. CSF3RT618I and CSF3RT615A are the two types of membrane-proximal CSF3R mutations which are the most common ones. These two types activate the JAK2/STAT3 signaling pathway which is inhibited by Ruxolitinib. The other less common mutations such as truncation CSF3R mutations initiate SRC family tyrosine kinase nonreceptor 2 (TNK2 kinases) pathway and the inhibitor of this pathway is Dasatinib.<ref name="BeekmanValkhof2012">{{cite journal|last1=Beekman|first1=R.|last2=Valkhof|first2=M. G.|last3=Sanders|first3=M. A.|last4=van Strien|first4=P. M. H.|last5=Haanstra|first5=J. R.|last6=Broeders|first6=L.|last7=Geertsma-Kleinekoort|first7=W. M.|last8=Veerman|first8=A. J. P.|last9=Valk|first9=P. J. M.|last10=Verhaak|first10=R. G.|last11=Lowenberg|first11=B.|last12=Touw|first12=I. P.|title=Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia|journal=Blood|volume=119|issue=22|year=2012|pages=5071–5077|issn=0006-4971|doi=10.1182/blood-2012-01-406116}}</ref><ref name="DongBrynes1995">{{cite journal|last1=Dong|first1=Fan|last2=Brynes|first2=Russell K.|last3=Tidow|first3=Nicola|last4=Welte|first4=Karl|last5=Löwenberg|first5=Bob|last6=Touw|first6=Ivo P.|title=Mutations in the Gene for the Granulocyte Colony-Stimulating–Factor Receptor in Patients with Acute Myeloid Leukemia Preceded by Severe Congenital Neutropenia|journal=New England Journal of Medicine|volume=333|issue=8|year=1995|pages=487–493|issn=0028-4793|doi=10.1056/NEJM199508243330804}}</ref><ref name="TouwPalande2013">{{cite journal|last1=Touw|first1=Ivo P.|last2=Palande|first2=Karishma|last3=Beekman|first3=Renée|title=Granulocyte Colony-Stimulating Factor Receptor Signaling|journal=Hematology/Oncology Clinics of North America|volume=27|issue=1|year=2013|pages=61–73|issn=08898588|doi=10.1016/j.hoc.2012.10.002}}</ref><ref>{{Cite journal
 
| author = [[S. J. Corey]], [[A. L. Burkhardt]], [[J. B. Bolen]], [[R. L. Geahlen]], [[L. S. Tkatch]] & [[D. J. Tweardy]]
*[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
| title = Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases
*Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
| journal = [[Proceedings of the National Academy of Sciences of the United States of America]]
*[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
| volume = 91
*The progression to [disease name] usually involves the [molecular pathway].
| issue = 11
*The pathophysiology of [disease/malignancy] depends on the histological subtype.
| pages = 4683–4687
 
| year = 1994
In Reilly’s 2002 review, 37% of CNL cases presented abnormal cytogenetics consisting primarily of trisomy 8, trisomy 21, deletion 11q, and deletion 20q6. Subsequently one of the largest CNL case series (total of 40 CNL patients) identified cytogenetic abnormalities in 13 of 40 patients (32.5%)12. These aberrations were detected at baseline in 20% of patients and during clonal evolution in the remaining 12.5% and included deletion 20q, trisomy 21, deletion 11q, and deletion 12p12. Though the most common chromosomal lesions in CNL consist of trisomy 8 and deletion 20q, observed either at diagnosis or at the time of clonal evolution18, multiple additional abnormalities have been described including tetraploidy 21, trisomies 7, 8, and 9, translocation 1;20, deletion Y, deletion 6, add 5p, deletion 15, and monosomy 288, and are considered non-specific, yet non-random findings in myeloid neoplasms89. In rare cases, detection of a well-known MPN molecular marker such as JAK2V617F may also serve to establish  clonality12
| month = May
 
| pmid = 8197119
Discovery of the CSF3R mutation in 2013 has expanded our understanding of the molecular pathogenesis of CNL.16,23 CSF3R encodes the receptor for neutrophilic growth factor CSF3,30 and it exploits the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway for signal transduction, among others.31 Two classes of CSF3R mutations are observed in CNL-membrane-proximal mutations and truncation mutations (Table 2). The truncation mutations prompt the loss of a di-leucine internalization motif in the cytoplasmic domain of the CSF3R receptor and the binding site for suppressor of cytokine signaling 3, resulting in decreased lysosomal trafficking of the receptor. This in turn augments the cell-surface expression of the receptor, thus conferring ligand hypersensitivity and ensuing neutrophil proliferation. In contrast, the membrane-proximal mutations cause ligandindependent homodimerization, inducing autonomous cell proliferation.
}}</ref><ref>{{Cite journal
 
| author = [[Julia E. Maxson]], [[Samuel B. Luty]], [[Jason D. MacManiman]], [[Jason C. Paik]], [[Jason Gotlib]], [[Peter Greenberg]], [[Swaleh Bahamadi]], [[Samantha L. Savage]], [[Melissa L. Abel]], [[Christopher A. Eide]], [[Marc M. Loriaux]], [[Emily A. Stevens]] & [[Jeffrey W. Tyner]]
The 2 CSF3R mutation classes do not merely differ in their transforming capacity but also in downstream signal activation. In vitro studies have revealed that membrane-proximal mutations (T615A, T618I, and T640N) result in dysregulated JAK2/STAT3 signaling, and truncation mutations (D771fs, S783fs, Y752X, and W791X) result in dysregulation of SRC family tyrosine kinase nonreceptor 2 (TNK2 kinases),33 thus bestowing sensitivity to JAK inhibitor ruxolitinib and SRC kinase inhibitor dasatinib, respectively 23,34 Truncation mutations engender ligand-dependent receptor activation in a Ba/f3 cell line as opposed to the membraneproximal mutations. Furthermore, truncation mutations necessitate the presence of cooperating mutations to realize their oncogenic potential.23,35 Additionally, 33% of patients manifest dual truncation and membrane-proximal mutations on the same allele,23 and display enhanced leukemogenicity through activation of mitogenactivated protein kinase (MAPK) signaling pathway. These compound mutants are characteristically impervious to ruxolitinib or dasatinib, given their reliance on MAPK signaling.
| title = The Colony-Stimulating Factor 3 Receptor T640N Mutation Is Oncogenic, Sensitive to JAK Inhibition, and Mimics T618I
| journal = [[Clinical cancer research : an official journal of the American Association for Cancer Research]]
| volume = 22
| issue = 3
| pages = 757–764
| year = 2016
| month = February
| doi = 10.1158/1078-0432.CCR-14-3100
| pmid = 26475333
}}</ref><ref name="MaxsonGotlib2013">{{cite journal|last1=Maxson|first1=Julia E.|last2=Gotlib|first2=Jason|last3=Pollyea|first3=Daniel A.|last4=Fleischman|first4=Angela G.|last5=Agarwal|first5=Anupriya|last6=Eide|first6=Christopher A.|last7=Bottomly|first7=Daniel|last8=Wilmot|first8=Beth|last9=McWeeney|first9=Shannon K.|last10=Tognon|first10=Cristina E.|last11=Pond|first11=J. Blake|last12=Collins|first12=Robert H.|last13=Goueli|first13=Basem|last14=Oh|first14=Stephen T.|last15=Deininger|first15=Michael W.|last16=Chang|first16=Bill H.|last17=Loriaux|first17=Marc M.|last18=Druker|first18=Brian J.|last19=Tyner|first19=Jeffrey W.|title=Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML|journal=New England Journal of Medicine|volume=368|issue=19|year=2013|pages=1781–1790|issn=0028-4793|doi=10.1056/NEJMoa1214514}}</ref>


==Genetics==
==Genetics==
[Disease name] is transmitted in [mode of genetic transmission] pattern.
The [[development]] of CNL is the result of multiple [[genetic]] [[Mutation|mutations]] such as:<ref name="PardananiLasho2013">{{cite journal|last1=Pardanani|first1=A|last2=Lasho|first2=T L|last3=Laborde|first3=R R|last4=Elliott|first4=M|last5=Hanson|first5=C A|last6=Knudson|first6=R A|last7=Ketterling|first7=R P|last8=Maxson|first8=J E|last9=Tyner|first9=J W|last10=Tefferi|first10=A|title=CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia|journal=Leukemia|volume=27|issue=9|year=2013|pages=1870–1873|issn=0887-6924|doi=10.1038/leu.2013.122}}</ref><ref name="ElliottPardanani2015">{{cite journal|last1=Elliott|first1=Michelle A.|last2=Pardanani|first2=Animesh|last3=Hanson|first3=Curtis A.|last4=Lasho|first4=Terra L.|last5=Finke|first5=Christy M.|last6=Belachew|first6=Alem A.|last7=Tefferi|first7=Ayalew|title=ASXL1mutations are frequent and prognostically detrimental inCSF3R-mutated chronic neutrophilic leukemia|journal=American Journal of Hematology|volume=90|issue=7|year=2015|pages=653–656|issn=03618609|doi=10.1002/ajh.24031}}</ref><ref name="MaxsonGotlib2013">{{cite journal|last1=Maxson|first1=Julia E.|last2=Gotlib|first2=Jason|last3=Pollyea|first3=Daniel A.|last4=Fleischman|first4=Angela G.|last5=Agarwal|first5=Anupriya|last6=Eide|first6=Christopher A.|last7=Bottomly|first7=Daniel|last8=Wilmot|first8=Beth|last9=McWeeney|first9=Shannon K.|last10=Tognon|first10=Cristina E.|last11=Pond|first11=J. Blake|last12=Collins|first12=Robert H.|last13=Goueli|first13=Basem|last14=Oh|first14=Stephen T.|last15=Deininger|first15=Michael W.|last16=Chang|first16=Bill H.|last17=Loriaux|first17=Marc M.|last18=Druker|first18=Brian J.|last19=Tyner|first19=Jeffrey W.|title=Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML|journal=New England Journal of Medicine|volume=368|issue=19|year=2013|pages=1781–1790|issn=0028-4793|doi=10.1056/NEJMoa1214514}}</ref><ref name="GotlibMaxson2013">{{cite journal|last1=Gotlib|first1=J.|last2=Maxson|first2=J. E.|last3=George|first3=T. I.|last4=Tyner|first4=J. W.|title=The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment|journal=Blood|volume=122|issue=10|year=2013|pages=1707–1711|issn=0006-4971|doi=10.1182/blood-2013-05-500959}}</ref><ref name="MeggendorferHaferlach2014">{{cite journal|last1=Meggendorfer|first1=M.|last2=Haferlach|first2=T.|last3=Alpermann|first3=T.|last4=Jeromin|first4=S.|last5=Haferlach|first5=C.|last6=Kern|first6=W.|last7=Schnittger|first7=S.|title=Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia|journal=Haematologica|volume=99|issue=12|year=2014|pages=e244–e246|issn=0390-6078|doi=10.3324/haematol.2014.113159}}</ref><ref name="CuiLi2014">{{cite journal|last1=Cui|first1=Yajuan|last2=Li|first2=Bing|last3=Gale|first3=Robert Peter|last4=Jiang|first4=Qian|last5=Xu|first5=Zefeng|last6=Qin|first6=Tiejun|last7=Zhang|first7=Peihong|last8=Zhang|first8=Yue|last9=Xiao|first9=Zhijian|title=CSF3R, SETBP1 and CALR mutations in chronic neutrophilic leukemia|journal=Journal of Hematology & Oncology|volume=7|issue=1|year=2014|issn=1756-8722|doi=10.1186/s13045-014-0077-1}}</ref><ref name="DaoTyner2015">{{cite journal|last1=Dao|first1=K.-H. T.|last2=Tyner|first2=J. W.|title=What's different about atypical CML and chronic neutrophilic leukemia?|journal=Hematology|volume=2015|issue=1|year=2015|pages=264–271|issn=1520-4391|doi=10.1182/asheducation-2015.1.264}}</ref>
 
*[[CSF3R]]  
OR
*[[SETBP1]]
 
*[[ASXL1]]
Genes involved in the pathogenesis of [disease name] include:
*[[TET2]]
*[Gene1]
*[[EZH2]]
*[Gene2]
*[[KDM6A]]
*[Gene3]
 
OR
 
The development of [disease name] is the result of multiple genetic mutations such as:
 
*[Mutation 1]
*[Mutation 2]
*[Mutation 3]


==Associated Conditions==
==Associated Conditions==
Conditions associated with [disease name] include:
Conditions associated with CNL include:<ref>{{Cite journal
| author = [[Rending Wang]], [[Hongyan Tong]], [[Huiping Wang]], [[Zhimin Chen]], [[Lijun Wang]] & [[Jianghua Chen]]
| title = Nephrotic syndrome related to chronic neutrophilic leukemia
| journal = [[Internal medicine (Tokyo, Japan)]]
| volume = 53
| issue = 21
| pages = 2505–2509
| year = 2014
| month =
| pmid = 25366011
}}</ref><ref name="BainAhmad2015">{{cite journal|last1=Bain|first1=Barbara J.|last2=Ahmad|first2=Shahzaib|title=Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions|journal=British Journal of Haematology|volume=171|issue=3|year=2015|pages=400–410|issn=00071048|doi=10.1111/bjh.13600}}</ref><ref name="HiguchiOba2009">{{cite journal|last1=Higuchi|first1=Takakazu|last2=Oba|first2=Remi|last3=Endo|first3=Mitsue|last4=Harada|first4=Hiroshi|last5=Mori|first5=Hiraku|last6=Niikura|first6=Haruo|last7=Omine|first7=Mitsuhiro|last8=Fujita|first8=Kazuhiro|title=Transition of Polycythemia Vera to Chronic Neutrophilic Leukemia|journal=Leukemia & Lymphoma|volume=33|issue=1-2|year=2009|pages=203–206|issn=1042-8194|doi=10.3109/10428199909093744}}</ref><ref name="LeeMoon2004">{{cite journal|last1=Lee|first1=Seung Soon|last2=Moon|first2=Joon Ho|last3=Ha|first3=Jun Wook|last4=Lee|first4=Young Kyung|last5=Ahn|first5=Jin Seok|last6=Zang|first6=Dae Young|last7=Kim|first7=Hyo Jung|title=A Case of Transition of Polycythemia Vera to Chronic Neutrophilic Leukemia|journal=The Korean Journal of Internal Medicine|volume=19|issue=4|year=2004|pages=285–288|issn=1226-3303|doi=10.3904/kjim.2004.19.4.285}}</ref><ref name="CehreliUndar1994">{{cite journal|last1=Cehreli|first1=Cavit|last2=Undar|first2=Bulent|last3=Akkoc|first3=Nurullah|last4=Onvural|first4=Banu|last5=Altungoz|first5=Oguz|title=Coexistence of Chronic Neutrophilic Leukemia with Light Chain Myeloma|journal=Acta Haematologica|volume=91|issue=1|year=1994|pages=32–34|issn=0001-5792|doi=10.1159/000204241}}</ref><ref name="DinÇolNalÇacI2009">{{cite journal|last1=DinÇol|first1=GünÇağ|last2=NalÇacI|first2=Meliha|last3=Doğan|first3=Öner|last4=Aktan|first4=Melih|last5=KüÇükkaya|first5=Reyhan|last6=Ağan|first6=Mehmet|last7=DinÇol|first7=Koray|title=Coexistence of Chronic Neutrophilic Leukemia with Multiple Myeloma|journal=Leukemia & Lymphoma|volume=43|issue=3|year=2009|pages=649–651|issn=1042-8194|doi=10.1080/10428190290012218}}</ref>
*[[Polycythemia vera]]
*[[Plasma cell disorder|Plasma cell disorders]]:
**[[Multiple myeloma]]
**[[Monoclonal gammopathy of undetermined significance]]
**[[Plasmacytoma]]
*[[Nephrotic syndrome]]


*[Condition 1]
*[Condition 2]
*[Condition 3]
==Gross Pathology==
On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
==Microscopic Pathology==
On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].


==References==
==References==
Line 125: Line 119:
{{WH}}
{{WH}}
{{WS}}
{{WS}}
[[Category: (name of the system)]]
 
[[Category:Up-To-Date]]
[[Category:Medicine]]
[[Category:Oncology]]
[[Category:Hematology]]
[[Category:Immunology]]

Latest revision as of 20:58, 29 July 2020

Chronic neutrophilic leukemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Epidemiology and Demographics

Risk Factors

Screening

Differentiating Chronic neutrophilic leukemia from other Diseases

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT scan

MRI

Echocardiography and Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Chronic neutrophilic leukemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Chronic neutrophilic leukemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chronic neutrophilic leukemia pathophysiology

CDC on Chronic neutrophilic leukemia pathophysiology

Chronic neutrophilic leukemia pathophysiology in the news

Blogs on Chronic neutrophilic leukemia pathophysiology

Directions to Hospitals Treating Chronic neutrophilic leukemia

Risk calculators and risk factors for Chronic neutrophilic leukemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Homa Najafi, M.D.[2]; Grammar Reviewer: Natalie Harpenau, B.S.[3]

Overview

The exact pathogenesis of Chronic neutrophilic leukemia (CNL) is not fully understood. Some cytogenic abnormalities like trisomy 7,8,9,21, deletion 11q, 20q6,7 may be seen in CNL patients. The mutation of CSF3R is seen in most patients. Moreover of mutation in CSF3R, there are some other genetic mutations which are less common.Polycythemia vera, plasma cell disorders and nephrotic syndrome can be associated with CNL.

Pathophysiology

Pathogenesis

  • The progression to CNL usually involves the CSF3R mutation. CSF3R encodes the receptor of CSF3 . It activates some pathways such as the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and so CSF3 acts as a neutrophilic growth factor. This mutation causes autonomous cell proliferation. CSF3RT618I and CSF3RT615A are the two types of membrane-proximal CSF3R mutations which are the most common ones. These two types activate the JAK2/STAT3 signaling pathway which is inhibited by Ruxolitinib. The other less common mutations such as truncation CSF3R mutations initiate SRC family tyrosine kinase nonreceptor 2 (TNK2 kinases) pathway and the inhibitor of this pathway is Dasatinib.[10][11][12][13][14][15]

Genetics

The development of CNL is the result of multiple genetic mutations such as:[16][3][15][17][18][19][20]

Associated Conditions

Conditions associated with CNL include:[21][22][23][24][25][26]


References

  1. Langabeer, S. E.; Haslam, K.; Kelly, J.; Quinn, J.; Morrell, R.; Conneally, E. (2017). "Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis". Clinical and Translational Oncology. 20 (3): 420–423. doi:10.1007/s12094-017-1722-2. ISSN 1699-048X.
  2. J. Bohm, S. Kock, H. E. Schaefer & P. Fisch (2003). "Evidence of clonality in chronic neutrophilic leukaemia". Journal of clinical pathology. 56 (4): 292–295. PMID 12663642. Unknown parameter |month= ignored (help)
  3. 3.0 3.1 Elliott, Michelle A.; Pardanani, Animesh; Hanson, Curtis A.; Lasho, Terra L.; Finke, Christy M.; Belachew, Alem A.; Tefferi, Ayalew (2015). "ASXL1mutations are frequent and prognostically detrimental inCSF3R-mutated chronic neutrophilic leukemia". American Journal of Hematology. 90 (7): 653–656. doi:10.1002/ajh.24031. ISSN 0361-8609.
  4. John T. Reilly (2002). "Chronic neutrophilic leukaemia: a distinct clinical entity?". British journal of haematology. 116 (1): 10–18. PMID 11841395. Unknown parameter |month= ignored (help)
  5. Piliotis, E.; Kutas, G.; Lipton, J.H. (2009). "Allogeneic Bone Marrow Transplantation in the Management of Chronic Neutrophilic Leukemia". Leukemia & Lymphoma. 43 (10): 2051–2054. doi:10.1080/1042819021000016087. ISSN 1042-8194.
  6. Elliott, M A; Hanson, C A; Dewald, G W; Smoley, S A; Lasho, T L; Tefferi, A (2004). "WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature". Leukemia. 19 (2): 313–317. doi:10.1038/sj.leu.2403562. ISSN 0887-6924.
  7. Donato, Carlo Di; Croci, Gianfranco; Lazzari, Stefano; Scarduelli, Laura; Vignoli, Roberto; Buia, Marco; Tramaloni, Casimiro; Maccari, Sergio; Plancher, Angelo Cesare (1986). "Chronic Neutrophilic Leukemia: Description of a New Case with Karyotypic Abnormalities". American Journal of Clinical Pathology. 85 (3): 369–371. doi:10.1093/ajcp/85.3.369. ISSN 1943-7722.
  8. Michelle A. Elliott (2004). "Chronic neutrophilic leukemia: a contemporary review". Current hematology reports. 3 (3): 210–217. PMID 15087070. Unknown parameter |month= ignored (help)
  9. Donald P. Mc Lornan, Melanie J. Percy, Amy V. Jones, Nicholas C. P. Cross & Mary Frances Mc Mullin (2005). "Chronic neutrophilic leukemia with an associated V617F JAK2 tyrosine kinase mutation". Haematologica. 90 (12): 1696–1697. PMID 16330446. Unknown parameter |month= ignored (help)
  10. Beekman, R.; Valkhof, M. G.; Sanders, M. A.; van Strien, P. M. H.; Haanstra, J. R.; Broeders, L.; Geertsma-Kleinekoort, W. M.; Veerman, A. J. P.; Valk, P. J. M.; Verhaak, R. G.; Lowenberg, B.; Touw, I. P. (2012). "Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia". Blood. 119 (22): 5071–5077. doi:10.1182/blood-2012-01-406116. ISSN 0006-4971.
  11. Dong, Fan; Brynes, Russell K.; Tidow, Nicola; Welte, Karl; Löwenberg, Bob; Touw, Ivo P. (1995). "Mutations in the Gene for the Granulocyte Colony-Stimulating–Factor Receptor in Patients with Acute Myeloid Leukemia Preceded by Severe Congenital Neutropenia". New England Journal of Medicine. 333 (8): 487–493. doi:10.1056/NEJM199508243330804. ISSN 0028-4793.
  12. Touw, Ivo P.; Palande, Karishma; Beekman, Renée (2013). "Granulocyte Colony-Stimulating Factor Receptor Signaling". Hematology/Oncology Clinics of North America. 27 (1): 61–73. doi:10.1016/j.hoc.2012.10.002. ISSN 0889-8588.
  13. S. J. Corey, A. L. Burkhardt, J. B. Bolen, R. L. Geahlen, L. S. Tkatch & D. J. Tweardy (1994). "Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases". Proceedings of the National Academy of Sciences of the United States of America. 91 (11): 4683–4687. PMID 8197119. Unknown parameter |month= ignored (help)
  14. Julia E. Maxson, Samuel B. Luty, Jason D. MacManiman, Jason C. Paik, Jason Gotlib, Peter Greenberg, Swaleh Bahamadi, Samantha L. Savage, Melissa L. Abel, Christopher A. Eide, Marc M. Loriaux, Emily A. Stevens & Jeffrey W. Tyner (2016). "The Colony-Stimulating Factor 3 Receptor T640N Mutation Is Oncogenic, Sensitive to JAK Inhibition, and Mimics T618I". Clinical cancer research : an official journal of the American Association for Cancer Research. 22 (3): 757–764. doi:10.1158/1078-0432.CCR-14-3100. PMID 26475333. Unknown parameter |month= ignored (help)
  15. 15.0 15.1 Maxson, Julia E.; Gotlib, Jason; Pollyea, Daniel A.; Fleischman, Angela G.; Agarwal, Anupriya; Eide, Christopher A.; Bottomly, Daniel; Wilmot, Beth; McWeeney, Shannon K.; Tognon, Cristina E.; Pond, J. Blake; Collins, Robert H.; Goueli, Basem; Oh, Stephen T.; Deininger, Michael W.; Chang, Bill H.; Loriaux, Marc M.; Druker, Brian J.; Tyner, Jeffrey W. (2013). "Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML". New England Journal of Medicine. 368 (19): 1781–1790. doi:10.1056/NEJMoa1214514. ISSN 0028-4793.
  16. Pardanani, A; Lasho, T L; Laborde, R R; Elliott, M; Hanson, C A; Knudson, R A; Ketterling, R P; Maxson, J E; Tyner, J W; Tefferi, A (2013). "CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia". Leukemia. 27 (9): 1870–1873. doi:10.1038/leu.2013.122. ISSN 0887-6924.
  17. Gotlib, J.; Maxson, J. E.; George, T. I.; Tyner, J. W. (2013). "The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment". Blood. 122 (10): 1707–1711. doi:10.1182/blood-2013-05-500959. ISSN 0006-4971.
  18. Meggendorfer, M.; Haferlach, T.; Alpermann, T.; Jeromin, S.; Haferlach, C.; Kern, W.; Schnittger, S. (2014). "Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia". Haematologica. 99 (12): e244–e246. doi:10.3324/haematol.2014.113159. ISSN 0390-6078.
  19. Cui, Yajuan; Li, Bing; Gale, Robert Peter; Jiang, Qian; Xu, Zefeng; Qin, Tiejun; Zhang, Peihong; Zhang, Yue; Xiao, Zhijian (2014). "CSF3R, SETBP1 and CALR mutations in chronic neutrophilic leukemia". Journal of Hematology & Oncology. 7 (1). doi:10.1186/s13045-014-0077-1. ISSN 1756-8722.
  20. Dao, K.-H. T.; Tyner, J. W. (2015). "What's different about atypical CML and chronic neutrophilic leukemia?". Hematology. 2015 (1): 264–271. doi:10.1182/asheducation-2015.1.264. ISSN 1520-4391.
  21. Rending Wang, Hongyan Tong, Huiping Wang, Zhimin Chen, Lijun Wang & Jianghua Chen (2014). "Nephrotic syndrome related to chronic neutrophilic leukemia". Internal medicine (Tokyo, Japan). 53 (21): 2505–2509. PMID 25366011.
  22. Bain, Barbara J.; Ahmad, Shahzaib (2015). "Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions". British Journal of Haematology. 171 (3): 400–410. doi:10.1111/bjh.13600. ISSN 0007-1048.
  23. Higuchi, Takakazu; Oba, Remi; Endo, Mitsue; Harada, Hiroshi; Mori, Hiraku; Niikura, Haruo; Omine, Mitsuhiro; Fujita, Kazuhiro (2009). "Transition of Polycythemia Vera to Chronic Neutrophilic Leukemia". Leukemia & Lymphoma. 33 (1–2): 203–206. doi:10.3109/10428199909093744. ISSN 1042-8194.
  24. Lee, Seung Soon; Moon, Joon Ho; Ha, Jun Wook; Lee, Young Kyung; Ahn, Jin Seok; Zang, Dae Young; Kim, Hyo Jung (2004). "A Case of Transition of Polycythemia Vera to Chronic Neutrophilic Leukemia". The Korean Journal of Internal Medicine. 19 (4): 285–288. doi:10.3904/kjim.2004.19.4.285. ISSN 1226-3303.
  25. Cehreli, Cavit; Undar, Bulent; Akkoc, Nurullah; Onvural, Banu; Altungoz, Oguz (1994). "Coexistence of Chronic Neutrophilic Leukemia with Light Chain Myeloma". Acta Haematologica. 91 (1): 32–34. doi:10.1159/000204241. ISSN 0001-5792.
  26. DinÇol, GünÇağ; NalÇacI, Meliha; Doğan, Öner; Aktan, Melih; KüÇükkaya, Reyhan; Ağan, Mehmet; DinÇol, Koray (2009). "Coexistence of Chronic Neutrophilic Leukemia with Multiple Myeloma". Leukemia & Lymphoma. 43 (3): 649–651. doi:10.1080/10428190290012218. ISSN 1042-8194.

Template:WH Template:WS