Delirium other diagnostic studies: Difference between revisions

Jump to navigation Jump to search
Sara Zand (talk | contribs)
Sara Zand (talk | contribs)
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Delirium}}
{{Delirium}}
{{CMG}}; {{AE}} {{PB}}; [[User:Vishal Khurana|Vishal Khurana]], M.B.B.S., M.D. [mailto:vishdoc24@gmail.com]
{{CMG}}; {{AE}} {{Sara.Zand}} {{PB}}; [[User:Vishal Khurana|Vishal Khurana]], M.B.B.S., M.D. [mailto:vishdoc24@gmail.com]


==Overview==
==Overview==
[[EEG]] and [[Lumbar puncture]] can be utilized in the management of delirium, however they are not always indicated.
[[EEG]] maybe helpful for the diagnosis of [[delirium]].  [[EEG]] findings associated with [[delirium]] include [[periodic discharges]], triphasic waves ,lateralized [[rhythmic]] delta ,low voltage/generalized attenuation, theta or delta generalized slowing.The presence of either theta or delta generalized slowing correlated strongly with [[delirium]] severity regardless of [[arousal]] state (hyper- or hypoactive) and [[comorbidities]].
 
==Other Diagnostic Studies==
==Other Diagnostic Studies==
# '''EEG'''
# '''EEG'''
Line 11: Line 12:
* [[EEG]] shows diffuse slowing which is an indicator of [[delirium]] severity.<ref name="KimchiNeelagiri2019">{{cite journal|last1=Kimchi|first1=Eyal Y.|last2=Neelagiri|first2=Anudeepthi|last3=Whitt|first3=Wade|last4=Sagi|first4=Avinash Rao|last5=Ryan|first5=Sophia L.|last6=Gadbois|first6=Greta|last7=Groothuysen|first7=Daniël|last8=Westover|first8=M. Brandon|title=Clinical EEG slowing correlates with delirium severity and predicts poor clinical outcomes|journal=Neurology|volume=93|issue=13|year=2019|pages=e1260–e1271|issn=0028-3878|doi=10.1212/WNL.0000000000008164}}</ref>
* [[EEG]] shows diffuse slowing which is an indicator of [[delirium]] severity.<ref name="KimchiNeelagiri2019">{{cite journal|last1=Kimchi|first1=Eyal Y.|last2=Neelagiri|first2=Anudeepthi|last3=Whitt|first3=Wade|last4=Sagi|first4=Avinash Rao|last5=Ryan|first5=Sophia L.|last6=Gadbois|first6=Greta|last7=Groothuysen|first7=Daniël|last8=Westover|first8=M. Brandon|title=Clinical EEG slowing correlates with delirium severity and predicts poor clinical outcomes|journal=Neurology|volume=93|issue=13|year=2019|pages=e1260–e1271|issn=0028-3878|doi=10.1212/WNL.0000000000008164}}</ref>
* [[EEG]] is useful to differentiate [[delirium]] from following [[conditions]]:
* [[EEG]] is useful to differentiate [[delirium]] from following [[conditions]]:
:*[[Dementia]]
:*[[Dementia]]<ref name="ThomasHestermann2008">{{cite journal|last1=Thomas|first1=C|last2=Hestermann|first2=U|last3=Walther|first3=S|last4=Pfueller|first4=U|last5=Hack|first5=M|last6=Oster|first6=P|last7=Mundt|first7=C|last8=Weisbrod|first8=M|title=Prolonged activation EEG differentiates dementia with and without delirium in frail elderly patients|journal=Journal of Neurology, Neurosurgery & Psychiatry|volume=79|issue=2|year=2008|pages=119–125|issn=0022-3050|doi=10.1136/jnnp.2006.111732}}</ref>
:*[[Non‑convulsive status epilepticus]] and [[temporal lobe]] [[epilepsy]]
:*[[Non‑convulsive status epilepticus]] and [[temporal lobe]] [[epilepsy]]
*[[Conditions]] that can be identified on [[EEG]] include:
*[[Conditions]] that can be identified on [[EEG]] include:
:*[[ metabolic encephalopathy]] or [[infectious encephalitis]]
:*[[ metabolic encephalopathy]] or [[infectious encephalitis]]
:*Focal [[intracranial]] lesion, or it's a global abnormality.
:*Focal [[intracranial]] lesion, or it's a global abnormality.
* [[EEG]] finding associated with [[delirium]] include:
* [[EEG]] findings associated with [[delirium]] include:<ref name="KimchiNeelagiri2019">{{cite journal|last1=Kimchi|first1=Eyal Y.|last2=Neelagiri|first2=Anudeepthi|last3=Whitt|first3=Wade|last4=Sagi|first4=Avinash Rao|last5=Ryan|first5=Sophia L.|last6=Gadbois|first6=Greta|last7=Groothuysen|first7=Daniël|last8=Westover|first8=M. Brandon|title=Clinical EEG slowing correlates with delirium severity and predicts poor clinical outcomes|journal=Neurology|volume=93|issue=13|year=2019|pages=e1260–e1271|issn=0028-3878|doi=10.1212/WNL.0000000000008164}}</ref>
 
:*[[Periodic discharges]]
:*[[Periodic discharges]]
:* Triphasic waves
:* Triphasic waves
Line 25: Line 27:
* [[EEG]] changes in [[delirium]] are most prominent in the posterior regions.  
* [[EEG]] changes in [[delirium]] are most prominent in the posterior regions.  
* [[Delirium]] shows slowing of background activity, however, slowing of background activity is also observed in deep [[sleep]] and [[dementia]].
* [[Delirium]] shows slowing of background activity, however, slowing of background activity is also observed in deep [[sleep]] and [[dementia]].
* [[EEG]] recording of [[sleep]] shows K complexes and sleep-spindles whereas [[EEG]] recorded with eyes open (active [[EEG]]) in delirium have the relative power in the delta and the upper half of the alpha frequency band significantly different from dementia.
*Typical and atypical [[antipsychotic]] may cause [[EEG]] abnormality.<ref name="YılmazErbaş2013">{{cite journal|last1=Yılmaz|first1=Mustafa|last2=Erbaş|first2=Oytun|title=The effects of typical and atypical antipsychotics on the electrical activity of the brain in a rat model|journal=Journal of Clinical and Experimental Investigations|volume=4|issue=3|year=2013|issn=13096621|doi=10.5799/ahinjs.01.2013.03.0284}}</ref>
* These differences can be exploited to differentiate delirium from [[sleep]] and [[dementia]]
There are many practical limitations of [[EEG]] studies in delirium.  
* One study observed an increase in the relative power of the theta and a decline in the relative power of the alpha frequency band, but this phenomenon seen to be absent when [[Parkinson]] is a co-morbid [[condition]] to [[delirium]].<ref name="CozacGschwandtner2016">{{cite journal|last1=Cozac|first1=Vitalii V.|last2=Gschwandtner|first2=Ute|last3=Hatz|first3=Florian|last4=Hardmeier|first4=Martin|last5=Rüegg|first5=Stephan|last6=Fuhr|first6=Peter|title=Quantitative EEG and Cognitive Decline in Parkinson’s Disease|journal=Parkinson's Disease|volume=2016|year=2016|pages=1–14|issn=2090-8083|doi=10.1155/2016/9060649}}</ref>
* The exact effects of drugs like [[haloperidol]] on [[EEG]] are unknown, this poses a problem to study [[EEG]] characteristics of [[delirium]], as [[haloperidol]] is the most widely used [[medicines]] in the management of [[delirium]].  
* One study observed an increase in the relative power of the theta and a decline in the relative power of the alpha frequency band, but this phenomenon seen to be absent when [[Parkinson]] is a co-morbid [[condition]] to [[delirium]].
* More work needs to be done on the theta, alpha, and delta waves as many studies have disputed given findings.  
* [[Delirium]] can also be identified from non [[delirium]] states by the following characteristics:
* [[Delirium]] can also be identified from non [[delirium]] states by the following characteristics:
:* Increase in the relative power of the delta frequency band
:* Increase in the relative power of the delta frequency band
Line 37: Line 36:




====[[Neurophysiology]]====
*[[Electroencephalography]] ([[EEG]]) is an attractive mode of study in [[delirium]] as it has the ability to capture measures of global [[brain]] function.
*  There are also opportunities to summarise [[temporal]] fluctuations as continuous recordings, compressed into power spectra (quantitative [[EEG]], qEEG).
* [[Delirium]] has been known to be associated with a generalised slowing of background activity.<ref>{{cite journal|last=Engel|first=GL|coauthors=Romano, J|title=Delirium, a syndrome of cerebral insufficiency. 1959.|journal=The Journal of neuropsychiatry and clinical neurosciences|date=2004 Fall|volume=16|issue=4|pages=526–38|pmid=15616182|doi=10.1176/appi.neuropsych.16.4.526}}</ref><ref>{{cite journal|last=van der Kooi|first=AW|coauthors=Leijten, FS; van der Wekken, RJ; Slooter, AJ|title=What are the opportunities for EEG-based monitoring of delirium in the ICU?|journal=The Journal of neuropsychiatry and clinical neurosciences|date=2012 Fall|volume=24|issue=4|pages=472–7|pmid=23224454|doi=10.1176/appi.neuropsych.11110347}}</ref>  
* [[Delirium]] has been known to be associated with a generalised slowing of background activity.<ref>{{cite journal|last=Engel|first=GL|coauthors=Romano, J|title=Delirium, a syndrome of cerebral insufficiency. 1959.|journal=The Journal of neuropsychiatry and clinical neurosciences|date=2004 Fall|volume=16|issue=4|pages=526–38|pmid=15616182|doi=10.1176/appi.neuropsych.16.4.526}}</ref><ref>{{cite journal|last=van der Kooi|first=AW|coauthors=Leijten, FS; van der Wekken, RJ; Slooter, AJ|title=What are the opportunities for EEG-based monitoring of delirium in the ICU?|journal=The Journal of neuropsychiatry and clinical neurosciences|date=2012 Fall|volume=24|issue=4|pages=472–7|pmid=23224454|doi=10.1176/appi.neuropsych.11110347}}</ref>  
* For most studies, the outcome of interest was the relative power measures, in order: alpha, theta, delta frequencies.
* The relative power of the theta frequency and alpha frequencies was consistently different between [[delirium ]] and non-[[delirium]] [[patients]].
* The relative power of the theta frequency was consistently different between [[delirium ]]and non-[[delirium]] [[patients]].
*  Similar findings were reported for alpha frequencies.  In two studies, the relative power of all these bands was different within [[patients]] before and after [[delirium]].


===[[Lumbar puncture]]===
===[[Lumbar puncture]]===
*Routine [[LP]] does not provide any benefit in management of [[delirium]]. However,it maybe helpful in suspected [[meningitis]] when [[delirium ]] is accompanied with:
*Routine [[LP]] does not provide any benefit in management of [[delirium]]. However,it maybe helpful in suspected [[meningitis]] when [[confusion]] is accompanied with:<ref name="Warshaw1993">{{cite journal|last1=Warshaw|first1=G.|title=The effectiveness of lumbar puncture in the evaluation of delirium and fever in the hospitalized elderly|journal=Archives of Family Medicine|volume=2|issue=3|year=1993|pages=293–297|issn=10633987|doi=10.1001/archfami.2.3.293}}</ref>
 
* [[Meningism]]
* [[Meningism]]
* [[Headache]] and [[fever]]
* [[Headache]] and [[fever]]

Latest revision as of 09:27, 22 April 2021

Delirium Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Delirium from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case #1

Delirium On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Delirium

All Images
X-rays
Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Delirium

CDC on Delirium

Delirium in the news

Blogs on Delirium

Directions to Hospitals Treating Delirium

Risk calculators and risk factors for Delirium

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sara Zand, M.D.[2] Pratik Bahekar, MBBS [3]; Vishal Khurana, M.B.B.S., M.D. [4]

Overview

EEG maybe helpful for the diagnosis of delirium. EEG findings associated with delirium include periodic discharges, triphasic waves ,lateralized rhythmic delta ,low voltage/generalized attenuation, theta or delta generalized slowing.The presence of either theta or delta generalized slowing correlated strongly with delirium severity regardless of arousal state (hyper- or hypoactive) and comorbidities.

Other Diagnostic Studies

  1. EEG
  2. Lumbar Puncture

EEG

  • The presence of either theta or delta generalized slowing correlated strongly with delirium severity regardless of arousal state (hyper- or hypoactive) and comorbidities.
  • EEG changes in delirium are most prominent in the posterior regions.
  • Delirium shows slowing of background activity, however, slowing of background activity is also observed in deep sleep and dementia.
  • Typical and atypical antipsychotic may cause EEG abnormality.[3]
  • One study observed an increase in the relative power of the theta and a decline in the relative power of the alpha frequency band, but this phenomenon seen to be absent when Parkinson is a co-morbid condition to delirium.[4]
  • Delirium can also be identified from non delirium states by the following characteristics:
  • Increase in the relative power of the delta frequency band
  • Decrease in the peak frequency and significantly decreased bispectral index (BIS).[5]


  • Delirium has been known to be associated with a generalised slowing of background activity.[6][7]
  • The relative power of the theta frequency and alpha frequencies was consistently different between delirium and non-delirium patients.

Lumbar puncture

References

  1. 1.0 1.1 Kimchi, Eyal Y.; Neelagiri, Anudeepthi; Whitt, Wade; Sagi, Avinash Rao; Ryan, Sophia L.; Gadbois, Greta; Groothuysen, Daniël; Westover, M. Brandon (2019). "Clinical EEG slowing correlates with delirium severity and predicts poor clinical outcomes". Neurology. 93 (13): e1260–e1271. doi:10.1212/WNL.0000000000008164. ISSN 0028-3878.
  2. Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M (2008). "Prolonged activation EEG differentiates dementia with and without delirium in frail elderly patients". Journal of Neurology, Neurosurgery & Psychiatry. 79 (2): 119–125. doi:10.1136/jnnp.2006.111732. ISSN 0022-3050.
  3. Yılmaz, Mustafa; Erbaş, Oytun (2013). "The effects of typical and atypical antipsychotics on the electrical activity of the brain in a rat model". Journal of Clinical and Experimental Investigations. 4 (3). doi:10.5799/ahinjs.01.2013.03.0284. ISSN 1309-6621.
  4. Cozac, Vitalii V.; Gschwandtner, Ute; Hatz, Florian; Hardmeier, Martin; Rüegg, Stephan; Fuhr, Peter (2016). "Quantitative EEG and Cognitive Decline in Parkinson's Disease". Parkinson's Disease. 2016: 1–14. doi:10.1155/2016/9060649. ISSN 2090-8083.
  5. "What are the opportunities f... [J Neuropsychiatry Clin Neurosci. 2012] - PubMed - NCBI".
  6. Engel, GL (2004 Fall). "Delirium, a syndrome of cerebral insufficiency. 1959". The Journal of neuropsychiatry and clinical neurosciences. 16 (4): 526–38. doi:10.1176/appi.neuropsych.16.4.526. PMID 15616182. Unknown parameter |coauthors= ignored (help); Check date values in: |date= (help)
  7. van der Kooi, AW (2012 Fall). "What are the opportunities for EEG-based monitoring of delirium in the ICU?". The Journal of neuropsychiatry and clinical neurosciences. 24 (4): 472–7. doi:10.1176/appi.neuropsych.11110347. PMID 23224454. Unknown parameter |coauthors= ignored (help); Check date values in: |date= (help)
  8. Warshaw, G. (1993). "The effectiveness of lumbar puncture in the evaluation of delirium and fever in the hospitalized elderly". Archives of Family Medicine. 2 (3): 293–297. doi:10.1001/archfami.2.3.293. ISSN 1063-3987.

Template:WH Template:WS