Transmissible spongiform encephalopathy pathophysiology: Difference between revisions
Agnesrinky (talk | contribs) No edit summary |
Agnesrinky (talk | contribs) No edit summary |
||
Line 7: | Line 7: | ||
==Pathophysiology== | ==Pathophysiology== | ||
* Most TSEs are sporadic and occur in an animal with no prion protein mutation. | * Most [[Transmissible spongiform encephalopathy|TSEs]] are sporadic and occur in an animal with no prion protein mutation. | ||
* Inherited TSE occurs in animals carrying a rare [[mutation|mutant]] prion [[allele]], which expresses prion proteins that contort by themselves into the disease-causing [[protein structure|conformation]]. | * Inherited [[Transmissible spongiform encephalopathy|TSE]] occurs in animals carrying a rare [[mutation|mutant]] prion [[allele]], which expresses [[prion]] proteins that contort by themselves into the disease-causing [[protein structure|conformation]]. | ||
* Transmission occurs when healthy animals consume tainted tissues from others with the disease. In recent times a type of TSE called [[bovine spongiform encephalopathy]] (BSE) spread in [[cattle]] in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. The [[epidemic]] could have begun with just one cow with sporadic disease. | * Transmission occurs when healthy animals consume tainted tissues from others with the disease. In recent times a type of TSE called [[bovine spongiform encephalopathy]] (BSE) spread in [[cattle]] in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. The [[epidemic]] could have begun with just one cow with sporadic disease. | ||
* Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments. | * Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments. | ||
* Normal [[sterilization]] procedures such as boiling or irradiating materials fail to render prions non-infective. | * Normal [[sterilization]] procedures such as boiling or irradiating materials fail to render prions non-infective. | ||
* The degenerative tissue damage caused by human prion diseases ([[Creutzfeldt-Jakob disease|CJD]], [[Gerstmann-Sträussler-Scheinker syndrome|GSS]], and [[kuru]]) is characterised by four features: [[Spongiform encephalopathy|spongiform]] change, [[neuron]]al loss, [[astrocyte|astrocytosis]] and [[amyloid]] plaque formation. | * The degenerative tissue damage caused by human prion diseases ([[Creutzfeldt-Jakob disease|CJD]], [[Gerstmann-Sträussler-Scheinker syndrome|GSS]], and [[kuru]]) is characterised by four features: [[Spongiform encephalopathy|spongiform]] change, [[neuron]]al loss, [[astrocyte|astrocytosis]] and [[amyloid]] plaque formation. | ||
* These features are shared with [[Transmissible spongiform encephalopathy|prion]] diseases in animals, and the recognition of these similarities prompted the first attempts to transmit a human [[Transmissible spongiform encephalopathy|prion disease]] (kuru) to a [[primate]] in 1966, followed by CJD in 1968 and GSS in 1981.These neuropathological features have formed the basis of the [[histology|histological]] diagnosis of human prion diseases for many years, although it was recognised that these changes are enormously variable both from case to case and within the [[central nervous system]] in individual cases. | * These features are shared with [[Transmissible spongiform encephalopathy|prion]] diseases in animals, and the recognition of these similarities prompted the first attempts to transmit a human [[Transmissible spongiform encephalopathy|prion disease]] (kuru) to a [[primate]] in 1966, followed by [[Creutzfeldt-Jakob disease|CJD]] in 1968 and GSS in 1981.These neuropathological features have formed the basis of the [[histology|histological]] diagnosis of human prion diseases for many years, although it was recognised that these changes are enormously variable both from case to case and within the [[central nervous system]] in individual cases.. | ||
* Early neuropathological reports on human prion diseases suffered from a confusion of nomenclature, in which the significance of the diagnostic feature of spongiform change was occasionally overlooked. The subsequent demonstration that human prion diseases were transmissible reinforced the importance of spongiform change as a diagnostic feature, reflected in the use of the term "spongiform encephalopathy" for this group of disorders. | * Early neuropathological reports on human prion diseases suffered from a confusion of nomenclature, in which the significance of the diagnostic feature of spongiform change was occasionally overlooked. The subsequent demonstration that human prion diseases were transmissible reinforced the importance of spongiform change as a diagnostic feature, reflected in the use of the term "[[spongiform encephalopathy]]" for this group of disorders. | ||
===Transmission=== | ===Transmission=== | ||
* Prions appear to be most infectious when in direct contact with affected tissues. For example, [[Creutzfeldt-Jakob disease]] has been transmitted to patients taking injections of [[growth hormone]] harvested from human [[pituitary gland]]s, and from instruments used for [[brain surgery]] (Brown, 2000) (prions can survive the "[[autoclave]]" sterilization process used for most surgical instruments). | * Prions appear to be most infectious when in direct contact with affected tissues. For example, [[Creutzfeldt-Jakob disease]] has been transmitted to patients taking injections of [[growth hormone]] harvested from human [[pituitary gland]]s, and from instruments used for [[brain surgery]] (Brown, 2000) (prions can survive the "[[autoclave]]" sterilization process used for most surgical instruments). | ||
* It is also believed that dietary consumption of affected animals can cause prions to accumulate slowly, especially when [[cannibalism]] or similar practices allow the proteins to accumulate over more than one generation. An example is [[kuru (disease)|kuru]], which reached epidemic proportions in the mid 20th century in the [[Fore (people)|Fore]] people of [[Papua New Guinea]], who used to consume their dead as a funerary ritual. | * It is also believed that dietary consumption of affected animals can cause prions to accumulate slowly, especially when [[cannibalism]] or similar practices allow the proteins to accumulate over more than one generation. An example is [[kuru (disease)|kuru]], which reached epidemic proportions in the mid 20th century in the [[Fore (people)|Fore]] people of [[Papua New Guinea]], who used to consume their dead as a funerary ritual. | ||
* Laws in developed countries now proscribe the use of [[rendering (industrial)|rendered]] [[ruminant]] proteins in ruminant feed as a precaution against the spread of prion infection in cattle and other ruminants. | * Laws in developed countries now proscribe the use of [[rendering (industrial)|rendered]] [[ruminant]] proteins in ruminant feed as a precaution against the spread of prion infection in cattle and other ruminants. | ||
Line 29: | Line 29: | ||
* The [[PRNP]] gene provides the instructions to make a protein called the [[prion protein]] (PrP). Normally, this protein may be involved in transporting copper into cells. It may also be involved in protecting brain cells and helping them communicate. | * The [[PRNP]] gene provides the instructions to make a protein called the [[prion protein]] (PrP). Normally, this protein may be involved in transporting copper into cells. It may also be involved in protecting brain cells and helping them communicate. | ||
* 24 Point-[[Mutation]]s in this gene cause cells to produce an abnormal form of the prion protein, known as PrP<sup>Sc</sup>. This abnormal protein builds up in the brain and destroys nerve cells, resulting in the signs and symptoms of [[prion disease]]. | * 24 Point-[[Mutation]]s in this gene cause cells to produce an abnormal form of the prion protein, known as PrP<sup>Sc</sup>. This abnormal protein builds up in the brain and destroys nerve cells, resulting in the signs and symptoms of [[prion disease]]. | ||
* Familial forms of prion disease are inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | * Familial forms of prion disease are inherited in an [[autosomal dominant]] pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | ||
* In most cases, an affected person inherits the altered gene from one affected parent. | * In most cases, an affected person inherits the altered gene from one affected parent. | ||
* In some people, familial forms of prion disease are caused by a new mutation in the [[PRNP]] gene. Although such people most likely do not have an affected parent, they can pass the genetic change to their children. | * In some people, familial forms of prion disease are caused by a new mutation in the [[PRNP]] gene. Although such people most likely do not have an affected parent, they can pass the genetic change to their children. | ||
Line 62: | Line 62: | ||
{{WikiDoc Help Menu}} | {{WikiDoc Help Menu}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} | ||
<references /> |
Latest revision as of 11:19, 15 August 2020
Transmissible spongiform encephalopathy Microchapters |
Differentiating Transmissible spongiform encephalopathy from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Transmissible spongiform encephalopathy pathophysiology On the Web |
American Roentgen Ray Society Images of Transmissible spongiform encephalopathy pathophysiology |
FDA on Transmissible spongiform encephalopathy pathophysiology |
CDC on Transmissible spongiform encephalopathy pathophysiology |
Transmissible spongiform encephalopathy pathophysiology in the news |
Blogs on Transmissible spongiform encephalopathy pathophysiology |
Directions to Hospitals Treating Transmissible spongiform encephalopathy |
Risk calculators and risk factors for Transmissible spongiform encephalopathy pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Rinky Agnes Botleroo, M.B.B.S.
Overview
Unlike other kinds of infectious disease which are spread by microbes, the infectious agent in TSEs is a specific protein called prion protein. Misshaped prion proteins carry the disease between individuals and cause deterioration of the brain. TSEs are unique diseases in that their aetiology may be genetic, sporadic or infectious via ingestion of infected foodstuffs and via iatrogenic means (e.g. blood transfusion) (reviewed in Prusiner, 1991; Collinge, 2001).
Pathophysiology
- Most TSEs are sporadic and occur in an animal with no prion protein mutation.
- Inherited TSE occurs in animals carrying a rare mutant prion allele, which expresses prion proteins that contort by themselves into the disease-causing conformation.
- Transmission occurs when healthy animals consume tainted tissues from others with the disease. In recent times a type of TSE called bovine spongiform encephalopathy (BSE) spread in cattle in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. The epidemic could have begun with just one cow with sporadic disease.
- Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments.
- Normal sterilization procedures such as boiling or irradiating materials fail to render prions non-infective.
- The degenerative tissue damage caused by human prion diseases (CJD, GSS, and kuru) is characterised by four features: spongiform change, neuronal loss, astrocytosis and amyloid plaque formation.
- These features are shared with prion diseases in animals, and the recognition of these similarities prompted the first attempts to transmit a human prion disease (kuru) to a primate in 1966, followed by CJD in 1968 and GSS in 1981.These neuropathological features have formed the basis of the histological diagnosis of human prion diseases for many years, although it was recognised that these changes are enormously variable both from case to case and within the central nervous system in individual cases..
- Early neuropathological reports on human prion diseases suffered from a confusion of nomenclature, in which the significance of the diagnostic feature of spongiform change was occasionally overlooked. The subsequent demonstration that human prion diseases were transmissible reinforced the importance of spongiform change as a diagnostic feature, reflected in the use of the term "spongiform encephalopathy" for this group of disorders.
Transmission
- Prions appear to be most infectious when in direct contact with affected tissues. For example, Creutzfeldt-Jakob disease has been transmitted to patients taking injections of growth hormone harvested from human pituitary glands, and from instruments used for brain surgery (Brown, 2000) (prions can survive the "autoclave" sterilization process used for most surgical instruments).
- It is also believed that dietary consumption of affected animals can cause prions to accumulate slowly, especially when cannibalism or similar practices allow the proteins to accumulate over more than one generation. An example is kuru, which reached epidemic proportions in the mid 20th century in the Fore people of Papua New Guinea, who used to consume their dead as a funerary ritual.
- Laws in developed countries now proscribe the use of rendered ruminant proteins in ruminant feed as a precaution against the spread of prion infection in cattle and other ruminants.
Note that not all encephalopathies are caused by prions, as in the cases of PML (caused by the JC virus), CADASIL (caused by abnormal NOTCH3 protein activity), and Krabbe disease (caused by a deficiency of the enzyme galactosylceramidase). PSL -- which is a spongiform encephalopathy -- is also probably not caused by a prion, although the adulterant which causes it among heroin smokers has not yet been identified ([2], [3], [4], [5]). This, combined with the highly variable nature of prion disease pathology, is why a prion disease cannot be diagnosed based solely on a patient's symptoms.
Genetics
- Mutations in the PRNP gene cause prion disease. Familial forms of prion disease are caused by inherited mutations in the PRNP gene. Only a small percentage of all cases of prion disease run in families, however.
- Most cases of prion disease are sporadic, which means they occur in people without any known risk factors or gene mutations. Rarely, prion diseases also can be transmitted by exposure to prion-contaminated tissues or other biological materials obtained from individuals with prion disease.
- The PRNP gene provides the instructions to make a protein called the prion protein (PrP). Normally, this protein may be involved in transporting copper into cells. It may also be involved in protecting brain cells and helping them communicate.
- 24 Point-Mutations in this gene cause cells to produce an abnormal form of the prion protein, known as PrPSc. This abnormal protein builds up in the brain and destroys nerve cells, resulting in the signs and symptoms of prion disease.
- Familial forms of prion disease are inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.
- In most cases, an affected person inherits the altered gene from one affected parent.
- In some people, familial forms of prion disease are caused by a new mutation in the PRNP gene. Although such people most likely do not have an affected parent, they can pass the genetic change to their children.
Prion Diseases
Listed below are the prion diseases identified to date. Click the linked diseases to go to their respective topic sites. CDC does not currently offer information here on every prion disease listed.
Human Prion Diseases
- Creutzfeldt-Jakob Disease (CJD)
- Variant Creutzfeldt-Jakob Disease (vCJD)
- Gerstmann-Straussler-Scheinker Syndrome
- Fatal Familial Insomnia
- Kuru
Animal Prion Diseases
- Bovine Spongiform Encephalopathy (BSE)
- Chronic Wasting Disease (CWD)
- Scrapie
- Transmissible mink encephalopathy
- Feline spongiform encephalopathy
- Ungulate spongiform encephalopathy