Toxic Adenoma differential diagnosis: Difference between revisions

Jump to navigation Jump to search
Mazia Fatima (talk | contribs)
WikiBot (talk | contribs)
m Bot: Removing from Primary care
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Toxic Adenoma}}
[[Image:Home_logo1.png|right|250px|link=https://www.wikidoc.org/index.php/Toxic_Adenoma]
{{CMG}} ; {{AE}} {{ADG}}
{{CMG}} ; {{AE}} {{ADG}}
==Overview==
==Overview==
Line 105: Line 105:
|-
|-
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Radiation thyroiditis}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Radiation thyroiditis}}
| style="padding: 5px 5px; background: #F5F5F5;" | Patients treated with [[radioiodine]] may develop thyroid pain and tenderness 5 to 10 days later, due to radiation-induced injury and necrosis of thyroid follicular cells and associated [[inflammation]].
| style="padding: 5px 5px; background: #F5F5F5;" | Patients treated with [[radioiodine]] may develop thyroid pain and tenderness 5 to 10 days later, due to [[radiation]]-induced [[injury]] and necrosis of thyroid [[follicular cells]] and associated [[inflammation]].
|-
|-
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Drugs that interfere with the immune system}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Drugs that interfere with the immune system}}
| style="padding: 5px 5px; background: #F5F5F5;" | [[Interferon alfa-2a clinical pharmacology|Interferon-alfa]] is a well-known cause of thyroid abnormality. It mostly leads to the development of de novo antithyroid [[antibodies]].<ref name="pmid8351956">{{cite journal |vauthors=Vialettes B, Guillerand MA, Viens P, Stoppa AM, Baume D, Sauvan R, Pasquier J, San Marco M, Olive D, Maraninchi D |title=Incidence rate and risk factors for thyroid dysfunction during recombinant interleukin-2 therapy in advanced malignancies |journal=Acta Endocrinol. |volume=129 |issue=1 |pages=31–8 |year=1993 |pmid=8351956 |doi= |url=}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" | [[Interferon alfa-2a clinical pharmacology|Interferon-alfa]] is a well-known cause of [[thyroid]] abnormality. It mostly leads to the development of de novo antithyroid [[antibodies]].<ref name="pmid8351956">{{cite journal |vauthors=Vialettes B, Guillerand MA, Viens P, Stoppa AM, Baume D, Sauvan R, Pasquier J, San Marco M, Olive D, Maraninchi D |title=Incidence rate and risk factors for thyroid dysfunction during recombinant interleukin-2 therapy in advanced malignancies |journal=Acta Endocrinol. |volume=129 |issue=1 |pages=31–8 |year=1993 |pmid=8351956 |doi= |url=}}</ref>
|-
|-
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Lithium}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Lithium}}
Line 114: Line 114:
|-
|-
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Palpation thyroiditis}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Palpation thyroiditis}}
| style="padding: 5px 5px; background: #F5F5F5;" | Manipulation of the thyroid gland during thyroid [[biopsy]] or neck surgery and vigorous palpation during the physical examination may cause transient [[hyperthyroidism]].
| style="padding: 5px 5px; background: #F5F5F5;" | Manipulation of the [[thyroid]] gland during [[thyroid]] [[biopsy]] or [[neck surgery]] and vigorous palpation during the physical examination may cause transient [[hyperthyroidism]].
|-
|-
| colspan="1" rowspan="4" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Exogenous and ectopic hyperthyroidism }}
| colspan="1" rowspan="4" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Exogenous and ectopic hyperthyroidism }}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Factitious ingestion of thyroid hormone}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Factitious ingestion of thyroid hormone}}
| style="padding: 5px 5px; background: #F5F5F5;" |The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.<ref name="pmid2666114">{{cite journal |vauthors=Cohen JH, Ingbar SH, Braverman LE |title=Thyrotoxicosis due to ingestion of excess thyroid hormone |journal=Endocr. Rev. |volume=10 |issue=2 |pages=113–24 |year=1989 |pmid=2666114 |doi=10.1210/edrv-10-2-113 |url=}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" |The diagnosis is based on the clinical features, laboratory findings, and 24-hour [[radioiodine]] uptake.<ref name="pmid2666114">{{cite journal |vauthors=Cohen JH, Ingbar SH, Braverman LE |title=Thyrotoxicosis due to ingestion of excess thyroid hormone |journal=Endocr. Rev. |volume=10 |issue=2 |pages=113–24 |year=1989 |pmid=2666114 |doi=10.1210/edrv-10-2-113 |url=}}</ref>
|-
|-
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Acute hyperthyroidism from a levothyroxine overdose}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Acute hyperthyroidism from a levothyroxine overdose}}
| style="padding: 5px 5px; background: #F5F5F5;" |The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.<ref name="pmid23067331">{{cite journal |vauthors=Jha S, Waghdhare S, Reddi R, Bhattacharya P |title=Thyroid storm due to inappropriate administration of a compounded thyroid hormone preparation successfully treated with plasmapheresis |journal=Thyroid |volume=22 |issue=12 |pages=1283–6 |year=2012 |pmid=23067331 |doi=10.1089/thy.2011.0353 |url=}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" |The diagnosis is based on the clinical features, laboratory findings, and 24-hour [[radioiodine]] uptake.<ref name="pmid23067331">{{cite journal |vauthors=Jha S, Waghdhare S, Reddi R, Bhattacharya P |title=Thyroid storm due to inappropriate administration of a compounded thyroid hormone preparation successfully treated with plasmapheresis |journal=Thyroid |volume=22 |issue=12 |pages=1283–6 |year=2012 |pmid=23067331 |doi=10.1089/thy.2011.0353 |url=}}</ref>
|-
|-
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Struma ovarii}}
| style="padding: 5px 5px; background: #4479BA;" | {{fontcolor|#FFFFFF|Struma ovarii}}
Line 130: Line 130:
|-
|-
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Hashitoxicosis }}
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Hashitoxicosis }}
| style="padding: 5px 5px; background: #F5F5F5;" |It is an [[autoimmune]] [[thyroid]] disease that initially presents with [[hyperthyroidism]] and a high [[radioiodine]] uptake caused by [[TSH]]-receptor [[antibodies]] similar to [[Graves' disease]]. It is then followed by the development of [[hypothyroidism]] due to the infiltration of the [[thyroid]] gland with [[Lymphocyte|lymphocytes]] and the resultant autoimmune-mediated destruction of [[thyroid]] tissue, similar to [[chronic lymphocytic thyroiditis]].<ref name="pmid5171000">{{cite journal |vauthors=Fatourechi V, McConahey WM, Woolner LB |title=Hyperthyroidism associated with histologic Hashimoto's thyroiditis |journal=Mayo Clin. Proc. |volume=46 |issue=10 |pages=682–9 |year=1971 |pmid=5171000 |doi= |url=}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" |It is an [[autoimmune]] [[thyroid]] disease that initially presents with [[hyperthyroidism]] and a high [[radioiodine]] uptake caused by [[TSH]]-receptor [[antibodies]] similar to [[Graves' disease]]. It is then followed by the development of [[hypothyroidism]] due to the [[Infiltration (medical)|infiltration]] of the [[thyroid]] gland with [[Lymphocyte|lymphocytes]] and the resultant [[autoimmune]]-mediated destruction of [[thyroid]] tissue, similar to [[chronic lymphocytic thyroiditis]].<ref name="pmid5171000">{{cite journal |vauthors=Fatourechi V, McConahey WM, Woolner LB |title=Hyperthyroidism associated with histologic Hashimoto's thyroiditis |journal=Mayo Clin. Proc. |volume=46 |issue=10 |pages=682–9 |year=1971 |pmid=5171000 |doi= |url=}}</ref>
|-  
|-  
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Toxic adenoma and toxic multinodular goiter}}
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Toxic adenoma and toxic multinodular goiter}}
Line 136: Line 136:
|-
|-
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Iodine-induced hyperthyroidism  }}
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Iodine-induced hyperthyroidism  }}
| style="padding: 5px 5px; background: #F5F5F5;" |It is uncommon but can develop after an [[iodine]] load, such as administration of contrast agents used for [[angiography]] or [[CT|computed tomography (CT]]), or [[iodine]]-rich drugs such as [[amiodarone]].
| style="padding: 5px 5px; background: #F5F5F5;" |It is uncommon but can develop after an [[iodine]] load, such as administration of [[contrast agents]] used for [[angiography]] or [[CT|computed tomography (CT]]), or [[iodine]]-rich drugs such as [[amiodarone]].
|-
|-
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Trophoblastic disease and germ cell tumors }}
| colspan="2" rowspan="1" style="background: #4479BA; padding: 5px 5px;" |{{fontcolor|#FFFFFF|Trophoblastic disease and germ cell tumors }}
| style="padding: 5px 5px; background: #F5F5F5;" |[[Thyroid-stimulating hormone]] and [[HCG]] have a common alpha-subunit and a beta-subunit with considerable homology. As a result, [[HCG]] has weak [[thyroid]]-stimulating activity and high titer HCG may mimic [[hyperthyroidism]].<ref name="pmid19605510">{{cite journal |vauthors=Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA |title=Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors |journal=Ann. Oncol. |volume=21 |issue=1 |pages=104–8 |year=2010 |pmid=19605510 |doi=10.1093/annonc/mdp265 |url=}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" |[[Thyroid-stimulating hormone]] and [[HCG]] have a common alpha-subunit and a beta-subunit with considerable homology. As a result, [[HCG]] has weak [[thyroid]]-stimulating activity and high titer [[HCG]] may mimic [[hyperthyroidism]].<ref name="pmid19605510">{{cite journal |vauthors=Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA |title=Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors |journal=Ann. Oncol. |volume=21 |issue=1 |pages=104–8 |year=2010 |pmid=19605510 |doi=10.1093/annonc/mdp265 |url=}}</ref>
|}
|}


==References==
==References==
{{reflist|2}}
{{reflist|2}}
​​
[[Category:Medicine]]
[[Category:Endocrinology]]
[[Category:Up-To-Date]]

Latest revision as of 00:26, 30 July 2020

[[Image:Home_logo1.png|right|250px|link=https://www.wikidoc.org/index.php/Toxic_Adenoma] Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Aditya Ganti M.B.B.S. [2]

Overview

Toxic adenoma must be differentiated from other hyperthyroidism diseases that cause anxiety, elevated blood pressure and insomnia such as essential hypertension, generalized anxiety disorder, and pheochromocytoma.

Differentiating Toxic Adenoma from other diseases

Toxic adenoma must be differentiated from other hyperthyroidism diseases that cause anxiety, elevated blood pressure and insomnia such as essential hypertension, generalized anxiety disorder, and pheochromocytoma.

Differentiating the different causes of thyrotoxicosis

Cause of thyrotoxicosis TSH receptor Antibodies Thyroid US Color flow Doppler Radioactive iodine uptake/Scan Other features
Graves' disease + Hypoechoic pattern Ophthalmopathy, dermopathy, acropachy
Toxic nodular goiter - Multiple nodules - Hot nodules at thyroid scan -
Toxic adenoma - Single nodule - Hot nodule -
Subacute thyroiditis - Heterogeneous hypoechoic areas Reduced/absent flow Neck pain, fever, and
elevated inflammatory index
Painless thyroiditis - Hypoechoic pattern Reduced/absent flow -
Amiodarone induced thyroiditis-Type 1 - Diffuse or nodular goiter ↓/Normal/↑ ↓ but higher than in Type 2 High urinary iodine
Amiodarone induced thyroiditis-Type 2 - Normal Absent ↓/absent High urinary iodine
Central hyperthyroidism - Diffuse or nodular goiter Normal/↑ Inappropriately normal or high TSH
Trophoblastic disease - Diffuse or nodular goiter Normal/↑ -
Factitious thyrotoxicosis - Variable Reduced/absent flow ↓ serum thyroglobulin
Struma ovarii - Variable Reduced/absent flow Abdominal RAIU

Prominent features in the different causes of hyperthyroidism

Disease Findings
Thyroiditis Direct chemical toxicity with inflammation Amiodarone, sunitinib, pazopanib, axitinib, and other tyrosine kinase inhibitors may also be associated with a destructive thyroiditis.[1][2]
Radiation thyroiditis Patients treated with radioiodine may develop thyroid pain and tenderness 5 to 10 days later, due to radiation-induced injury and necrosis of thyroid follicular cells and associated inflammation.
Drugs that interfere with the immune system Interferon-alfa is a well-known cause of thyroid abnormality. It mostly leads to the development of de novo antithyroid antibodies.[3]
Lithium Patients treated with lithium are at a high risk of developing painless thyroiditis and Graves' disease.
Palpation thyroiditis Manipulation of the thyroid gland during thyroid biopsy or neck surgery and vigorous palpation during the physical examination may cause transient hyperthyroidism.
Exogenous and ectopic hyperthyroidism Factitious ingestion of thyroid hormone The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.[4]
Acute hyperthyroidism from a levothyroxine overdose The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.[5]
Struma ovarii Functioning thyroid tissue is present in an ovarian neoplasm.
Functional thyroid cancer metastases Large bony metastases from widely metastatic follicular thyroid cancer cause symptomatic hyperthyroidism.
Hashitoxicosis It is an autoimmune thyroid disease that initially presents with hyperthyroidism and a high radioiodine uptake caused by TSH-receptor antibodies similar to Graves' disease. It is then followed by the development of hypothyroidism due to the infiltration of the thyroid gland with lymphocytes and the resultant autoimmune-mediated destruction of thyroid tissue, similar to chronic lymphocytic thyroiditis.[6]
Toxic adenoma and toxic multinodular goiter Toxic adenoma and toxic multinodular goiter are results of focal/diffuse hyperplasia of thyroid follicular cells independent of TSH regulation. Findings of single or multiple nodules are seen on physical examination or thyroid scan.[7]
Iodine-induced hyperthyroidism It is uncommon but can develop after an iodine load, such as administration of contrast agents used for angiography or computed tomography (CT), or iodine-rich drugs such as amiodarone.
Trophoblastic disease and germ cell tumors Thyroid-stimulating hormone and HCG have a common alpha-subunit and a beta-subunit with considerable homology. As a result, HCG has weak thyroid-stimulating activity and high titer HCG may mimic hyperthyroidism.[8]

References

  1. Lambert M, Unger J, De Nayer P, Brohet C, Gangji D (1990). "Amiodarone-induced thyrotoxicosis suggestive of thyroid damage". J. Endocrinol. Invest. 13 (6): 527–30. PMID 2258582.
  2. Ahmadieh H, Salti I (2013). "Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment". Biomed Res Int. 2013: 725410. doi:10.1155/2013/725410. PMC 3824811. PMID 24282820.
  3. Vialettes B, Guillerand MA, Viens P, Stoppa AM, Baume D, Sauvan R, Pasquier J, San Marco M, Olive D, Maraninchi D (1993). "Incidence rate and risk factors for thyroid dysfunction during recombinant interleukin-2 therapy in advanced malignancies". Acta Endocrinol. 129 (1): 31–8. PMID 8351956.
  4. Cohen JH, Ingbar SH, Braverman LE (1989). "Thyrotoxicosis due to ingestion of excess thyroid hormone". Endocr. Rev. 10 (2): 113–24. doi:10.1210/edrv-10-2-113. PMID 2666114.
  5. Jha S, Waghdhare S, Reddi R, Bhattacharya P (2012). "Thyroid storm due to inappropriate administration of a compounded thyroid hormone preparation successfully treated with plasmapheresis". Thyroid. 22 (12): 1283–6. doi:10.1089/thy.2011.0353. PMID 23067331.
  6. Fatourechi V, McConahey WM, Woolner LB (1971). "Hyperthyroidism associated with histologic Hashimoto's thyroiditis". Mayo Clin. Proc. 46 (10): 682–9. PMID 5171000.
  7. Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G (1991). "High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves' disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland". J. Intern. Med. 229 (5): 415–20. PMID 2040867.
  8. Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA (2010). "Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors". Ann. Oncol. 21 (1): 104–8. doi:10.1093/annonc/mdp265. PMID 19605510.

​​