An epidural abscess is a rare suppurative infection of the [[central nervous system]], a collection of [[pus]] localised in the [[epidural space]] lying outside the [[dura mater]], which accounts for less than 2% of focal [[CNS]] infections. <ref>{{Cite book | last1 = Longo | first1 = Dan L. (Dan Louis) | title = Harrison's principles of internal medici | date = 2012 | publisher = McGraw-Hill | location = New York | isbn = 978-0-07-174889-6 | pages = }}</ref> It may occur in two different places: [[intracranial space|intracranially]] or in the [[spinal canal]]. Due to the fact that the initial symptoms and clinical characteristics are not always identical and are similar to other diseases, along with the fact that they are both rare conditions, the final diagnosis might be delayed in time. This late diagnosis comes at great cost to the patient, since it is usually accompanied by a bad prognosis and severe complications, with a potential fatal outcome. According to the location of the collection, the [[abscess]] may have different origins, different organisms involved, symptoms, evolutions, complications and therapeutical techniques. <ref name="DannerHartman1987">{{cite journal|last1=Danner|first1=R. L.|last2=Hartman|first2=B. J.|title=Update of Spinal Epidural Abscess: 35 Cases and Review of the Literature|journal=Clinical Infectious Diseases|volume=9|issue=2|year=1987|pages=265–274|issn=1058-4838|doi=10.1093/clinids/9.2.265}}</ref> The treatment of [[epidural abscess]] focuses in two main aspects: reduction of the [[inflammatory]] mass; and eradication of the responsible organism. These goals can be reached through a combination of therapeutical approaches, including: aspiration, drainage and [[antibiotic]] therapy. An early [[surgical]] decompression and drainage, followed by an aggressive [[antibiotic]] treatment is the ideal procedure to increase the chances of a better outcome.
Epidural abscess is generally a medical emergency and requires prompt treatment. The treatment of epidural abscess generally involves a combined medical and surgical approach. Antimicrobial therapy for intracranial epidural abscess includes [[metronidazole]], a third generation [[cephalosporin]], and either [[penicillin]] or [[vancomycin]]. Antimicrobial therapy for spinal epidural abscess includes [[vancomycin]], [[cefepime]], [[ceftazidime]], and [[meropenem]].
==Medical Therapy==
==Medical Therapy==
Several studies have reached the conclusion that the best approach to [[therapy]] of [[epidural abscess]], either intracranial or spinal, is a combination of [[surgical]] drainage along with prolonged systemic [[antibiotics]] (6-12 weeks, IV followed by PO). <ref name="Grewal2006">{{cite journal|last1=Grewal|first1=S.|title=Epidural abscesses|journal=British Journal of Anaesthesia|volume=96|issue=3|year=2006|pages=292–302|issn=0007-0912|doi=10.1093/bja/ael006}}</ref> Due to the importance of preoperative neurologic status, along with the unpredictable progression of neurologic impairment, for the neurological outcome of the patient, decompressive [[laminectomy]] and [[debridement]] of [[infected]] tissues, in the case of [[SEA]], and [[burr hole]] placement or [[craniotomy]], in the case of [[Iea|IEA]], should take place as early as possible. <ref name="Darouiche2006">{{cite journal|last1=Darouiche|first1=Rabih O.|title=Spinal Epidural Abscess|journal=New England Journal of Medicine|volume=355|issue=19|year=2006|pages=2012–2020|issn=0028-4793|doi=10.1056/NEJMra055111}}</ref><ref name="pmid1359381">{{cite journal| author=Darouiche RO, Hamill RJ, Greenberg SB, Weathers SW, Musher DM| title=Bacterial spinal epidural abscess. Review of 43 cases and literature survey. | journal=Medicine (Baltimore) | year= 1992 | volume= 71 | issue= 6 | pages= 369-85 | pmid=1359381 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1359381 }} </ref> However, in certain clinical scenarios, '''medical therapy''' may be the only treatment indicated for that particular case, these include:
The treatment of epidural abscess generally involves a combined medical and surgical approach. Therapy of epidural abscess, either intracranial or spinal, should begin with a combination of [[surgical]] drainage and prolonged systemic [[antibiotics]] (6-12 weeks, [[IV]] followed by [[per os|PO]]).<ref name="Grewal2006">{{cite journal|last1=Grewal|first1=S.|title=Epidural abscesses|journal=British Journal of Anaesthesia|volume=96|issue=3|year=2006|pages=292–302|issn=0007-0912|doi=10.1093/bja/ael006}}</ref> Due to the importance of preoperative neurologic status, along with the unpredictable progression of neurologic impairment, the following procedures should occur as early as possible out of concern for the neurological outcome of the patient:<ref name="Darouiche2006">{{cite journal|last1=Darouiche|first1=Rabih O.|title=Spinal Epidural Abscess|journal=New England Journal of Medicine|volume=355|issue=19|year=2006|pages=2012–2020|issn=0028-4793|doi=10.1056/NEJMra055111}}</ref><ref name="pmid1359381">{{cite journal| author=Darouiche RO, Hamill RJ, Greenberg SB, Weathers SW, Musher DM| title=Bacterial spinal epidural abscess. Review of 43 cases and literature survey. | journal=Medicine (Baltimore) | year= 1992 | volume= 71 | issue= 6 | pages= 369-85 | pmid=1359381 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1359381 }} </ref>
*decompressive [[laminectomy]] declined by the patient
*Intracranial epidural abscess
*high operative risk
**[[Burr hole]] placement
*paralysis unlikely reversible, due to being present for more than 24 to 36 hours. Sometimes, in these situations emergency [[laminectomy]] is still performed, not to restore the lost function, but to treat the [[abscess]] and prevent a [[sepsis]] episode
**[[Craniotomy ]]
*panspinal [[infection]], therefore the [[laminectomy]] would be impracticable. ''In this case, the physician might consider a limited [[laminectomy]] or [[laminotomy]] with [[catheter]] insertion at the top and bottom of the [[spinal canal]], for drainage and irrigation.
*Spinal epidural abscess
There are several reported cases in which patients recovered from [[epidural abscess]], without [[neurosurgery|surgical treatment]], following simple diagnostic aspiration with [[antibiotic]] therapy. In these patients however, there was no neurologic deficit related to the [[abscess]] or it was simply accompanied by minor [[weakness]] at initial presentation. <ref name="pmid1617070">{{cite journal| author=Wheeler D, Keiser P, Rigamonti D, Keay S| title=Medical management of spinal epidural abscesses: case report and review. | journal=Clin Infect Dis | year= 1992 | volume= 15 | issue= 1 | pages= 22-7 | pmid=1617070 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1617070 }} </ref> Besides the [[antibiotic]] therapy, this ''conservative approach'' also includes:
**Decompressinve [[laminectomy]]
*close neurologic monitoring strategy, defined before treatment initiation
**[[Debridement]] of [[infected]] tissues
*follow-up [[MRI]] to evaluate the status of the [[abscess]] and confirm its resolution
*immediate [[neurosurgery|surgery]], in case of neurologic deterioration.
However, in certain clinical scenarios, medical therapy may be the only treatment indicated for that particular case, these include:
The indication for a specific [[antibiotic]] should be given by the results of [[blood cultures]] or a [[CT]]-guided aspiration of the [[abscess]]. However, until blood culture results are obtained, the patient should be on [[Empiric therapy|empirical]] [[antibiotic]] therapy. This should cover ''[[staphylococci]]'', ''[[streptococci]]'' and [[gram negative]] ''[[bacilli]]''. <ref name="Darouiche2006">{{cite journal|last1=Darouiche|first1=Rabih O.|title=Spinal Epidural Abscess|journal=New England Journal of Medicine|volume=355|issue=19|year=2006|pages=2012–2020|issn=0028-4793|doi=10.1056/NEJMra055111}}</ref>
*Decompressive [[laminectomy]] declined by the patient
The efficacy of the [[antibiotic]] treatment, as well as its duration, may be determined by monitoring the evolution of the [[ESR]], [[CRP]], pain and function, along with resolution of radiographic changes. <ref name="Grewal2006">{{cite journal|last1=Grewal|first1=S.|title=Epidural abscesses|journal=British Journal of Anaesthesia|volume=96|issue=3|year=2006|pages=292–302|issn=0007-0912|doi=10.1093/bja/ael006}}</ref>
*High operative risk
*[[Paralysis]] which is unlikely reversible, due to being present for > 24 to 36 hours
*Panspinal [[infection]]
In rare cases, patients presenting with minor [[weakness]] and no neurologic deficit related to the abscess have recovered without [[neurosurgery|surgical treatment]], exclusively following antimicrobial therapy.<ref name="pmid1617070">{{cite journal| author=Wheeler D, Keiser P, Rigamonti D, Keay S| title=Medical management of spinal epidural abscesses: case report and review. | journal=Clin Infect Dis | year= 1992 | volume= 15 | issue= 1 | pages= 22-7 | pmid=1617070 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1617070 }} </ref> The conservative approach in treating epidural abscess includes:
*[[Antimicrobial]] therapy
*Close neurologic monitoring strategy, defined before treatment initiation
*Follow-up [[MRI]] to evaluate the status of the [[abscess]] and confirm its resolution
*Immediate [[neurosurgery]] in cases of neurologic deterioration
The indication for a specific [[antibiotic]] should be determined by the results of [[blood cultures]] or a [[CT]]-guided aspiration of the abscess. However, until blood culture results are obtained, the patient should be on [[Empiric therapy|empirical]] [[antibiotic]] therapy. The efficacy of the [[antibiotic]] treatment, as well as its duration, may be determined by monitoring the evolution of the [[erythrocyte sedimentation rate]], [[C-reactive protein]], and [[pain]], while monitoring for radiographic changes.<ref name="Grewal2006">{{cite journal|last1=Grewal|first1=S.|title=Epidural abscesses|journal=British Journal of Anaesthesia |volume=96|issue=3|year=2006|pages=292–302|issn=0007-0912|doi=10.1093/bja/ael006}}</ref>
===Intracranial Epidural Abscess===
===Intracranial Epidural Abscess===
The empiric [[antibiotic]] therapy for this type of [[abscess]] is similar to the one used for [[subdural empyema]] and should be continued for 3 to 6 weeks after [[surgery]], or longer in case of [[osteomyelitis]]. <ref>{{Cite book | last1 = Mandell | first1 = Gerald L. | last2 = Bennett | first2 = John E. (John Eugene) | last3 = Dolin | first3 = Raphael. | title = Mandell, Douglas, and Bennett's principles and practice of infectious disease | date = 2010 | publisher = Churchill Livingstone/Elsevier | location = Philadelphia, PA | isbn = 0-443-06839-9 | pages = }}</ref> This should cover: <ref name="Darouiche2006">{{cite journal|last1=Darouiche|first1=Rabih O.|title=Spinal Epidural Abscess|journal=New England Journal of Medicine|volume=355|issue=19|year=2006|pages=2012–2020|issn=0028-4793|doi=10.1056/NEJMra055111}}</ref>
The empiric [[antibiotic]] therapy for this type of abscess is similar to the one used for [[subdural empyema]] and should be continued for 3 to 6 weeks following [[surgery]], or longer in case of [[osteomyelitis]].<ref name=Mandell>{{Cite book | last1 = Mandell | first1 = Gerald L. | last2 = Bennett | first2 = John E. (John Eugene) | last3 = Dolin | first3 = Raphael. | title = Mandell, Douglas, and Bennett's principles and practice of infectious disease | date = 2010 | publisher = Churchill Livingstone/Elsevier | location = Philadelphia, PA | isbn = 0-443-06839-9 | pages = }}</ref> This includes medical therapies against:<ref name="Darouiche2006">{{cite journal|last1=Darouiche|first1=Rabih O.|title=Spinal Epidural Abscess|journal=New England Journal of Medicine|volume=355|issue=19|year=2006|pages=2012–2020|issn=0028-4793|doi=10.1056/NEJMra055111}}</ref>
*''[[Staphylococci]]''
*[[Staphylococci]]
*''[[Streptococci]]''
*[[Streptococci]]
*[[Gram negative]] ''[[bacilli]]''
*[[Gram negative]] [[bacilli]]
This regimen must include: <ref>{{Cite book | last1 = Longo | first1 = Dan L. (Dan Louis) | title = Harrison's principles of internal medici | date = 2012 | publisher = McGraw-Hill | location = New York | isbn = 978-0-07-174889-6 | pages = }}</ref><ref name="Grewal2006">{{cite journal|last1=Grewal|first1=S.|title=Epidural abscesses|journal=British Journal of Anaesthesia|volume=96|issue=3|year=2006|pages=292–302|issn=0007-0912|doi=10.1093/bja/ael006}}</ref>
*[[Penicillin]] with anti-staphylococcal activity or [[Vancomycin]] in case of suspicion of [[MRSA]]
This regimen must include:<ref name="Grewal2006">{{cite journal|last1=Grewal|first1=S.|title=Epidural abscesses|journal=British Journal of Anaesthesia|volume=96|issue=3|year=2006|pages=292–302|issn=0007-0912|doi=10.1093/bja/ael006}}</ref><ref>{{Cite book | last1 = Longo | first1 = Dan L. (Dan Louis) | title = Harrison's principles of internal medici | date = 2012 | publisher = McGraw-Hill | location = New York | isbn = 978-0-07-174889-6 | pages = }}</ref>
*[[Penicillin]] with anti-staphylococcal activity
*[[Vancomycin]] (if [[MRSA]] is suspected)
*Third-generation [[cephalosporin]]
*Third-generation [[cephalosporin]]
*This regimen might also include [[Metronidazole]]
*[[Metronidazole]]
===Spinal Epidural Abscess===
===Spinal Epidural Abscess===
Initial [[antibiotic]] therapy for this type of [[abscess]] should target ''[[staphylococci]]'' and [[aerobic]] [[gram negative]] ''[[bacilli]]'', particularly in patients with history of IV drug abuse or spinal procedures. The treatment should last for a period of 4 to 6 weeks, or longer, up to 8 weeks, in case there is contiguous [[osteomyelitis]]. <ref>{{Cite book | last1 = Mandell | first1 = Gerald L. | last2 = Bennett | first2 = John E. (John Eugene) | last3 = Dolin | first3 = Raphael. | title = Mandell, Douglas, and Bennett's principles and practice of infectious disease | date = 2010 | publisher = Churchill Livingstone/Elsevier | location = Philadelphia, PA | isbn = 0-443-06839-9 | pages = }}</ref> Therefore, the [[antibiotic]] regimens for the unknown organism of intracranial epidural abscess may also be applied to the spinal epidural abscess.
Initial [[antibiotic]] therapy for spinal epidural abscess should target:
*[[Staphylococci]]
==Antibiotic Therapy==
*[[Aerobic]] [[Gram negative]] [[bacilli]] (particularly in patients with history of [[IV drug use]] or [[spinal cord|spinal]] procedures)
*Empirical antibiotic therapy of focal CNS Infections: <ref>{{Cite book | last1 = Longo | first1 = Dan L. (Dan Louis) | title = Harrison's principles of internal medici | date = 2012 | publisher = McGraw-Hill | location = New York | isbn = 978-0-07-174889-6| pages = }}</ref>
<SMALL><font color="#FF4C4C">'''▸ Click on the following categories to expand treatment regimens.'''</font></SMALL>
When the responsible organism has been isolated and identified in cultures, the therapy should be re-directed to this agent. <ref>{{Cite book | last1 = Longo | first1 = Dan L. (Dan Louis) | title = Harrison's principles of internal medici | date = 2012 | publisher = McGraw-Hill | location = New York | isbn = 978-0-07-174889-6 | pages = }}</ref>
==Epidural Abscess Drug Summary==
The treatment should last for 4-6 weeks, or longer (8 weeks maximum), to prevent [[osteomyelitis]].<ref name=Mandell>{{Cite book | last1 = Mandell | first1 = Gerald L. | last2 = Bennett | first2 = John E. (John Eugene) | last3 = Dolin | first3 = Raphael. | title = Mandell, Douglas, and Bennett's principles and practice of infectious disease | date = 2010 | publisher = Churchill Livingstone/Elsevier | location = Philadelphia, PA | isbn = 0-443-06839-9 | pages = }}</ref> The empirical [[antibiotic]] regimens for intracranial epidural abscess may also be applied to spinal epidural abscess.
===Vancomycin===
*A [[glycopeptide antibiotic]] that exerts its activity by inhibiting [[peptidoglycan]] synthesis and hence bacterial cell walls. It has [[bactericidal]] activity agains most pathogens and [[bacteriostatic]] activity agains [[enterococci]].
*A narrow spectrum [[antibiotic]] used only for [[gram-positive bacteria]].
*Due to its toxicity ([[Ototoxicity]], [[Nephrotoxicity]] and [[Thrombophlebitis]]), along with risk of [[anaphylaxis]], [[Stevens-Johnson syndrome]], [[neutropenia]] and [[thrombocytopenia]]<ref name="pmid12521560">{{cite journal| author=Greenlee JE| title=Subdural Empyema. | journal=Curr Treat Options Neurol | year= 2003 | volume= 5 | issue= 1 | pages= 13-22 | pmid=12521560 | doi= | pmc=|url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12521560 }} </ref>, its use is restricted to multidrug-resistant organisms ([[MRSA]]/[[ORSA]], ''[[Clostridium difficile]]'').
*In recent years, the emergence of vancomycin-resistant pathogens, has increased the use of [[antibiotics]], such as [[carbapenem]] and [[linezolid]].
===Metronidazole===
==Antimicrobial Regimen==
*A [[nitroimidazole]] [[antibiotic]], [[bactericidal]] against anaerobic organisms, with [[antiprotozoal]] activity. It acts by forming free radical metabolites within the bacterial cell, which damages the bacterial [[DNA]]. When given with [[clarithromycin]] and a [[proton pump inhibitor]], is used in the treatment of [[''Helicobacter pylori'']].
*Used in the treatment of organisms such as: ''[[Clostridium difficile]]'', ''[[Entamoeba]]'', ''[[Trichomonas]]'', ''[[Giardia]]'' and ''[[Gardnerella vaginalis]]''.
*A bactericidal [[antibiotic]], with a similar mechanism of action as other [[penicillins]], [[cephalosporins]] interfere with the synthesis of [[peptidoglycan]] of the [[cell wall]], being however less susceptible to penicillinases.
*Used for prophylaxis and treatment of certain [[bacteria]].
*There are 4 generations of [[cephalosporins]]: 1st generation are indicated for [[gram-positive bacteria]], while 2nd, 3rd and 4th generations have increased activity against [[Gram-negative|gram negative]] organisms.
*1st generation [[cephalosporins]] include: [[cefalexin]] and [[cefazolin]]; 2nd generation: [[cefuroxime]] and [[cefoxitin]]; 3rd generation: [[ceftriaxone]] and [[cefotaxime]]; and 4th generation: [[cefepime]] and [[cefquinome]].
*Organisms not usually covered by [[cephalosporins]] include: ''[[Listeria]]'', [[MRSA]] and [[Enterococci]].
*Possible adverse effects include: [[nausea]], [[diarrhea]], [[rash]], [[hypersensitivity]] reactions, [[vitamin K]] deficiency and increased [[nephrotoxicity]] of [[aminoglycosides]], when given concomitantly.
Epidural abscess is generally a medical emergency and requires prompt treatment. The treatment of epidural abscess generally involves a combined medical and surgical approach. Antimicrobial therapy for intracranial epidural abscess includes metronidazole, a third generation cephalosporin, and either penicillin or vancomycin. Antimicrobial therapy for spinal epidural abscess includes vancomycin, cefepime, ceftazidime, and meropenem.
Medical Therapy
The treatment of epidural abscess generally involves a combined medical and surgical approach. Therapy of epidural abscess, either intracranial or spinal, should begin with a combination of surgical drainage and prolonged systemic antibiotics (6-12 weeks, IV followed by PO).[1] Due to the importance of preoperative neurologic status, along with the unpredictable progression of neurologic impairment, the following procedures should occur as early as possible out of concern for the neurological outcome of the patient:[2][3]
In rare cases, patients presenting with minor weakness and no neurologic deficit related to the abscess have recovered without surgical treatment, exclusively following antimicrobial therapy.[4] The conservative approach in treating epidural abscess includes:
Close neurologic monitoring strategy, defined before treatment initiation
Follow-up MRI to evaluate the status of the abscess and confirm its resolution
Immediate neurosurgery in cases of neurologic deterioration
The indication for a specific antibiotic should be determined by the results of blood cultures or a CT-guided aspiration of the abscess. However, until blood culture results are obtained, the patient should be on empiricalantibiotic therapy. The efficacy of the antibiotic treatment, as well as its duration, may be determined by monitoring the evolution of the erythrocyte sedimentation rate, C-reactive protein, and pain, while monitoring for radiographic changes.[1]
Intracranial Epidural Abscess
The empiric antibiotic therapy for this type of abscess is similar to the one used for subdural empyema and should be continued for 3 to 6 weeks following surgery, or longer in case of osteomyelitis.[5] This includes medical therapies against:[2]
The treatment should last for 4-6 weeks, or longer (8 weeks maximum), to prevent osteomyelitis.[5] The empirical antibiotic regimens for intracranial epidural abscess may also be applied to spinal epidural abscess.
Preferred regimen: Vancomycin loading dose 25–30 mg/kg IV followed by 15–20 mg/kg IV q8–12h for 2–4 weeks, then PO to complete 6–8 weeks ANDCeftriaxone 2 g IV q24h for 2–4 weeks, then PO to complete 6–8 weeks
Note (1): Decompressive laminectomy in conjunction with long-term antibiotic therapy tailored to culture results is required.
Note (2): For critically ill patients, a loading dose of Vancomycin 20–25 mg/kg may be considered.
1.2 Pathogen-directed antimicrobial therapy
1.2.1 Penicillin-susceptible Staphylococcus aureus or Streptococcus
Preferred regimen: Penicillin G 4 MU IV q4h for 2–4 weeks THEN PO to complete 6–8 weeks
1.2.2 Methicillin-susceptible Staphylococcus aureus or Streptococcus
Preferred regimen (1): Cefazolin 2 g IV q8h for 2–4 weeks THEN PO to complete 6–8 weeks
Preferred regimen (2): Nafcillin 2 g IV q4h for 2–4 weeks THEN PO to complete 6–8 weeks
Preferred regimen (3): Oxacillin 2 g IV q4h for 2–4 weeks THEN PO to complete 6–8 weeks
Alternative regimen: Clindamycin 600 mg IV q6h for 2–4 weeks, then PO to complete 6–8 weeks
↑ 5.05.1Mandell, Gerald L.; Bennett, John E. (John Eugene); Dolin, Raphael. (2010). Mandell, Douglas, and Bennett's principles and practice of infectious disease. Philadelphia, PA: Churchill Livingstone/Elsevier. ISBN0-443-06839-9.
↑Longo, Dan L. (Dan Louis) (2012). Harrison's principles of internal medici. New York: McGraw-Hill. ISBN978-0-07-174889-6.
↑Kasper, Dennis (2015). Harrison's principles of internal medicine. New York: McGraw Hill Education. ISBN978-0071802154.
↑Bartlett, John (2012). Johns Hopkins ABX guide : diagnosis and treatment of infectious diseases. Burlington, MA: Jones and Bartlett Learning. ISBN978-1449625580.
↑Liu, Catherine; Bayer, Arnold; Cosgrove, Sara E.; Daum, Robert S.; Fridkin, Scott K.; Gorwitz, Rachel J.; Kaplan, Sheldon L.; Karchmer, Adolf W.; Levine, Donald P.; Murray, Barbara E.; J Rybak, Michael; Talan, David A.; Chambers, Henry F.; Infectious Diseases Society of America (2011-02-01). "Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children". Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 52 (3): –18-55. doi:10.1093/cid/ciq146. ISSN1537-6591. PMID21208910.