Diabetic foot pathophysiology: Difference between revisions

Jump to navigation Jump to search
Cassandra Reyes (talk | contribs)
Cassandra Reyes (talk | contribs)
 
(16 intermediate revisions by the same user not shown)
Line 33: Line 33:
***Moreover, these [[anatomy|anatomical changes]] usually result in wider and thicker [[foot|feet]], which no longer fit in the [[patient]]'s regular shoes and cause more [[physical trauma|trauma]].
***Moreover, these [[anatomy|anatomical changes]] usually result in wider and thicker [[foot|feet]], which no longer fit in the [[patient]]'s regular shoes and cause more [[physical trauma|trauma]].
***[[Pathogenesis]] of some of these mechanical changes are listed below:
***[[Pathogenesis]] of some of these mechanical changes are listed below:
****Deprivation of [[nerve|neural supply]] to the [[muscle|intrinsic muscles]] of the [[foot]] → [[flexion|long flexor]] and [[Extension (kinesiology)|extensor]] [[tendons]] imbalanced → [[flexion]] of the [[foot]] → [[Pes cavus|high-arched]] [[foot]] and [[Hammer toe|claw-toe deformity]]
****Deprivation of [[nerve|neural supply]] to the [[muscle|intrinsic muscles]] of the [[foot]] → [[flexion|Long flexor]] and [[Extension (kinesiology)|extensor]] [[tendons]] imbalanced → [[Flexion]] of the [[foot]] → [[Pes cavus|High-arched]] [[foot]] and [[Hammer toe|claw-toe deformity]]
****[[Toes]] [[Extension (kinesiology)|hyperextension]] → overriding of the [[foot|metatarsal-phalangeal]] [[joints]] and downward displacement of [[foot|metatarsal heads]] → Increased prominence of both
****[[Toes]] [[Extension (kinesiology)|hyperextension]] → Overriding of the [[foot|metatarsal-phalangeal]] [[joints]] and downward displacement of [[foot|metatarsal heads]] → Increased prominence of both
****[[Toes]] [[Extension (kinesiology)|hyperextension]] → distal displacement of [[foot|metatarsal]] [[fat]] pads → altering the natural cushioning of these [[fat]] pads
****[[Toes]] [[Extension (kinesiology)|hyperextension]] → Distal displacement of [[foot|metatarsal]] [[fat]] pads → Altering the natural cushioning of these [[fat]] pads
**[[Autonomic nervous system|Autonomic]] [[neuropathy]]:<ref name="pmid21616974">{{cite journal| author=Ebenezer GJ, O'Donnell R, Hauer P, Cimino NP, McArthur JC, Polydefkis M| title=Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy. | journal=Brain | year= 2011 | volume= 134 | issue= Pt 6 | pages= 1853-63 | pmid=21616974 | doi=10.1093/brain/awr086 | pmc=3140859 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21616974  }} </ref>
**[[Autonomic nervous system|Autonomic]] [[neuropathy]]:<ref name="pmid21616974">{{cite journal| author=Ebenezer GJ, O'Donnell R, Hauer P, Cimino NP, McArthur JC, Polydefkis M| title=Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy. | journal=Brain | year= 2011 | volume= 134 | issue= Pt 6 | pages= 1853-63 | pmid=21616974 | doi=10.1093/brain/awr086 | pmc=3140859 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21616974  }} </ref>
***[[Autonomic nervous system|Autonomic]] [[neuropathy]] leads to [[anhidrosis]] and impaired function of oil [[glands]]. The subsequent [[Xeroderma|dryness]] of the [[skin]] results in a higher chance of [[skin]] breakdown, [[ulcer]] formation and [[bacteria|bacterial]] invasion.
***[[Autonomic nervous system|Autonomic]] [[neuropathy]] leads to [[anhidrosis]] and impaired function of oil [[glands]]. The subsequent [[Xeroderma|dryness]] of the [[skin]] results in a higher chance of [[skin]] breakdown, [[ulcer]] formation, and [[bacteria|bacterial]] invasion.
***[[Autonomic nervous system|Autonomic]] [[neuropathy]] also decreases the proper peripheral [[Sympathetic nervous system|sympathetic]] [[blood vessel|vascular]] tone which can lead to higher [[blood]] flow and [[blood pressure|pressure]] in [[Anatomical terms of location|distal]] [[artery|arteries]]. The aforementioned changes plus [[capillary]] [[basement membrane]] destruction leads to [[edema]]. [[Edema]] itself increases the risk of [[ulcer]] formation.
***[[Autonomic nervous system|Autonomic]] [[neuropathy]] also decreases the proper peripheral [[Sympathetic nervous system|sympathetic]] [[blood vessel|vascular]] tone which can lead to higher [[blood]] flow and [[blood pressure|pressure]] in [[Anatomical terms of location|distal]] [[artery|arteries]]. The aforementioned changes plus [[capillary]] [[basement membrane]] destruction leads to [[edema]]. [[Edema]] itself increases the risk of [[ulcer]] formation.
**[[Sensory system|Sensory]] [[neuropathy]]:
**[[Sensory system|Sensory]] [[neuropathy]]:
***Appropriate [[sensory system]] helps [[patients]] to notice the tiniest [[fissures]] or [[blisters]] on their [[skin]]. This early sensation makes it possible for [[patients]] to take care of these [[skin]] defects and prevent further [[Complication (medicine)|complications]].
***Appropriate [[sensory system]] helps [[patients]] to notice the tiniest [[fissures]] or [[blisters]] on their [[skin]]. This early sensation makes it possible for [[patients]] to take care of these [[skin]] defects and prevent further [[Complication (medicine)|complications]].
***Conversely, [[diabetes|diabetic]] [[patients]] with [[sensory system|Sensory]] [[neuropathy]] are more prone to [[ulcer]] formation and related [[Complication (medicine)|complications]], since they don't feel [[pain]] with ever-deepening [[ulcers]].
***Conversely, [[diabetes|diabetic]] [[patients]] with [[sensory system|sensory]] [[neuropathy]] are more prone to [[ulcer]] formation and related [[Complication (medicine)|complications]], since they don't feel [[pain]] with their ever-deepening [[ulcers]].


===Ischemia===  
===Ischemia===  
Line 47: Line 47:
*[[Atherosclerosis]]:<ref name="pmid9839111">{{cite journal| author=Mayfield JA, Reiber GE, Sanders LJ, Janisse D, Pogach LM| title=Preventive foot care in people with diabetes. | journal=Diabetes Care | year= 1998 | volume= 21 | issue= 12 | pages= 2161-77 | pmid=9839111 | doi=10.2337/diacare.21.12.2161 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9839111  }} </ref><ref name="pmid6390204">{{cite journal| author=LoGerfo FW, Coffman JD| title=Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. | journal=N Engl J Med | year= 1984 | volume= 311 | issue= 25 | pages= 1615-9 | pmid=6390204 | doi=10.1056/NEJM198412203112506 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6390204  }} </ref>
*[[Atherosclerosis]]:<ref name="pmid9839111">{{cite journal| author=Mayfield JA, Reiber GE, Sanders LJ, Janisse D, Pogach LM| title=Preventive foot care in people with diabetes. | journal=Diabetes Care | year= 1998 | volume= 21 | issue= 12 | pages= 2161-77 | pmid=9839111 | doi=10.2337/diacare.21.12.2161 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9839111  }} </ref><ref name="pmid6390204">{{cite journal| author=LoGerfo FW, Coffman JD| title=Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. | journal=N Engl J Med | year= 1984 | volume= 311 | issue= 25 | pages= 1615-9 | pmid=6390204 | doi=10.1056/NEJM198412203112506 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6390204  }} </ref>
**[[Atherosclerosis]] of the [[Limb (anatomy)|lower limb]] is 2 to 3 times more common in [[diabetes|diabetic]] [[patients]], compared to the normal population.
**[[Atherosclerosis]] of the [[Limb (anatomy)|lower limb]] is 2 to 3 times more common in [[diabetes|diabetic]] [[patients]], compared to the normal population.
**Investigations reported that [[atherosclerosis]] in [[diabetes|diabetic]] [[patients]] is more prominent in [[Anterior tibial artery|tibial]] and [[fibular artery|fibular arteries]] of the calf and [[artery|arteries]] of the [[foot]] are relatively spared.
**Investigators reported that [[atherosclerosis]] in [[diabetes|diabetic]] [[patients]] is more prominent in [[Anterior tibial artery|tibial]] and [[fibular artery|fibular arteries]] of the calf, and [[artery|arteries]] of the [[foot]] are relatively spared.
**It usually occurs due to [[inflammation]] and consequently leads to accumulation of the [[foam cells]].
**It usually occurs due to [[inflammation]] and consequently leads to accumulation of the [[foam cells]].
*[[Microvascular disease|Micro]] and [[Macrovascular disease|macrovascular]] [[Complication (medicine)|complications]] are one of the leading causes of [[diabetes|diabetic]] [[Complication (medicine)|complications]]. [[Microvascular disease|Microvascular]] [[Complication (medicine)|complications]] cause [[skin]] damage, [[infection]] and impaired [[wound healing]].<ref name="pmid22623440">{{cite journal| author=Venermo M, Vikatmaa P, Terasaki H, Sugano N| title=Vascular laboratory for critical limb ischaemia. | journal=Scand J Surg | year= 2012 | volume= 101 | issue= 2 | pages= 86-93 | pmid=22623440 | doi=10.1177/145749691210100203 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22623440  }} </ref>
*[[Microvascular disease|Micro]] and [[Macrovascular disease|macrovascular]] [[Complication (medicine)|complications]] are one of the leading causes of [[diabetes|diabetic]] [[Complication (medicine)|complications]]. [[Microvascular disease|Microvascular]] [[Complication (medicine)|complications]] cause [[skin]] damage, [[infection]], and impaired [[wound healing]].<ref name="pmid22623440">{{cite journal| author=Venermo M, Vikatmaa P, Terasaki H, Sugano N| title=Vascular laboratory for critical limb ischaemia. | journal=Scand J Surg | year= 2012 | volume= 101 | issue= 2 | pages= 86-93 | pmid=22623440 | doi=10.1177/145749691210100203 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22623440  }} </ref>
*The vascular changes which are responsible for [[foot]] problems include stiff [[artery|arteries]] due to [[calcification]] of the [[Smooth muscle|smooth muscle cells]] in the [[artery|arterial wall]] (mediasclerosis). Consequently, the stiff [[artery|arteries]] are unable to expand in response to [[[[blood pressure|systolic pressure]], which can lead to movement of [[plaque|plaques]] in calf [[artery|arteries]].<ref name="pmid2411027">{{cite journal| author=McMillan DE| title=Blood flow and the localization of atherosclerotic plaques. | journal=Stroke | year= 1985 | volume= 16 | issue= 4 | pages= 582-7 | pmid=2411027 | doi=10.1161/01.str.16.4.582 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2411027  }} </ref>
*The vascular changes which are responsible for [[foot]] problems include stiff [[artery|arteries]] due to [[calcification]] of the [[Smooth muscle|smooth muscle cells]] in the [[artery|arterial wall]] (mediasclerosis). Consequently, the stiff [[artery|arteries]] are unable to expand in response to [[blood pressure|systolic pressure]], which can lead to the movement of [[plaque|plaques]] in calf [[artery|arteries]].<ref name="pmid2411027">{{cite journal| author=McMillan DE| title=Blood flow and the localization of atherosclerotic plaques. | journal=Stroke | year= 1985 | volume= 16 | issue= 4 | pages= 582-7 | pmid=2411027 | doi=10.1161/01.str.16.4.582 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2411027  }} </ref>
*Most of these changes are discovered by an impaired [[ABI|ankle brachial index]] ([[ABI]]).  
*Most of these changes are discovered by an impaired [[ABI|ankle brachial index]] ([[ABI]]).  
**The resting [[ABI]] is the ratio of the [[blood pressure]] in the [[Limb (anatomy)|lower limb]] to the [[blood pressure]] of the [[arms]]. It is calculated by dividing the [[systolic blood pressure]] of the [[ankle]] by the [[systolic blood pressure]] of the [[arm]].
**The resting [[ABI]] is the ratio of the [[blood pressure]] in the [[Limb (anatomy)|lower limb]] to the [[blood pressure]] of the [[arms]]. It is calculated by dividing the [[systolic blood pressure]] of the [[ankle]] by the [[systolic blood pressure]] of the [[arm]].
Line 60: Line 60:
===Trauma===
===Trauma===


*[[Physical trauma|Trauma]] to the [[foot]] is frequently the trigger of [[diabetes|diabetic]] [[foot]] [[ulcer]] development and repetitive [[Physical trauma|trauma]] and pressure to the area prevent [[Wound healing|healing]].<ref name="pmid25982677">{{cite journal| author=Noor S, Zubair M, Ahmad J| title=Diabetic foot ulcer--A review on pathophysiology, classification and microbial etiology. | journal=Diabetes Metab Syndr | year= 2015 | volume= 9 | issue= 3 | pages= 192-9 | pmid=25982677 | doi=10.1016/j.dsx.2015.04.007 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25982677  }} </ref>
*[[Physical trauma|Trauma]] to the [[foot]] is frequently the trigger of [[diabetes|diabetic]] [[foot]] [[ulcer]] development, and repetitive [[Physical trauma|trauma]] and pressure to the area prevent [[Wound healing|healing]].<ref name="pmid25982677">{{cite journal| author=Noor S, Zubair M, Ahmad J| title=Diabetic foot ulcer--A review on pathophysiology, classification and microbial etiology. | journal=Diabetes Metab Syndr | year= 2015 | volume= 9 | issue= 3 | pages= 192-9 | pmid=25982677 | doi=10.1016/j.dsx.2015.04.007 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25982677  }} </ref>
*Excessive [[Anatomical terms of location|plantar]] pressure is related to limited [[joint]] mobility and [[foot]] deformities (such as [[Charcot joint|charcot foot]] and [[hammer toe]]). Limited [[joint]] mobility and abnormal [[foot]] biomechanisms have been associated to an increased risk of [[ulcer|ulceration]].<ref name="pmid22529027">{{cite journal| author=Alexiadou K, Doupis J| title=Management of diabetic foot ulcers. | journal=Diabetes Ther | year= 2012 | volume= 3 | issue= 1 | pages= 4 | pmid=22529027 | doi=10.1007/s13300-012-0004-9 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22529027  }} </ref>
*Excessive [[Anatomical terms of location|plantar]] pressure is related to limited [[joint]] mobility and [[foot]] deformities (such as [[Charcot joint|charcot foot]] and [[hammer toe]]). Limited [[joint]] mobility and abnormal [[foot]] biomechanisms have been associated to an increased risk of [[ulcer|ulceration]].<ref name="pmid22529027">{{cite journal| author=Alexiadou K, Doupis J| title=Management of diabetic foot ulcers. | journal=Diabetes Ther | year= 2012 | volume= 3 | issue= 1 | pages= 4 | pmid=22529027 | doi=10.1007/s13300-012-0004-9 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22529027  }} </ref>
*Poor [[Visual system|vision]] and [[Sensory system|sensory]] [[neuropathy]] further put [[diabetes|diabetic]] [[patients]] at risk of [[foot]] [[ulcer|ulceration]], as they do not feel the [[pain]], nor do they see the [[ulcer]]. Loss of balance can also make [[patients]] more susceptible to falls.<ref name="pmid22529027">{{cite journal| author=Alexiadou K, Doupis J| title=Management of diabetic foot ulcers. | journal=Diabetes Ther | year= 2012 | volume= 3 | issue= 1 | pages= 4 | pmid=22529027 | doi=10.1007/s13300-012-0004-9 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22529027  }} </ref>
*Poor [[Visual system|vision]] and [[Sensory system|sensory]] [[neuropathy]] further put [[diabetes|diabetic]] [[patients]] at risk of [[foot]] [[ulcer|ulceration]], as they do not feel the [[pain]], nor do they see the [[ulcer]]. Loss of balance can also make [[patients]] more susceptible to falls.<ref name="pmid22529027">{{cite journal| author=Alexiadou K, Doupis J| title=Management of diabetic foot ulcers. | journal=Diabetes Ther | year= 2012 | volume= 3 | issue= 1 | pages= 4 | pmid=22529027 | doi=10.1007/s13300-012-0004-9 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22529027  }} </ref>
Line 68: Line 68:
*A [[transcription factor]] named [[HIF1A|hypoxia‐inducible factor‐1]] ([[HIF1A|HIF‐1]]), which becomes stable in [[hypoxemia|hypoxia]], functions as a [[oxygen]] [[homeostasis]] regulator.<ref name="pmid22304911">{{cite journal| author=Semenza GL| title=Hypoxia-inducible factors in physiology and medicine. | journal=Cell | year= 2012 | volume= 148 | issue= 3 | pages= 399-408 | pmid=22304911 | doi=10.1016/j.cell.2012.01.021 | pmc=3437543 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22304911  }} </ref>
*A [[transcription factor]] named [[HIF1A|hypoxia‐inducible factor‐1]] ([[HIF1A|HIF‐1]]), which becomes stable in [[hypoxemia|hypoxia]], functions as a [[oxygen]] [[homeostasis]] regulator.<ref name="pmid22304911">{{cite journal| author=Semenza GL| title=Hypoxia-inducible factors in physiology and medicine. | journal=Cell | year= 2012 | volume= 148 | issue= 3 | pages= 399-408 | pmid=22304911 | doi=10.1016/j.cell.2012.01.021 | pmc=3437543 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22304911  }} </ref>
*Since [[HIF1A|HIF‐1]] helps cells to respond adequately to [[hypoxemia|hypoxia]] (by regulating [[erythropoiesis]], [[metabolism|metabolic changes]], [[angiogenesis]], [[Cell growth|proliferation]], migration, and [[cell]] survival), it plays a critical role in [[wound healing]].<ref name="pmid23937437">{{cite journal| author=Semenza GL| title=Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. | journal=Annu Rev Pathol | year= 2014 | volume= 9 | issue=  | pages= 47-71 | pmid=23937437 | doi=10.1146/annurev-pathol-012513-104720 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23937437  }} </ref>
*Since [[HIF1A|HIF‐1]] helps cells to respond adequately to [[hypoxemia|hypoxia]] (by regulating [[erythropoiesis]], [[metabolism|metabolic changes]], [[angiogenesis]], [[Cell growth|proliferation]], migration, and [[cell]] survival), it plays a critical role in [[wound healing]].<ref name="pmid23937437">{{cite journal| author=Semenza GL| title=Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. | journal=Annu Rev Pathol | year= 2014 | volume= 9 | issue=  | pages= 47-71 | pmid=23937437 | doi=10.1146/annurev-pathol-012513-104720 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23937437  }} </ref>
*In addition, [[HIF1A|hypoxia‐inducible factor‐1]] is responsible for expression of [[gene|genes]] that are critical to facilitate [[wound healing]], such as the [[GLUT1]] and [[GLUT3]], [[lactate dehydrogenase]], [[gene|genes]] responsible for proper [[Mitochondrion|mitochondrial]] function (such as [[Phosphoinositide-dependent kinase-1|phosphoinositide‐dependent kinase‐1]]), [[type I collagen]] and [[fibronectin]]. <ref name="pmid26453314">{{cite journal| author=Catrina SB, Zheng X| title=Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers. | journal=Diabetes Metab Res Rev | year= 2016 | volume= 32 Suppl 1 | issue=  | pages= 179-85 | pmid=26453314 | doi=10.1002/dmrr.2742 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26453314  }} </ref>
*In addition, [[HIF1A|hypoxia‐inducible factor‐1]] is responsible for the expression of [[gene|genes]] that are critical to facilitate [[wound healing]], such as the [[GLUT1]] and [[GLUT3]], [[lactate dehydrogenase]], [[gene|genes]] responsible for proper [[Mitochondrion|mitochondrial]] function (such as [[Phosphoinositide-dependent kinase-1|phosphoinositide‐dependent kinase‐1]]), [[type I collagen]], and [[fibronectin]]. <ref name="pmid26453314">{{cite journal| author=Catrina SB, Zheng X| title=Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers. | journal=Diabetes Metab Res Rev | year= 2016 | volume= 32 Suppl 1 | issue=  | pages= 179-85 | pmid=26453314 | doi=10.1002/dmrr.2742 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26453314  }} </ref>
*There are numerous studies that detected lower level of [[HIF1A|HIF‐1]] in [[biopsy|biopsies]] of [[diabetic foot]]. <ref name="pmid19057015">{{cite journal| author=Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S | display-authors=etal| title=Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. | journal=Proc Natl Acad Sci U S A | year= 2008 | volume= 105 | issue= 49 | pages= 19426-31 | pmid=19057015 | doi=10.1073/pnas.0805230105 | pmc=2614777 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19057015  }} </ref><ref name="pmid17971009">{{cite journal| author=Mace KA, Yu DH, Paydar KZ, Boudreau N, Young DM| title=Sustained expression of Hif-1alpha in the diabetic environment promotes angiogenesis and cutaneous wound repair. | journal=Wound Repair Regen | year= 2007 | volume= 15 | issue= 5 | pages= 636-45 | pmid=17971009 | doi=10.1111/j.1524-475X.2007.00278.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17971009  }} </ref><ref name="pmid15561954">{{cite journal| author=Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L| title=Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. | journal=Diabetes | year= 2004 | volume= 53 | issue= 12 | pages= 3226-32 | pmid=15561954 | doi=10.2337/diabetes.53.12.3226 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15561954  }} </ref>
*There are numerous studies that detected lower levels of [[HIF1A|HIF‐1]] in [[biopsy|biopsies]] of [[diabetic foot]]. <ref name="pmid19057015">{{cite journal| author=Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S | display-authors=etal| title=Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. | journal=Proc Natl Acad Sci U S A | year= 2008 | volume= 105 | issue= 49 | pages= 19426-31 | pmid=19057015 | doi=10.1073/pnas.0805230105 | pmc=2614777 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19057015  }} </ref><ref name="pmid17971009">{{cite journal| author=Mace KA, Yu DH, Paydar KZ, Boudreau N, Young DM| title=Sustained expression of Hif-1alpha in the diabetic environment promotes angiogenesis and cutaneous wound repair. | journal=Wound Repair Regen | year= 2007 | volume= 15 | issue= 5 | pages= 636-45 | pmid=17971009 | doi=10.1111/j.1524-475X.2007.00278.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17971009  }} </ref><ref name="pmid15561954">{{cite journal| author=Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L| title=Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. | journal=Diabetes | year= 2004 | volume= 53 | issue= 12 | pages= 3226-32 | pmid=15561954 | doi=10.2337/diabetes.53.12.3226 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15561954  }} </ref>
*One of the known [[pathogenesis]] of destabilized [[HIF1A|hypoxia‐inducible factor‐1]] is [[hyperglycemia]]. This destabilization in [[hyperglycemia|hyperglycaemic conditions]] has been explained by an increase in tendency of [[HIF1A|HIF‐1]] towards [[Von Hippel–Lindau tumor suppressor|VHL]]‐dependent degradation. <ref name="pmid21124777">{{cite journal| author=Bento CF, Fernandes R, Ramalho J, Marques C, Shang F, Taylor A | display-authors=etal| title=The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. | journal=PLoS One | year= 2010 | volume= 5 | issue= 11 | pages= e15062 | pmid=21124777 | doi=10.1371/journal.pone.0015062 | pmc=2993942 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21124777  }} </ref>
*One of the known [[pathogenesis]] of destabilized [[HIF1A|hypoxia‐inducible factor‐1]] is [[hyperglycemia]]. This destabilization in [[hyperglycemia|hyperglycaemic conditions]] has been explained by an increase in the tendency of [[HIF1A|HIF‐1]] towards [[Von Hippel–Lindau tumor suppressor|VHL]]‐dependent degradation. <ref name="pmid21124777">{{cite journal| author=Bento CF, Fernandes R, Ramalho J, Marques C, Shang F, Taylor A | display-authors=etal| title=The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. | journal=PLoS One | year= 2010 | volume= 5 | issue= 11 | pages= e15062 | pmid=21124777 | doi=10.1371/journal.pone.0015062 | pmc=2993942 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21124777  }} </ref>


==Genetics==
==Genetics==
Line 76: Line 76:
*Naturally [[growth factors]] and [[cytokines]] are two mediators involved in [[wound healing]]. It is crystal clear that any [[Genetics|genetical]] changes that affect the aforementioned mediators can result in defective [[wound healing]] and higher chance of [[diabetic foot]]. The following are some known [[Genetics|genetical]] changes:<ref name="pmid27372176">{{cite journal| author=Jhamb S, Vangaveti VN, Malabu UH| title=Genetic and molecular basis of diabetic foot ulcers: Clinical review. | journal=J Tissue Viability | year= 2016 | volume= 25 | issue= 4 | pages= 229-236 | pmid=27372176 | doi=10.1016/j.jtv.2016.06.005 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27372176  }} </ref><ref name="pmid21159125">{{cite journal| author=Rafehi H, El-Osta A, Karagiannis TC| title=Genetic and epigenetic events in diabetic wound healing. | journal=Int Wound J | year= 2011 | volume= 8 | issue= 1 | pages= 12-21 | pmid=21159125 | doi=10.1111/j.1742-481X.2010.00745.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21159125  }} </ref><ref name="pmid3501286">{{cite journal| author=Laato M, Kähäri VM, Niinikoski J, Vuorio E| title=Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. | journal=Biochem J | year= 1987 | volume= 247 | issue= 2 | pages= 385-8 | pmid=3501286 | doi=10.1042/bj2470385 | pmc=1148420 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3501286  }} </ref><ref name="pmid23936790">{{cite journal| author=Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K| title=Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. | journal=Biomed Res Int | year= 2013 | volume= 2013 | issue=  | pages= 318686 | pmid=23936790 | doi=10.1155/2013/318686 | pmc=3725976 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23936790  }} </ref>
*Naturally [[growth factors]] and [[cytokines]] are two mediators involved in [[wound healing]]. It is crystal clear that any [[Genetics|genetical]] changes that affect the aforementioned mediators can result in defective [[wound healing]] and higher chance of [[diabetic foot]]. The following are some known [[Genetics|genetical]] changes:<ref name="pmid27372176">{{cite journal| author=Jhamb S, Vangaveti VN, Malabu UH| title=Genetic and molecular basis of diabetic foot ulcers: Clinical review. | journal=J Tissue Viability | year= 2016 | volume= 25 | issue= 4 | pages= 229-236 | pmid=27372176 | doi=10.1016/j.jtv.2016.06.005 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27372176  }} </ref><ref name="pmid21159125">{{cite journal| author=Rafehi H, El-Osta A, Karagiannis TC| title=Genetic and epigenetic events in diabetic wound healing. | journal=Int Wound J | year= 2011 | volume= 8 | issue= 1 | pages= 12-21 | pmid=21159125 | doi=10.1111/j.1742-481X.2010.00745.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21159125  }} </ref><ref name="pmid3501286">{{cite journal| author=Laato M, Kähäri VM, Niinikoski J, Vuorio E| title=Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. | journal=Biochem J | year= 1987 | volume= 247 | issue= 2 | pages= 385-8 | pmid=3501286 | doi=10.1042/bj2470385 | pmc=1148420 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3501286  }} </ref><ref name="pmid23936790">{{cite journal| author=Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K| title=Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. | journal=Biomed Res Int | year= 2013 | volume= 2013 | issue=  | pages= 318686 | pmid=23936790 | doi=10.1155/2013/318686 | pmc=3725976 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23936790  }} </ref>
**A [[single nucleotide polymorphism]] ([[single nucleotide polymorphism|SNPs]]) is responsible in the variation of these [[growth factors]] and [[cytokines]]. The best known [[gene]] is [[MAPK14]] located on [[chromosome 6]].
**A [[single nucleotide polymorphism]] ([[single nucleotide polymorphism|SNPs]]) is responsible in the variation of these [[growth factors]] and [[cytokines]]. The best known [[gene]] is [[MAPK14]] located on [[chromosome 6]].
**Decreased expression of certain [[cytokines]] and [[growth factors]] (such as [[Insulin-like growth factor-I|IGF-1]], [[TGF beta|TGF‐β1]], [[Platelet-derived growth factor|PDGF]], [[Epidermal growth factor|EGF]], [[Interleukin 8]] and [[Angiopoietin receptor|Angiopoietin‐2]])
**Decreased expression of certain [[cytokines]] and [[growth factors]] (such as [[Insulin-like growth factor-I|IGF-1]], [[TGF beta|TGF‐β1]], [[Platelet-derived growth factor|PDGF]], [[Epidermal growth factor|EGF]], [[Interleukin 8]], and [[Angiopoietin receptor|Angiopoietin‐2]])
*The HSPA1B genotype, a member of the [[heat shock protein|heat shock protein 70]] ([[heat shock protein|Hsp70]]) family, has been related to higher chance of diabetic foot development, amputation and elongated hospital stay.<ref name="pmid19731315">{{cite journal| author=Mir KA, Pugazhendhi S, Paul MJ, Nair A, Ramakrishna BS| title=Heat-shock protein 70 gene polymorphism is associated with the severity of diabetic foot ulcer and the outcome of surgical treatment. | journal=Br J Surg | year= 2009 | volume= 96 | issue= 10 | pages= 1205-9 | pmid=19731315 | doi=10.1002/bjs.6689 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19731315  }} </ref>
*The HSPA1B genotype, a member of the [[heat shock protein|heat shock protein 70]] ([[heat shock protein|Hsp70]]) family, has been related to a higher chance of diabetic foot development, amputation, and elongated hospital stay.<ref name="pmid19731315">{{cite journal| author=Mir KA, Pugazhendhi S, Paul MJ, Nair A, Ramakrishna BS| title=Heat-shock protein 70 gene polymorphism is associated with the severity of diabetic foot ulcer and the outcome of surgical treatment. | journal=Br J Surg | year= 2009 | volume= 96 | issue= 10 | pages= 1205-9 | pmid=19731315 | doi=10.1002/bjs.6689 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19731315  }} </ref>


==Associated Conditions==
==Associated Conditions==
Line 95: Line 95:
[[File:Diabetic Charcot Foot Deformity.jpg|200px|right|thumb|Charcot joint, source:wikimedia commons]]
[[File:Diabetic Charcot Foot Deformity.jpg|200px|right|thumb|Charcot joint, source:wikimedia commons]]


*On [[gross pathology]], the most common site of [[ulcer|ulceration]] is on the [[Sole (foot)|sole of the feet]], under the [[Metatarsus|metatarsal head]] (particularly at the second [[Metatarsus|metatarsal head]]).
*On [[gross pathology]], the most common site of [[ulcer|ulceration]] is on the [[Sole (foot)|soles of the feet]], under the [[Metatarsus|metatarsal head]] (particularly at the second [[Metatarsus|metatarsal head]]).
*Depth of [[ulcers]] could be different, ranging from superficial [[ulcer|wounds]] to involvement of [[ligament|ligaments]] and [[tendon|tendons]], [[joint]] capsule, or deep [[fascia]]
*Depth of [[ulcers]] could be different, ranging from superficial [[ulcer|wounds]] to the involvement of [[ligament|ligaments]] and [[tendon|tendons]], [[joint]] capsule, or deep [[fascia]]
*There is a high chance of concurrent [[anatomy|anatomical]] [[foot]] deformities, such as [[Hammer toe|claw toe]] or [[charcot joint]].
*There is a high chance of concurrent [[anatomy|anatomical]] [[foot]] deformities, such as [[Hammer toe|claw toe]] or [[charcot joint]].
*Presence of [[infection|infective features]] of a [[ulcer]], such as [[erythema]], [[edema|swelling]] and [[pus|purulent]] and malodor discharge.
*Presence of [[infection|infective features]] of a [[ulcer]], such as [[erythema]], [[edema|swelling]], and [[pus|purulent]] and malodor discharge.
*[[Abscess]]
*[[Abscess]]
*[[Gangrene]]
*[[Gangrene]]
Line 115: Line 115:
*[[Granulation tissue]]
*[[Granulation tissue]]
*[[biofilm|Biofilms]] formation, which resembles infection
*[[biofilm|Biofilms]] formation, which resembles infection
*[[Angiogenesis]], which represent proper [[wound healing]]
*[[Angiogenesis]], which represents proper [[wound healing]]


==References==
==References==
Line 122: Line 122:
[[Category:Emergency medicine]]
[[Category:Emergency medicine]]
[[Category:Endocrinology]]
[[Category:Endocrinology]]
[[Category:Needs English Review]]
[[Category:Up to Date]]

Latest revision as of 14:08, 28 September 2021

Diabetic foot Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Diabetic foot from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Diabetic foot pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Diabetic foot pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Diabetic foot pathophysiology

CDC on Diabetic foot pathophysiology

Diabetic foot pathophysiology in the news

Blogs on Diabetic foot pathophysiology

Directions to Hospitals Treating Diabetic foot

Risk calculators and risk factors for Diabetic foot pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Anahita Deylamsalehi, M.D.[2]Vishnu Vardhan Serla M.B.B.S. [3]

Overview

Diabetic foot is an umbrella term for foot problems in patients with diabetes mellitus. Neuropathy, ischemia and trauma are three main pathogenesis of diabetic foot. Neuropathy is the most common and is the responsible element in more than 60% of diabetic foot cases. Factors such as high blood glucose, reactive oxygen species, insufficient oxygenation of the nerves, and inflammation leads to neuropathy development in diabetic patients and it gets worse with alcohol use and smoking. Neuropathy can involve motor, autonomic, or sensory nerves and is able to involve both large and small fibers. Motor nerve involvement can lead to some mechanical changes in the foot of a diabetic patient, which causes more plantar pressure and higher risk of callus formation. Each and every factor leads to a higher rate of skin breakdown and ulceration. Autonomic neuropathy leads to anhidrosis and impaired function of oil glands, subsequent skin dryness, higher chance of skin breakdown, and ulcer formation. Diabetic patients with sensory neuropathy are more prone to ulcer formation and related complications, since they don't feel pain with ever-deepening ulcers. Ischemia is the second best known pathogenesis of diabetic foot that could occur due to a higher rate of lower limb atherosclerosis in diabetic patients, compared to the normal population. Diabetes related complications such as micro and macrovascular complications further intensify ischemia. Ischemic changes can be discovered by an impaired ankle brachial index (ABI). Trauma to the foot usually acts as a trigger for diabetic foot. A defective hypoxic response has been explained in diabetic foot, which is related to a transcription factor named hypoxia‐inducible factor‐1 (HIF‐1). Lower levels of HIF‐1 in biopsies of diabetic foot could be related to its role in wound healing. Some genetic associations (such as MAPK14 gene located on chromosome 6, decreased expression of certain cytokines and growth factors, and the HSPA1B genotype) have been explained in diabetic foot development. Charcot arthropathy, some psychosocial conditions, necrotizing fasciitis (NF), vitamin D deficiency, tinea pedis, onychomycosis, and diabetic retinopathy are associated conditions in diabetic foot. On gross pathology, the most common site of ulceration is on the soles of the feet, under the metatarsal head with various depths and possible anatomical deformities of the foot. In microscopic evaluations of the ulcers, evidence of necrosis, hyperkeratosis, fibrosis, inflammation, cellular debris, granulation tissue, and angiogenesis have been found.

Pathophysiology

Neuropathy

Ischemia

Neuropathy and angiopathy in the foot have a positive feedback on each other

Trauma

Defective hypoxic response

Genetics

Associated Conditions

Conditions associated with diabetic foot include:[27][28][29][30][31][32]

Gross Pathology

Diabetic foot ulcer, source:wikimedia commons[33]
Charcot joint, source:wikimedia commons



Microscopic Pathology

The following list is a summary of the possible microscopic histopathological changes of diabetic foot:[34][35][36]

References

  1. Assal JP, Mehnert H, Tritschler HJ, Sidorenko A, Keen H, Hellmut Mehnert Award Workshop Participants (2002). "On your feet! Workshop on the diabetic foot". J Diabetes Complications. 16 (2): 183–94. PMID 12039404.
  2. Yazdanpanah L, Nasiri M, Adarvishi S (2015). "Literature review on the management of diabetic foot ulcer". World J Diabetes. 6 (1): 37–53. doi:10.4239/wjd.v6.i1.37. PMC 4317316. PMID 25685277.
  3. Lepäntalo, M.; Apelqvist, J.; Setacci, C.; Ricco, J.-B.; de Donato, G.; Becker, F.; Robert-Ebadi, H.; Cao, P.; Eckstein, H.H.; De Rango, P.; Diehm, N.; Schmidli, J.; Teraa, M.; Moll, F.L.; Dick, F.; Davies, A.H. (2011). "Chapter V: Diabetic Foot". European Journal of Vascular and Endovascular Surgery. 42: S60–S74. doi:10.1016/S1078-5884(11)60012-9. ISSN 1078-5884.
  4. Reiber GE, Vileikyte L, Boyko EJ, del Aguila M, Smith DG, Lavery LA; et al. (1999). "Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings". Diabetes Care. 22 (1): 157–62. doi:10.2337/diacare.22.1.157. PMID 10333919.
  5. Grunfeld C (1992). "Diabetic foot ulcers: etiology, treatment, and prevention". Adv Intern Med. 37: 103–32. PMID 1557993.
  6. Younger DS, Rosoklija G, Hays AP (1998). "Diabetic peripheral neuropathy". Semin Neurol. 18 (1): 95–104. doi:10.1055/s-2008-1040865. PMID 9562671.
  7. Borssén B, Bergenheim T, Lithner F (1990). "The epidemiology of foot lesions in diabetic patients aged 15-50 years". Diabet Med. 7 (5): 438–44. doi:10.1111/j.1464-5491.1990.tb01420.x. PMID 2142042.
  8. Ebenezer GJ, O'Donnell R, Hauer P, Cimino NP, McArthur JC, Polydefkis M (2011). "Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy". Brain. 134 (Pt 6): 1853–63. doi:10.1093/brain/awr086. PMC 3140859. PMID 21616974.
  9. Mayfield JA, Reiber GE, Sanders LJ, Janisse D, Pogach LM (1998). "Preventive foot care in people with diabetes". Diabetes Care. 21 (12): 2161–77. doi:10.2337/diacare.21.12.2161. PMID 9839111.
  10. LoGerfo FW, Coffman JD (1984). "Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care". N Engl J Med. 311 (25): 1615–9. doi:10.1056/NEJM198412203112506. PMID 6390204.
  11. Venermo M, Vikatmaa P, Terasaki H, Sugano N (2012). "Vascular laboratory for critical limb ischaemia". Scand J Surg. 101 (2): 86–93. doi:10.1177/145749691210100203. PMID 22623440.
  12. McMillan DE (1985). "Blood flow and the localization of atherosclerotic plaques". Stroke. 16 (4): 582–7. doi:10.1161/01.str.16.4.582. PMID 2411027.
  13. 13.0 13.1 13.2 Alexiadou K, Doupis J (2012). "Management of diabetic foot ulcers". Diabetes Ther. 3 (1): 4. doi:10.1007/s13300-012-0004-9. PMID 22529027.
  14. Noor S, Zubair M, Ahmad J (2015). "Diabetic foot ulcer--A review on pathophysiology, classification and microbial etiology". Diabetes Metab Syndr. 9 (3): 192–9. doi:10.1016/j.dsx.2015.04.007. PMID 25982677.
  15. Semenza GL (2012). "Hypoxia-inducible factors in physiology and medicine". Cell. 148 (3): 399–408. doi:10.1016/j.cell.2012.01.021. PMC 3437543. PMID 22304911.
  16. Semenza GL (2014). "Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology". Annu Rev Pathol. 9: 47–71. doi:10.1146/annurev-pathol-012513-104720. PMID 23937437.
  17. Catrina SB, Zheng X (2016). "Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers". Diabetes Metab Res Rev. 32 Suppl 1: 179–85. doi:10.1002/dmrr.2742. PMID 26453314.
  18. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S; et al. (2008). "Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice". Proc Natl Acad Sci U S A. 105 (49): 19426–31. doi:10.1073/pnas.0805230105. PMC 2614777. PMID 19057015.
  19. Mace KA, Yu DH, Paydar KZ, Boudreau N, Young DM (2007). "Sustained expression of Hif-1alpha in the diabetic environment promotes angiogenesis and cutaneous wound repair". Wound Repair Regen. 15 (5): 636–45. doi:10.1111/j.1524-475X.2007.00278.x. PMID 17971009.
  20. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L (2004). "Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function". Diabetes. 53 (12): 3226–32. doi:10.2337/diabetes.53.12.3226. PMID 15561954.
  21. Bento CF, Fernandes R, Ramalho J, Marques C, Shang F, Taylor A; et al. (2010). "The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal". PLoS One. 5 (11): e15062. doi:10.1371/journal.pone.0015062. PMC 2993942. PMID 21124777.
  22. Jhamb S, Vangaveti VN, Malabu UH (2016). "Genetic and molecular basis of diabetic foot ulcers: Clinical review". J Tissue Viability. 25 (4): 229–236. doi:10.1016/j.jtv.2016.06.005. PMID 27372176.
  23. Rafehi H, El-Osta A, Karagiannis TC (2011). "Genetic and epigenetic events in diabetic wound healing". Int Wound J. 8 (1): 12–21. doi:10.1111/j.1742-481X.2010.00745.x. PMID 21159125.
  24. Laato M, Kähäri VM, Niinikoski J, Vuorio E (1987). "Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes". Biochem J. 247 (2): 385–8. doi:10.1042/bj2470385. PMC 1148420. PMID 3501286.
  25. Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K (2013). "Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients". Biomed Res Int. 2013: 318686. doi:10.1155/2013/318686. PMC 3725976. PMID 23936790.
  26. Mir KA, Pugazhendhi S, Paul MJ, Nair A, Ramakrishna BS (2009). "Heat-shock protein 70 gene polymorphism is associated with the severity of diabetic foot ulcer and the outcome of surgical treatment". Br J Surg. 96 (10): 1205–9. doi:10.1002/bjs.6689. PMID 19731315.
  27. Vileikyte L, Pouwer F, Gonzalez JS (2020). "Psychosocial research in the diabetic foot: Are we making progress?". Diabetes Metab Res Rev. 36 Suppl 1: e3257. doi:10.1002/dmrr.3257. PMID 31850665.
  28. Williams LH, Rutter CM, Katon WJ, Reiber GE, Ciechanowski P, Heckbert SR; et al. (2010). "Depression and incident diabetic foot ulcers: a prospective cohort study". Am J Med. 123 (8): 748–754.e3. doi:10.1016/j.amjmed.2010.01.023. PMC 2913143. PMID 20670730.
  29. Iacopi E, Coppelli A, Goretti C, Piaggesi A (2015). "Necrotizing Fasciitis and The Diabetic Foot". Int J Low Extrem Wounds. 14 (4): 316–27. doi:10.1177/1534734615606534. PMID 26415868.
  30. Tiwari S, Pratyush DD, Gupta SK, Singh SK (2014). "Vitamin D deficiency is associated with inflammatory cytokine concentrations in patients with diabetic foot infection". Br J Nutr. 112 (12): 1938–43. doi:10.1017/S0007114514003018. PMID 25331710.
  31. Sellman A, Katzman P, Andreasson S, Löndahl M (2018). "Presence of chronic diabetic foot ulcers is associated with more frequent and more advanced retinopathy". Diabet Med. 35 (10): 1364–1370. doi:10.1111/dme.13682. PMID 29791040.
  32. Akkus G, Evran M, Gungor D, Karakas M, Sert M, Tetiker T (2016). "Tinea pedis and onychomycosis frequency in diabetes mellitus patients and diabetic foot ulcers. A cross sectional - observational study". Pak J Med Sci. 32 (4): 891–5. doi:10.12669/pjms.324.10027. PMC 5017097. PMID 27648034.
  33. Diabetic foot ulcer. Author: Milorad Dimic MD, Nis, Serbia, decembar 2011
  34. Neut D, Tijdens-Creusen EJ, Bulstra SK, van der Mei HC, Busscher HJ (2011). "Biofilms in chronic diabetic foot ulcers--a study of 2 cases". Acta Orthop. 82 (3): 383–5. doi:10.3109/17453674.2011.581265. PMC 3235322. PMID 21561305.
  35. Aragón-Sánchez FJ, Cabrera-Galván JJ, Quintana-Marrero Y, Hernández-Herrero MJ, Lázaro-Martínez JL, García-Morales E; et al. (2008). "Outcomes of surgical treatment of diabetic foot osteomyelitis: a series of 185 patients with histopathological confirmation of bone involvement". Diabetologia. 51 (11): 1962–70. doi:10.1007/s00125-008-1131-8. PMID 18719880.
  36. Piaggesi A, Viacava P, Rizzo L, Naccarato G, Baccetti F, Romanelli M; et al. (2003). "Semiquantitative analysis of the histopathological features of the neuropathic foot ulcer: effects of pressure relief". Diabetes Care. 26 (11): 3123–8. doi:10.2337/diacare.26.11.3123. PMID 14578249.