Osteoporosis life style modification: Difference between revisions

Jump to navigation Jump to search
Ahmed Younes (talk | contribs)
No edit summary
WikiBot (talk | contribs)
m Bot: Removing from Primary care
 
(12 intermediate revisions by 2 users not shown)
Line 4: Line 4:


==Overview==
==Overview==
There are various [[lifestyle]] modifications that can be implemented to prevent the development or to treat of osteoporosis. They are included [[calcium]] and [[vitamin D]] supplementation, [[diet]], [[exercise]], [[Smoking cessation|smoking cessation]], [[alcohol consumption]], and also fall prevention. The patient should consume 1200 to 1500 mg of [[calcium]] daily, either via [[dietary]] means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. New [[vitamin D]] intake recommendations are 400-800 IU daily in adults up to age 50, and 800 - 1,000 IU daily in those over 50. Multiple studies have shown that [[aerobics]], weightlifting, and resistance exercises can all maintain or increase [[Bone mineral density|BMD]] in [[postmenopausal]] women. In addition to maintaining adequate [[vitamin D]] levels and [[physical activity]], as described above, several strategies have been demonstrated to reduce falls.  
There are various [[lifestyle]] modifications that can be implemented to prevent the development or progression and to treat osteoporosis. They include [[calcium]] and [[vitamin D]] supplementation, [[diet]], [[exercise]], [[smoking cessation]], [[alcohol consumption]], and also fall prevention. The patient should consume 1200 to 1500 mg of [[calcium]] daily, either via [[dietary]] means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. New [[vitamin D]] intake recommendations are 400-800 IU daily in adults up to age 50, and 800 - 1,000 IU daily in those over 50. Multiple studies have shown that [[aerobics]], weight lifting, and resistance exercises can all maintain or increase [[Bone mineral density|BMD]] in [[postmenopausal]] women. In addition to maintaining adequate [[vitamin D]] levels and [[physical activity]], as described above, several strategies have been demonstrated to reduce falls.


==Life style modification==
==Life style modification==
There are various [[lifestyle]] modifications that can be implemented to help prevent the development or even treatment of [[osteoporosis]].
There are various [[lifestyle]] modifications that can be implemented for the prevention and also for the treatment of [[osteoporosis]].
* [[Exercise]]: [[Exercise]] promotes the [[mineralization]] of [[bone]] and [[bone]] accumulation particularly during growth. High impact exercise, in particular, has been shown to prevent the development of [[osteoporosis]], however, it can have a negative effect on bone [[mineralization]] in cases of poor [[nutrition]], such as [[anorexia nervosa]] and [[celiac disease]].
* [[Exercise]]: [[Exercise]] promotes the [[mineralization]] of [[bone]] and [[bone]] deposition particularly during growth. High impact exercise, in particular, has been shown to prevent the development of [[osteoporosis]]. However, it can have a negative effect on bone [[mineralization]] in cases of poor [[nutrition]], such as [[anorexia nervosa]] and [[celiac disease]].
* [[Nutrition]]: A [[diet]] high in [[calcium]] and [[vitamin D]] prevents [[bone loss]]. Patients at risk for [[osteoporosis]], such as persons with chronic [[steroid]] use are generally treated with [[vitamin D]] and [[calcium]] supplementation. In [[kidney|renal]] disease, more active forms of [[vitamin D]], such as 1,25-dihydroxycholecalciferol or [[calcitriol]] are used; as the [[kidney]] can not adequately generate [[calcitriol]] from [[calcidiol]] (25-hydroxycholecalciferol), which is the storage form of [[vitamin D]].
* [[Nutrition]]: A [[diet]] high in [[calcium]] and [[vitamin D]] prevents [[bone loss]]. Patients at risk for [[osteoporosis]], such as persons with chronic [[steroid]] use are generally treated with [[vitamin D]] and [[calcium]] supplementation. In [[kidney|renal]] disease, more active forms of [[vitamin D]], such as 1,25-dihydroxycholecalciferol or [[calcitriol]] are used; as the [[kidney]] can not adequately generate [[calcitriol]] from [[calcidiol]] (25-hydroxycholecalciferol), which is the storage form of [[vitamin D]].
* [[smoking|Smoking cessation]] helps prevent [[osteoporosis]], as well as other diseases.
* [[smoking|Smoking cessation]] may prevent [[osteoporosis]], as well as other diseases.
* Not drinking [[alcohol]], or drinking only in moderation (1–2 alcoholic beverages/day)
* Avoiding excessive  [[alcohol]] intake, or drinking only in moderation (1–2 alcoholic beverages/day).
* Taking certain medications linked to [[osteoporosis]] ([[anticonvulsants]] or [[corticosteroids]]) only at the least possible dose and time needed.<ref name="BuckleyGuyatt2017">{{cite journal|last1=Buckley|first1=Lenore|last2=Guyatt|first2=Gordon|last3=Fink|first3=Howard A.|last4=Cannon|first4=Michael|last5=Grossman|first5=Jennifer|last6=Hansen|first6=Karen E.|last7=Humphrey|first7=Mary Beth|last8=Lane|first8=Nancy E.|last9=Magrey|first9=Marina|last10=Miller|first10=Marc|last11=Morrison|first11=Lake|last12=Rao|first12=Madhumathi|last13=Robinson|first13=Angela Byun|last14=Saha|first14=Sumona|last15=Wolver|first15=Susan|last16=Bannuru|first16=Raveendhara R.|last17=Vaysbrot|first17=Elizaveta|last18=Osani|first18=Mikala|last19=Turgunbaev|first19=Marat|last20=Miller|first20=Amy S.|last21=McAlindon|first21=Timothy|title=2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis|journal=Arthritis & Rheumatology|volume=69|issue=8|year=2017|pages=1521–1537|issn=23265191|doi=10.1002/art.40137}}</ref>
* Taking the least possible doses of certain medications associated with [[osteoporosis]] ([[anticonvulsants]] or [[corticosteroids]]).<ref name="BuckleyGuyatt2017">{{cite journal|last1=Buckley|first1=Lenore|last2=Guyatt|first2=Gordon|last3=Fink|first3=Howard A.|last4=Cannon|first4=Michael|last5=Grossman|first5=Jennifer|last6=Hansen|first6=Karen E.|last7=Humphrey|first7=Mary Beth|last8=Lane|first8=Nancy E.|last9=Magrey|first9=Marina|last10=Miller|first10=Marc|last11=Morrison|first11=Lake|last12=Rao|first12=Madhumathi|last13=Robinson|first13=Angela Byun|last14=Saha|first14=Sumona|last15=Wolver|first15=Susan|last16=Bannuru|first16=Raveendhara R.|last17=Vaysbrot|first17=Elizaveta|last18=Osani|first18=Mikala|last19=Turgunbaev|first19=Marat|last20=Miller|first20=Amy S.|last21=McAlindon|first21=Timothy|title=2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis|journal=Arthritis & Rheumatology|volume=69|issue=8|year=2017|pages=1521–1537|issn=23265191|doi=10.1002/art.40137}}</ref>


=== Life style modification strategies influence on osteoporosis, based on national osteoporosis guideline group (NOGG)<ref name="pmid251822282">{{cite journal| author=Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al.| title=Clinician's Guide to Prevention and Treatment of Osteoporosis. | journal=Osteoporos Int | year= 2014 | volume= 25 | issue= 10 | pages= 2359-81 | pmid=25182228 | doi=10.1007/s00198-014-2794-2 | pmc=4176573 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25182228  }}</ref> ===
=== Life style modification strategies influence on osteoporosis, based on national osteoporosis guideline group (NOGG)<ref name="pmid251822282">{{cite journal| author=Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al.| title=Clinician's Guide to Prevention and Treatment of Osteoporosis. | journal=Osteoporos Int | year= 2014 | volume= 25 | issue= 10 | pages= 2359-81 | pmid=25182228 | doi=10.1007/s00198-014-2794-2 | pmc=4176573 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25182228  }}</ref> ===
Line 60: Line 60:


=== Calcium and vitamin D ===
=== Calcium and vitamin D ===
'''Calcium:''' The patient should consume 1200 to 1500 mg of [[calcium]] daily, either via [[dietary]] means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. The body absorbs only about 500 mg of [[calcium]] at one time and so intake should be spread throughout the day. However, the benefit of supplementation of [[calcium]] alone remains controversial, to a degree, since several nations with high [[calcium]] intakes through milk-products (e.g., the USA and Sweden) have some of the highest rates of [[osteoporosis]] worldwide; though this may be linked to such countries' excess consumption of [[protein]]. A few studies even suggested an adverse effect of [[calcium]] excess on [[bone density]] and blamed the milk industry for misleading customers. Some nutritionists assert that excess consumption of dairy products causes acidification, which leaches calcium from the system, and argue that vegetables and nuts are a better source of [[calcium]] and that in fact, milk products should be avoided. This theory has no proof from scientific clinical studies. Similarly, nutritionists believe that excess [[caffeine]] consumption can also contribute to leaching [[calcium]] from the [[bones]].<ref name="pmid21118827">{{cite journal| author=Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK et al.| title=The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. | journal=J Clin Endocrinol Metab | year= 2011 | volume= 96 | issue= 1 | pages= 53-8 | pmid=21118827 | doi=10.1210/jc.2010-2704 | pmc=3046611 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21118827  }}</ref>
'''Calcium:''' The patient should consume 1200 to 1500 mg of [[calcium]] daily, either via [[dietary]] means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. The body absorbs only about 500 mg of [[calcium]] at one time and so intake should be spread throughout the day. However, the benefit of supplementation of [[calcium]] alone remains controversial, to a degree, since several nations with high [[calcium]] intake through milk-products (e.g., the USA and Sweden) have some of the highest rates of [[osteoporosis]] worldwide; though this may be linked to excessive [[protein]] consumption. A few studies even suggested an adverse effect of [[calcium]] excess on [[bone density]] and blamed the milk industry for misleading the customers. Some nutritionists assert that excessive consumption of dairy products causes acidification, which leaches calcium from the system, and also argue that vegetables and nuts are a better source of [[calcium]] and that milk products should be avoided. This theory has no proof from scientific clinical studies. Similarly, nutritionists believe that excessive [[caffeine]] consumption can also contribute to leaching [[calcium]] from the [[bones]].<ref name="pmid21118827">{{cite journal| author=Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK et al.| title=The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. | journal=J Clin Endocrinol Metab | year= 2011 | volume= 96 | issue= 1 | pages= 53-8 | pmid=21118827 | doi=10.1210/jc.2010-2704 | pmc=3046611 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21118827  }}</ref>
* A [[meta-analysis]] of [[randomized controlled trials]] concluded "evidence supports the use of [[calcium]], or [[calcium]] in combination with [[vitamin D]] supplementation, in the preventive treatment of [[osteoporosis]] in people aged 50 years or older. For best therapeutic effect, recommended minimum dose [[calcium]] is 1200 mg, and of [[vitamin D]] is 800 IU (for combined [[calcium]] plus [[vitamin D]] supplementation)". A study that examined the relationship between [[calcium]] supplementation and clinical [[fracture]] risk in an elderly population, there was a significant decrease in fracture risk in patients that received [[calcium]] supplements versus those that received [[placebo]]. However, this benefit only applied to patients who were compliant with their treatment regimen.<ref name="pmid17720017">{{cite journal |author=Tang BMP et al |title=Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis|journal=Lancet |volume=370 |issue= |pages=657-666 |year=2007 |pmid= |doi=10.1016/S0140-6736(07)61342-7}}</ref><ref>{{cite journal |author=Prince RL, Devine A, Dhaliwal SS, Dick IM |title=Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women |journal=Arch. Intern. Med. |volume=166 |issue=8 |pages=869–75|year=2006 |pmid=16636212 |doi=10.1001/archinte.166.8.869}}</ref>
* A [[meta-analysis]] of [[randomized controlled trials]] concluded "evidence supports the use of [[calcium]], or [[calcium]] in combination with [[vitamin D]] supplementation, in the preventive treatment of [[osteoporosis]] in people aged 50 years or older. For best therapeutic effect, the recommended minimum dose of [[calcium]] is 1200 mg, and of [[vitamin D]] is 800 IU (for combined [[calcium]] plus [[vitamin D]] supplementation)". A study that examined the relationship between [[calcium]] supplementation and clinical [[fracture]] risk in an elderly population, showed that there was a significant decrease in fracture risk in patients that received [[calcium]] supplements versus those that received [[placebo]]. However, this benefit only applied to patients who were compliant with their treatment regimen.<ref name="pmid17720017">{{cite journal |author=Tang BMP et al |title=Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis|journal=Lancet |volume=370 |issue= |pages=657-666 |year=2007 |pmid= |doi=10.1016/S0140-6736(07)61342-7}}</ref><ref>{{cite journal |author=Prince RL, Devine A, Dhaliwal SS, Dick IM |title=Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women |journal=Arch. Intern. Med. |volume=166 |issue=8 |pages=869–75|year=2006 |pmid=16636212 |doi=10.1001/archinte.166.8.869}}</ref>
'''''Estimating daily dietary calcium intake'''''
'''''Estimating daily dietary calcium intake'''''
* First step: Estimate [[calcium]] intake from [[calcium]]-rich foods based on these measures:
* First step: Estimate [[calcium]] intake from [[calcium]]-rich foods based on these measures:
Line 69: Line 69:
** Fortified food or juice equal to one serving has 80 to 1000 mg [[calcium]]
** Fortified food or juice equal to one serving has 80 to 1000 mg [[calcium]]
* Second step: Add the summation 250 mg for other non-diary foods<ref name="pmid25182228">{{cite journal| author=Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al.| title=Clinician's Guide to Prevention and Treatment of Osteoporosis. | journal=Osteoporos Int | year= 2014 | volume= 25 | issue= 10 | pages= 2359-81 | pmid=25182228 | doi=10.1007/s00198-014-2794-2 | pmc=4176573 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25182228  }}</ref>
* Second step: Add the summation 250 mg for other non-diary foods<ref name="pmid25182228">{{cite journal| author=Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al.| title=Clinician's Guide to Prevention and Treatment of Osteoporosis. | journal=Osteoporos Int | year= 2014 | volume= 25 | issue= 10 | pages= 2359-81 | pmid=25182228 | doi=10.1007/s00198-014-2794-2 | pmc=4176573 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25182228  }}</ref>
'''Vitamin D:''' Increasing [[vitamin D]] intake has been shown to reduce [[fractures]] up to twenty-five percent in older people, according to recent studies.<ref>{{cite journal |author=Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B|title=Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials |journal=JAMA|volume=293 |issue=18 |pages=2257–64 |year=2005 |pmid=15886381 |doi=10.1001/jama.293.18.2257}}</ref><ref name="pmid17720017" /> The very large Women's Health Initiative study, however, did not find any [[fracture]] benefit from [[calcium]] and [[vitamin D]] supplementation, but these women were already taking (on average) 1200 mg/day of [[calcium]]. [[Muscle]] weakness can contribute to falls so it is beneficial for people living with [[osteoporosis]] to improve [[muscle]] function. [[Vitamin D deficiency]] causes [[muscle]] weakness.<ref>{{cite journal |author=Holick MF |title=Resurrection of vitamin D deficiency and rickets |journal=J. Clin. Invest.|volume=116 |issue=8 |pages=2062–72 |year=2006 |pmid=16886050 |doi=10.1172/JCI29449}}</ref> A meta-analysis of five clinical trials showed 800 IU of [[vitamin D]] per day (plus [[calcium]]) reduced the risk of falls by 22%.<ref>{{cite journal|author=Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B |title=Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes |journal=Am. J. Clin. Nutr. |volume=84 |issue=1 |pages=18–28|year=2006 |pmid=16825677 |doi=}}</ref> A different randomized, controlled study showed nursing home residents who took 800 IU of [[vitamin D]] per day (plus [[calcium]]) having a 72% reduction in the risk of falls. New [[vitamin D]] intake recommendations ([[National Osteoporosis Foundation]], July 2014) are adults up to age 50, 400-800 IU daily and those over 50, 800 - 1,000 IU daily.<ref>{{cite journal |author=Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP |title=A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study |journal=Journal of the American Geriatrics Society |volume=55 |issue=2 |pages=234–9|year=2007 |pmid=17302660 |doi=10.1111/j.1532-5415.2007.01048.x}}</ref>
'''Vitamin D:''' Increasing [[vitamin D]] intake has been shown to reduce [[fractures]] up to twenty-five percent in older people, according to recent studies.<ref>{{cite journal |author=Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B|title=Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials |journal=JAMA|volume=293 |issue=18 |pages=2257–64 |year=2005 |pmid=15886381 |doi=10.1001/jama.293.18.2257}}</ref><ref name="pmid17720017" /> The very large Women's Health Initiative study, however, did not find any [[fracture]] benefit from [[calcium]] and [[vitamin D]] supplementation, but these women were already taking (on average) 1200 mg/day of [[calcium]]. [[Muscle]] weakness can contribute to falls so it is beneficial for people with [[osteoporosis]] to improve [[muscle]] function. [[Vitamin D deficiency]] causes [[muscle]] weakness.<ref>{{cite journal |author=Holick MF |title=Resurrection of vitamin D deficiency and rickets |journal=J. Clin. Invest.|volume=116 |issue=8 |pages=2062–72 |year=2006 |pmid=16886050 |doi=10.1172/JCI29449}}</ref> A meta-analysis of five clinical trials showed 800 IU of [[vitamin D]] per day (plus [[calcium]]) reduced the risk of falls by 22%.<ref>{{cite journal|author=Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B |title=Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes |journal=Am. J. Clin. Nutr. |volume=84 |issue=1 |pages=18–28|year=2006 |pmid=16825677 |doi=}}</ref> A different randomized controlled study showed that nursing home residents who took 800 IU of [[vitamin D]] per day (plus [[calcium]]) had a 72% reduction in the risk of falls. New [[vitamin D]] intake recommendations ([[National Osteoporosis Foundation]], July 2014) include 400-800 IU daily for adults up to age 50 and 800 - 1,000 IU daily for those over 50.<ref>{{cite journal |author=Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP |title=A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study |journal=Journal of the American Geriatrics Society |volume=55 |issue=2 |pages=234–9|year=2007 |pmid=17302660 |doi=10.1111/j.1532-5415.2007.01048.x}}</ref>
=== Diet ===
=== Diet ===
Sufficient [[protein]] intakes are necessary to maintain the function of the [[musculoskeletal]] system and they also decrease the complications that occur after an osteoporotic [[fracture]]. Correction of poor [[protein]] [[nutrition]] in patients with a recent [[hip fracture]] has been shown to improve the subsequent clinical course by significantly lowering the rate of complications, such as [[bedsores]], severe [[anaemia|anemia]], and intercurrent [[lung]] or [[renal]] infection. The duration of hospital stay of elderly patients with [[hip fracture]] can thus be shortened.<ref name="pmid28425085">{{cite journal |vauthors=Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, Hope S, Kanis JA, McCloskey EV, Poole KES, Reid DM, Selby P, Thompson F, Thurston A, Vine N |title=UK clinical guideline for the prevention and treatment of osteoporosis |journal=Arch Osteoporos |volume=12 |issue=1 |pages=43 |year=2017 |pmid=28425085 |pmc=5397452 |doi=10.1007/s11657-017-0324-5 |url=}}</ref>
Sufficient [[protein]] intake is necessary to maintain the function of the [[musculoskeletal]] system and to decrease the complications that occur after an osteoporotic [[fracture]]. Correction of poor [[protein]] [[nutrition]] in patients with a recent [[hip fracture]] has been shown to improve the subsequent clinical course by significantly lowering the rate of complications, such as [[bedsores]], severe [[anaemia|anemia]], and recurrent [[lung]] or [[renal]] infection. The duration of hospital stay of elderly patients with [[hip fracture]] can thus be shortened.<ref name="pmid28425085">{{cite journal |vauthors=Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, Hope S, Kanis JA, McCloskey EV, Poole KES, Reid DM, Selby P, Thompson F, Thurston A, Vine N |title=UK clinical guideline for the prevention and treatment of osteoporosis |journal=Arch Osteoporos |volume=12 |issue=1 |pages=43 |year=2017 |pmid=28425085 |pmc=5397452 |doi=10.1007/s11657-017-0324-5 |url=}}</ref>
 
'''Excess protein:''' There are three elements relating to a person's levels of [[calcium]], including consumption, absorption, and excretion. High [[protein]] intake is known to encourage urinary [[calcium]] losses and has been shown to increase the risk of [[fracture]] in research studies.<ref>{{cite journal|author=Feskanich D, Willett WC, Stampfer MJ, Colditz GA |title=Protein consumption and bone fractures in women |journal=Am. J. Epidemiol. |volume=143 |issue=5 |pages=472–9 |year=1996 |pmid=8610662 |doi=}}</ref><ref>{{cite journal |author=Abelow BJ, Holford TR, Insogna KL |title=Cross-cultural association between dietary animal protein and hip fracture: a hypothesis |journal=Calcif. Tissue Int. |volume=50 |issue=1 |pages=14–8 |year=1992 |pmid=1739864 |doi=}}</ref>


'''Excess protein:''' There are three main processes that may influence a person's levels of [[calcium]]:
* Consumption; High [[protein]] intake is known to encourage urinary [[calcium]] losses and has been shown to increase the risk of [[fracture]] in research studies.<ref>{{cite journal|author=Feskanich D, Willett WC, Stampfer MJ, Colditz GA |title=Protein consumption and bone fractures in women |journal=Am. J. Epidemiol. |volume=143 |issue=5 |pages=472–9 |year=1996 |pmid=8610662 |doi=}}</ref><ref>{{cite journal |author=Abelow BJ, Holford TR, Insogna KL |title=Cross-cultural association between dietary animal protein and hip fracture: a hypothesis |journal=Calcif. Tissue Int. |volume=50 |issue=1 |pages=14–8 |year=1992 |pmid=1739864 |doi=}}</ref>
* Absorption
* Excretion
'''Others:''' There is some evidence to suggest [[bone density]] benefits from taking the following [[supplements]] (in addition to [[calcium]] and [[vitamin D]]), including [[magnesium]], [[zinc]], [[copper]], [[manganese]], [[silicon]], [[strontium]], [[folic acid]], and [[Vitamin B6|vitamins B6]], [[Vitamin C|C]], and [[Vitamin K|K]].<ref>Gaby, Alan R.,''Preventing and Reversing Osteoporosis,'' 1994. ISBN 0-7615-0022-7</ref><ref>Kessler, George J., ''The Bone Density Diet,''2000. ISBN 0-345-43284-3</ref> This is weak evidence and quite controversial.
'''Others:''' There is some evidence to suggest [[bone density]] benefits from taking the following [[supplements]] (in addition to [[calcium]] and [[vitamin D]]), including [[magnesium]], [[zinc]], [[copper]], [[manganese]], [[silicon]], [[strontium]], [[folic acid]], and [[Vitamin B6|vitamins B6]], [[Vitamin C|C]], and [[Vitamin K|K]].<ref>Gaby, Alan R.,''Preventing and Reversing Osteoporosis,'' 1994. ISBN 0-7615-0022-7</ref><ref>Kessler, George J., ''The Bone Density Diet,''2000. ISBN 0-345-43284-3</ref> This is weak evidence and quite controversial.


===Exercise===
===Exercise===
Multiple studies have shown that [[aerobics]], weight lifting, and resistance exercises can all maintain or increase [[Bone mineral density|BMD]] in [[postmenopausal]] women.<ref>{{cite journal |author=Bonaiuti D, Shea B, Iovine R, ''et al'' |title=Exercise for preventing and treating osteoporosis in postmenopausal women |journal=Cochrane database of systematic reviews (Online) |volume= |issue=3|pages=CD000333 |year=2002 |pmid=12137611 |doi=}}</ref>
* Multiple studies have shown that [[aerobics]], weight lifting, and resistance exercises can all maintain or increase [[Bone mineral density|BMD]] in [[postmenopausal]] women.<ref>{{cite journal |author=Bonaiuti D, Shea B, Iovine R, ''et al'' |title=Exercise for preventing and treating osteoporosis in postmenopausal women |journal=Cochrane database of systematic reviews (Online) |volume= |issue=3|pages=CD000333 |year=2002 |pmid=12137611 |doi=}}</ref>


Many researchers have attempted to pinpoint which types of exercise are most effective at improving [[Bone mineral density|BMD]] and other metrics of [[bone]] quality, however, results have varied. One year of regular jumping exercises appears to increase the [[Bone mineral density|BMD]] and moment of inertia of the proximal [[tibia]] in normal [[postmenopausal]] women.<ref>{{cite journal |author=Cheng S, Sipilä S, Taaffe DR, Puolakka J, Suominen H |title=Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women |journal=Bone |volume=31 |issue=1 |pages=126–35 |year=2002 |pmid=12110425|doi=}}</ref>
* Many researchers have attempted to pinpoint which types of exercise are most effective at improving [[Bone mineral density|BMD]] and other metrics of [[bone]] quality, however, results have varied. One year of regular jumping exercises appears to increase the [[Bone mineral density|BMD]] and moment of inertia of the proximal [[tibia]] in normal [[postmenopausal]] women.<ref>{{cite journal |author=Cheng S, Sipilä S, Taaffe DR, Puolakka J, Suominen H |title=Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women |journal=Bone |volume=31 |issue=1 |pages=126–35 |year=2002 |pmid=12110425|doi=}}</ref>


Treadmill walking, gymnastic training, stepping, jumping, endurance, and strength exercises all resulted in significant increases of L2-L4 [[Bone mineral density|BMD]] in [[Osteopenia|osteopenic]] [[postmenopausal]] women.<ref>{{cite journal |author=Chien MY, Wu YT, Hsu AT, Yang RS, Lai JS |title=Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women|journal=Calcif. Tissue Int. |volume=67 |issue=6 |pages=443–8 |year=2000 |pmid=11289692 |doi=}}</ref><ref>{{cite journal|author=Iwamoto J, Takeda T, Ichimura S |title=Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis |journal=Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association |volume=6 |issue=2 |pages=128–32 |year=2001 |pmid=11484097 |doi=10.1007/s0077610060128}}</ref><ref>{{cite journal|author=Kemmler W, Engelke K, Weineck J, Hensen J, Kalender WA |title=The Erlangen Fitness Osteoporosis Prevention Study: a controlled exercise trial in early postmenopausal women with low bone density-first-year results |journal=Archives of physical medicine and rehabilitation |volume=84 |issue=5 |pages=673–82 |year=2003 |pmid=12736880 |doi=}}</ref>
* Treadmill walking, gymnastic training, stepping, jumping, endurance, and strength exercises all resulted in significant increases of L2-L4 [[Bone mineral density|BMD]] in [[Osteopenia|osteopenic]] [[postmenopausal]] women.<ref>{{cite journal |author=Chien MY, Wu YT, Hsu AT, Yang RS, Lai JS |title=Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women|journal=Calcif. Tissue Int. |volume=67 |issue=6 |pages=443–8 |year=2000 |pmid=11289692 |doi=}}</ref><ref>{{cite journal|author=Iwamoto J, Takeda T, Ichimura S |title=Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis |journal=Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association |volume=6 |issue=2 |pages=128–32 |year=2001 |pmid=11484097 |doi=10.1007/s0077610060128}}</ref><ref>{{cite journal|author=Kemmler W, Engelke K, Weineck J, Hensen J, Kalender WA |title=The Erlangen Fitness Osteoporosis Prevention Study: a controlled exercise trial in early postmenopausal women with low bone density-first-year results |journal=Archives of physical medicine and rehabilitation |volume=84 |issue=5 |pages=673–82 |year=2003 |pmid=12736880 |doi=}}</ref>


Strength training elicited improvements specifically in the distal [[radius]] and [[hip]] [[Bone mineral density|BMD]].<ref>{{cite journal |author=Kerr D, Morton A, Dick I, Prince R|title=Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent |journal=J. Bone Miner. Res.|volume=11 |issue=2 |pages=218–25 |year=1996 |pmid=8822346 |doi=}}</ref>
* Strength training elicited improvements specifically in the distal [[radius]] and [[hip]] [[Bone mineral density|BMD]].<ref>{{cite journal |author=Kerr D, Morton A, Dick I, Prince R|title=Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent |journal=J. Bone Miner. Res.|volume=11 |issue=2 |pages=218–25 |year=1996 |pmid=8822346 |doi=}}</ref>


=== Smoking cessation and alcohol consumption modification ===
=== Smoking cessation and alcohol consumption modification ===
Advise patients to stop [[smoking]]. The use of [[tobacco]] products is detrimental to the [[skeleton]] as well as to overall health. NOF strongly encourages a [[smoking]] cessation program as an [[osteoporosis]] intervention. Recognize and treat patients with excessive [[alcohol]] intake. Moderate [[alcohol]] intake has no known negative effect on [[bone]] and may even be associated with slightly higher [[bone density]] and lower risk of [[fracture]] in [[postmenopausal]] women. However, [[alcohol]] intake of more than two drinks per day for women or three drinks a day for men may be detrimental to bone health, increases the risk of falling, and requires further evaluation for possible alcoholism.<ref name="pmid21927919">{{cite journal |vauthors=Maurel DB, Boisseau N, Benhamou CL, Jaffre C |title=Alcohol and bone: review of dose effects and mechanisms |journal=Osteoporos Int |volume=23 |issue=1 |pages=1–16 |year=2012 |pmid=21927919 |doi=10.1007/s00198-011-1787-7 |url=}}</ref>
Advise patients to stop [[smoking]]. The use of [[tobacco]] products is detrimental to the [[skeleton]] as well as to overall health. National osteoporosis foundation (NOF) strongly encourages a [[smoking]] cessation program as an [[osteoporosis]] intervention. Recognize and treat patients with excessive [[alcohol]] intake. Moderate [[alcohol]] intake has no known negative effect on [[bone]] and may even be associated with slightly higher [[bone density]] and lower risk of [[fracture]] in [[postmenopausal]] women. However, [[alcohol]] intake of more than two drinks per day for women or three drinks a day for men may be detrimental to bone health, increases the risk of falling, and requires further evaluation for possible alcoholism.<ref name="pmid21927919">{{cite journal |vauthors=Maurel DB, Boisseau N, Benhamou CL, Jaffre C |title=Alcohol and bone: review of dose effects and mechanisms |journal=Osteoporos Int |volume=23 |issue=1 |pages=1–16 |year=2012 |pmid=21927919 |doi=10.1007/s00198-011-1787-7 |url=}}</ref>


=== Fall prevention ===
=== Fall prevention ===
Line 97: Line 99:
** Slippery conditions
** Slippery conditions
** Low-level lighting
** Low-level lighting
* '''Medical risk factors'''
** In addition to maintaining adequate [[vitamin D]] levels and [[physical activity]], several strategies have been demonstrated to reduce falls. These include:     
** [[Age]]
*** Multifactorial interventions such as individual risk assessment
** Medications causing [[sedation]] ([[narcotic]] [[analgesics]], [[anticonvulsants]], and psychotropics)
*** [[Tai chi chuan|Tai Chi]] and other [[exercise]] programs
** [[Anxiety]] and [[agitation]]
*** Home safety assessment
** [[Orthostatic hypotension]]
*** Modification especially when done by an [[occupational therapist]]
** [[Arrhythmias]]
*** Gradual withdrawal of [[psychotropic medication]].
** [[Vision impairment|Poor vision]]
*** Appropriate correction of [[visual impairment]] may improve mobility and reduce risk of falls.  
** [[Dehydration]]
*** There is a lack of evidence that the use of [[hip]] protectors by community-dwelling adults provides a statistically significant reduction in the risk of [[hip]] or [[pelvis]] [[fractures]]. Also, there is no evidence that the use of [[hip]] protectors reduces the rate of falls. In long-term care or residential care settings, some studies have shown a marginally significant reduction in [[hip fracture]] risk. There are no serious [[adverse effects]] of [[hip]] protectors; however, adherence to long-term use is poor. There is additional uncertainty as to which [[hip]] protector to use, as most of the marketed products have not been tested in randomized clinical trials.<ref name="pmid25182228" /><ref name="pmid20927724">{{cite journal |vauthors=Gillespie WJ, Gillespie LD, Parker MJ |title=Hip protectors for preventing hip fractures in older people |journal=Cochrane Database Syst Rev |volume= |issue=10 |pages=CD001255 |year=2010 |pmid=20927724 |doi=10.1002/14651858.CD001255.pub4 |url=}}</ref>
** Previous falls or fear of falling
** [[Depression]]
** Reduced problem solving or mental acuity and diminished [[cognitive]] skills
** [[Vitamin D deficiency|Vitamin D insufficiency]] [serum 25-hydroxyvitamin D <30 ng/ml (75 nmol/L)]
** [[Urinary incontinence|Urgent urinary incontinence]]
** [[Malnutrition]]
* '''Neurological and musculoskeletal risk factors'''
** [[Kyphosis]]
** Reduced [[proprioception]]
** Poor balance
** Weak [[muscles]]/[[sarcopenia]]
** Impaired transfer and mobility
** [[Deconditioning]]
In addition to maintaining adequate [[vitamin D]] levels and [[physical activity]], as described above, several strategies have been demonstrated to reduce falls. These include, but are not limited to,  multifactorial interventions such as individual risk assessment, [[Tai chi chuan|Tai Chi]] and other [[exercise]] programs, home safety assessment, and modification especially when done by an [[occupational therapist]], and gradual withdrawal of [[psychotropic medication]] if possible. Appropriate correction of [[visual impairment]] may improve mobility and reduce risk of falls. There is a lack of evidence that the use of [[hip]] protectors by community-dwelling adults provides a statistically significant reduction in the risk of [[hip]] or [[pelvis]] [[fractures]]. Also, there is no evidence that the use of [[hip]] protectors reduces the rate of falls. In long-term care or residential care settings, some studies have shown a marginally significant reduction in [[hip fracture]] risk. There are no serious [[adverse effects]] of [[hip]] protectors; however, adherence to long-term use is poor. There is additional uncertainty as to which [[hip]] protector to use, as most of the marketed products have not been tested in randomized clinical trials.<ref name="pmid25182228" /><ref name="pmid20927724">{{cite journal |vauthors=Gillespie WJ, Gillespie LD, Parker MJ |title=Hip protectors for preventing hip fractures in older people |journal=Cochrane Database Syst Rev |volume= |issue=10 |pages=CD001255 |year=2010 |pmid=20927724 |doi=10.1002/14651858.CD001255.pub4 |url=}}</ref>
 
==References==
==References==
{{reflist|2}}
{{reflist|2}}
[[Category:Medicine]]
[[Category:Endocrinology]]
[[Category:Up-To-Date]]

Latest revision as of 23:28, 29 July 2020

Osteoporosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Osteoporosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Life Style Modification
Pharmacotherapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Osteoporosis life style modification On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Osteoporosis life style modification

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Osteoporosis life style modification

CDC on Osteoporosis life style modification

Osteoporosis life style modification in the news

Blogs on Osteoporosis life style modification

Directions to Hospitals Treating Osteoporosis

Risk calculators and risk factors for Osteoporosis life style modification

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Eiman Ghaffarpasand, M.D. [2]

Overview

There are various lifestyle modifications that can be implemented to prevent the development or progression and to treat osteoporosis. They include calcium and vitamin D supplementation, diet, exercise, smoking cessation, alcohol consumption, and also fall prevention. The patient should consume 1200 to 1500 mg of calcium daily, either via dietary means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. New vitamin D intake recommendations are 400-800 IU daily in adults up to age 50, and 800 - 1,000 IU daily in those over 50. Multiple studies have shown that aerobics, weight lifting, and resistance exercises can all maintain or increase BMD in postmenopausal women. In addition to maintaining adequate vitamin D levels and physical activity, as described above, several strategies have been demonstrated to reduce falls.

Life style modification

There are various lifestyle modifications that can be implemented for the prevention and also for the treatment of osteoporosis.

Life style modification strategies influence on osteoporosis, based on national osteoporosis guideline group (NOGG)[2]

Intervention Effect on outcomes
Bone mineral density (BMD) Spine fracture Hip fracture
Exercise Highly effective Moderately effective Moderately effective
Calciumvitamin D) supplements Highly effective Moderately effective Moderately effective
Dietary calcium Moderately effective Moderately effective Moderately effective
Smoking cessation Moderately effective Moderately effective Moderately effective
Reduced alcohol consumption Mildly effective Mildly effective Moderately effective
Fall prevention programmes - Mildly effective Mildly effective
Hip protectors - - Moderately effective

Calcium and vitamin D

Calcium: The patient should consume 1200 to 1500 mg of calcium daily, either via dietary means (e.g., 8 oz glass of milk contains approximately 300 mg of calcium) or via supplementation. The body absorbs only about 500 mg of calcium at one time and so intake should be spread throughout the day. However, the benefit of supplementation of calcium alone remains controversial, to a degree, since several nations with high calcium intake through milk-products (e.g., the USA and Sweden) have some of the highest rates of osteoporosis worldwide; though this may be linked to excessive protein consumption. A few studies even suggested an adverse effect of calcium excess on bone density and blamed the milk industry for misleading the customers. Some nutritionists assert that excessive consumption of dairy products causes acidification, which leaches calcium from the system, and also argue that vegetables and nuts are a better source of calcium and that milk products should be avoided. This theory has no proof from scientific clinical studies. Similarly, nutritionists believe that excessive caffeine consumption can also contribute to leaching calcium from the bones.[3]

  • A meta-analysis of randomized controlled trials concluded "evidence supports the use of calcium, or calcium in combination with vitamin D supplementation, in the preventive treatment of osteoporosis in people aged 50 years or older. For best therapeutic effect, the recommended minimum dose of calcium is 1200 mg, and of vitamin D is 800 IU (for combined calcium plus vitamin D supplementation)". A study that examined the relationship between calcium supplementation and clinical fracture risk in an elderly population, showed that there was a significant decrease in fracture risk in patients that received calcium supplements versus those that received placebo. However, this benefit only applied to patients who were compliant with their treatment regimen.[4][5]

Estimating daily dietary calcium intake

  • First step: Estimate calcium intake from calcium-rich foods based on these measures:
    • Milk (8 oz.) equal to one serving has 300 mg calcium
    • Yogurt (6 oz.) equal to one serving has 300 mg calcium
    • Cheese (1 oz. or 1 cubic in.) equal to one serving has 200 mg calcium
    • Fortified food or juice equal to one serving has 80 to 1000 mg calcium
  • Second step: Add the summation 250 mg for other non-diary foods[6]

Vitamin D: Increasing vitamin D intake has been shown to reduce fractures up to twenty-five percent in older people, according to recent studies.[7][4] The very large Women's Health Initiative study, however, did not find any fracture benefit from calcium and vitamin D supplementation, but these women were already taking (on average) 1200 mg/day of calcium. Muscle weakness can contribute to falls so it is beneficial for people with osteoporosis to improve muscle function. Vitamin D deficiency causes muscle weakness.[8] A meta-analysis of five clinical trials showed 800 IU of vitamin D per day (plus calcium) reduced the risk of falls by 22%.[9] A different randomized controlled study showed that nursing home residents who took 800 IU of vitamin D per day (plus calcium) had a 72% reduction in the risk of falls. New vitamin D intake recommendations (National Osteoporosis Foundation, July 2014) include 400-800 IU daily for adults up to age 50 and 800 - 1,000 IU daily for those over 50.[10]

Diet

Sufficient protein intake is necessary to maintain the function of the musculoskeletal system and to decrease the complications that occur after an osteoporotic fracture. Correction of poor protein nutrition in patients with a recent hip fracture has been shown to improve the subsequent clinical course by significantly lowering the rate of complications, such as bedsores, severe anemia, and recurrent lung or renal infection. The duration of hospital stay of elderly patients with hip fracture can thus be shortened.[11]

Excess protein: There are three main processes that may influence a person's levels of calcium:

  • Consumption; High protein intake is known to encourage urinary calcium losses and has been shown to increase the risk of fracture in research studies.[12][13]
  • Absorption
  • Excretion

Others: There is some evidence to suggest bone density benefits from taking the following supplements (in addition to calcium and vitamin D), including magnesium, zinc, copper, manganese, silicon, strontium, folic acid, and vitamins B6, C, and K.[14][15] This is weak evidence and quite controversial.

Exercise

  • Multiple studies have shown that aerobics, weight lifting, and resistance exercises can all maintain or increase BMD in postmenopausal women.[16]
  • Many researchers have attempted to pinpoint which types of exercise are most effective at improving BMD and other metrics of bone quality, however, results have varied. One year of regular jumping exercises appears to increase the BMD and moment of inertia of the proximal tibia in normal postmenopausal women.[17]
  • Strength training elicited improvements specifically in the distal radius and hip BMD.[21]

Smoking cessation and alcohol consumption modification

Advise patients to stop smoking. The use of tobacco products is detrimental to the skeleton as well as to overall health. National osteoporosis foundation (NOF) strongly encourages a smoking cessation program as an osteoporosis intervention. Recognize and treat patients with excessive alcohol intake. Moderate alcohol intake has no known negative effect on bone and may even be associated with slightly higher bone density and lower risk of fracture in postmenopausal women. However, alcohol intake of more than two drinks per day for women or three drinks a day for men may be detrimental to bone health, increases the risk of falling, and requires further evaluation for possible alcoholism.[22]

Fall prevention

Major risk factors for falling are shown below:

  • Environmental risk factors
    • Lack of assistive devices in bathrooms
    • Obstacles in the walking path
    • Loose throw rugs
    • Slippery conditions
    • Low-level lighting
    • In addition to maintaining adequate vitamin D levels and physical activity, several strategies have been demonstrated to reduce falls. These include:
      • Multifactorial interventions such as individual risk assessment
      • Tai Chi and other exercise programs
      • Home safety assessment
      • Modification especially when done by an occupational therapist
      • Gradual withdrawal of psychotropic medication.
      • Appropriate correction of visual impairment may improve mobility and reduce risk of falls.
      • There is a lack of evidence that the use of hip protectors by community-dwelling adults provides a statistically significant reduction in the risk of hip or pelvis fractures. Also, there is no evidence that the use of hip protectors reduces the rate of falls. In long-term care or residential care settings, some studies have shown a marginally significant reduction in hip fracture risk. There are no serious adverse effects of hip protectors; however, adherence to long-term use is poor. There is additional uncertainty as to which hip protector to use, as most of the marketed products have not been tested in randomized clinical trials.[6][23]

References

  1. Buckley, Lenore; Guyatt, Gordon; Fink, Howard A.; Cannon, Michael; Grossman, Jennifer; Hansen, Karen E.; Humphrey, Mary Beth; Lane, Nancy E.; Magrey, Marina; Miller, Marc; Morrison, Lake; Rao, Madhumathi; Robinson, Angela Byun; Saha, Sumona; Wolver, Susan; Bannuru, Raveendhara R.; Vaysbrot, Elizaveta; Osani, Mikala; Turgunbaev, Marat; Miller, Amy S.; McAlindon, Timothy (2017). "2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis". Arthritis & Rheumatology. 69 (8): 1521–1537. doi:10.1002/art.40137. ISSN 2326-5191.
  2. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S; et al. (2014). "Clinician's Guide to Prevention and Treatment of Osteoporosis". Osteoporos Int. 25 (10): 2359–81. doi:10.1007/s00198-014-2794-2. PMC 4176573. PMID 25182228.
  3. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK; et al. (2011). "The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know". J Clin Endocrinol Metab. 96 (1): 53–8. doi:10.1210/jc.2010-2704. PMC 3046611. PMID 21118827.
  4. 4.0 4.1 Tang BMP; et al. (2007). "Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis". Lancet. 370: 657–666. doi:10.1016/S0140-6736(07)61342-7.
  5. Prince RL, Devine A, Dhaliwal SS, Dick IM (2006). "Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women". Arch. Intern. Med. 166 (8): 869–75. doi:10.1001/archinte.166.8.869. PMID 16636212.
  6. 6.0 6.1 Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S; et al. (2014). "Clinician's Guide to Prevention and Treatment of Osteoporosis". Osteoporos Int. 25 (10): 2359–81. doi:10.1007/s00198-014-2794-2. PMC 4176573. PMID 25182228.
  7. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005). "Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials". JAMA. 293 (18): 2257–64. doi:10.1001/jama.293.18.2257. PMID 15886381.
  8. Holick MF (2006). "Resurrection of vitamin D deficiency and rickets". J. Clin. Invest. 116 (8): 2062–72. doi:10.1172/JCI29449. PMID 16886050.
  9. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006). "Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes". Am. J. Clin. Nutr. 84 (1): 18–28. PMID 16825677.
  10. Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP (2007). "A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study". Journal of the American Geriatrics Society. 55 (2): 234–9. doi:10.1111/j.1532-5415.2007.01048.x. PMID 17302660.
  11. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, Hope S, Kanis JA, McCloskey EV, Poole K, Reid DM, Selby P, Thompson F, Thurston A, Vine N (2017). "UK clinical guideline for the prevention and treatment of osteoporosis". Arch Osteoporos. 12 (1): 43. doi:10.1007/s11657-017-0324-5. PMC 5397452. PMID 28425085. Vancouver style error: initials (help)
  12. Feskanich D, Willett WC, Stampfer MJ, Colditz GA (1996). "Protein consumption and bone fractures in women". Am. J. Epidemiol. 143 (5): 472–9. PMID 8610662.
  13. Abelow BJ, Holford TR, Insogna KL (1992). "Cross-cultural association between dietary animal protein and hip fracture: a hypothesis". Calcif. Tissue Int. 50 (1): 14–8. PMID 1739864.
  14. Gaby, Alan R.,Preventing and Reversing Osteoporosis, 1994. ISBN 0-7615-0022-7
  15. Kessler, George J., The Bone Density Diet,2000. ISBN 0-345-43284-3
  16. Bonaiuti D, Shea B, Iovine R; et al. (2002). "Exercise for preventing and treating osteoporosis in postmenopausal women". Cochrane database of systematic reviews (Online) (3): CD000333. PMID 12137611.
  17. Cheng S, Sipilä S, Taaffe DR, Puolakka J, Suominen H (2002). "Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women". Bone. 31 (1): 126–35. PMID 12110425.
  18. Chien MY, Wu YT, Hsu AT, Yang RS, Lai JS (2000). "Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women". Calcif. Tissue Int. 67 (6): 443–8. PMID 11289692.
  19. Iwamoto J, Takeda T, Ichimura S (2001). "Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis". Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 6 (2): 128–32. doi:10.1007/s0077610060128. PMID 11484097.
  20. Kemmler W, Engelke K, Weineck J, Hensen J, Kalender WA (2003). "The Erlangen Fitness Osteoporosis Prevention Study: a controlled exercise trial in early postmenopausal women with low bone density-first-year results". Archives of physical medicine and rehabilitation. 84 (5): 673–82. PMID 12736880.
  21. Kerr D, Morton A, Dick I, Prince R (1996). "Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent". J. Bone Miner. Res. 11 (2): 218–25. PMID 8822346.
  22. Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012). "Alcohol and bone: review of dose effects and mechanisms". Osteoporos Int. 23 (1): 1–16. doi:10.1007/s00198-011-1787-7. PMID 21927919.
  23. Gillespie WJ, Gillespie LD, Parker MJ (2010). "Hip protectors for preventing hip fractures in older people". Cochrane Database Syst Rev (10): CD001255. doi:10.1002/14651858.CD001255.pub4. PMID 20927724.