COVID-19-associated myocardial injury: Difference between revisions

Jump to navigation Jump to search
Syed rizvi (talk | contribs)
No edit summary
Sara Zand (talk | contribs)
 
(197 intermediate revisions by 8 users not shown)
Line 1: Line 1:
__NOTOC__
{{SI}}
''Main article:'' [[COVID-19]]
'''For COVID-19 frequently asked inpatient questions, click [[COVID-19 frequently asked inpatient questions|here]]'''
'''For COVID-19 frequently asked outpatient questions, click [[COVID-19 frequently asked outpatient questions|here]]'''
{{CMG}}; {{AE}} {{Sara.Zand}} [[User:Syed rizvi|Syed rizvi, M.B.B.S]][[Mailto:syedrizvi555@gmail.com|[2]]]
'''''Synonyms and Keywords:''''' [[Novel human coronavirus infection|Novel coronavirus]], [[COVID-19]], [[COVID-19|Wuhan coronavirus]], coronavirus disease-19, [[COVID-19|coronavirus disease 2019]], [[SARS-CoV-2]], [[COVID-19]], COVID-19, 2019-nCoV, 2019 novel coronavirus, cardiovascular finding in COVID-19, myocardial injury in COVID-19, COVID-19-associated myocardial injury, SARS-CoV2-associated myocardial injury,  COVID-19 myocardial injury.
==Overview==
==Overview==
[[Acute myocardial injury]] may be defined across studies as any of the following
[[Coronavirus]] disease 2019 ([[COVID-19]]) is a rapidly expanding global [[pandemic]] which is caused by [[severe acute respiratory syndrome coronavirus 2|the severe acute respiratory syndrome coronavirus 2]] ([[SARS-CoV-2]]). [[Myocardial injury]] presented by high level of [[cardiac troponin]] is a common manifestation in [[COVID-19]]. [[The]] exact [[pathogenesis]] of [[myocardial injury]] in [[COVID-19]] is not clear yet. However, [[systemic inflammation]], [[hypoxemia]], [[vasopressor requirement]], [[thrombophilia]] have been proposed as the underlying mechanisms of [[myocardial injury]]. Factors associated with [[myocardial injury]] including [[age]], [[creatinine]], [[multisystem organ failure]] were similar in both [[COVID-19]] and non [[COVID-19]] [[patients]]. [[Myocardial injury]] was less common in severe [[COVID-19]] in comparisson with [[ARDS]] without [[COVID-19]]. However, it was associated with poor outcome  in critically ill [[COVID-19]] [[patients]] and increased risk of [[intubation]] and [[death]]. So, [[Myocardial injury]] can be the manifestation of underlying critically [[illness]] and [[multisystem organ dysfunction]], especially concomitant [[renal dysfunction]], as well as [[thrombotic complications]] among [[COVID-19]] [[patients]].


*Elevated [[troponin]] levels <ref name="DrigginMadhavan20202">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>.
==Historical Perspective==
*The upper reference limit for the high-sensitivity [[troponin I]] (hs-TnI) test (0.04ng/mL), based on the 99th percentile of measurements reported in healthy population without the occlusion of [[coronary arteries]]..<ref name="LiChen2020">{{cite journal|last1=Li|first1=Dongze|last2=Chen|first2=You|last3=Jia|first3=Yu|last4=Tong|first4=Le|last5=Tong|first5=Jiale|last6=Wang|first6=Wei|last7=Liu|first7=Yanmei|last8=Wan|first8=Zhi|last9=Cao|first9=Yu|last10=Zeng|first10=Rui|title=SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study|journal=Circulation Research|year=2020|issn=0009-7330|doi=10.1161/CIRCRESAHA.120.317070}}</ref>
*Elevated [[cardiac biomarker]] levels to > 99th percentile of upper reference limit.<ref name="DrigginMadhavan20203">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>
*[[Electrocardiograms|Electrocardiographic]] and [[Echocardiography|echocardiographic]] abnormalities.<ref name="DrigginMadhavan20204">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>


[[Coronavirus]] disease 2019 (COVID-19) is a rapidly expanding global [[pandemic]] which is caused by [[severe acute respiratory syndrome coronavirus 2]] (SARS-CoV-2) , resulting in significant morbidity and mortality. Some hospitalized patients can develop an acute [[COVID-19]] myocardial injury, which can manifest with a variety of clinical presentations but often presents as an acute cardiac injury with [[cardiomyopathy]], [[ventricular arrhythmias]], and [[Shock|hemodynamic instability]], [[acute coronary syndrome]], [[cardiogenic shock]]. patents with preexisting cardiovascular disease have higher [[Morbidity & Mortality|morbidity and mortality.]]
*[[COVID-19]] ([[SARS-CoV-2]]) [[outbreak]] initiated and was discovered in December, 2019 in Wuhan, Hubei Province, China.<ref name="pmid7189403">{{cite journal |vauthors=Khan AA |title=Preliminary in vitro study of diazepam and droperidol on oestrus rat uterus |journal=Br J Anaesth |volume=52 |issue=3 |pages=349–54 |date=March 1980 |pmid=7189403 |doi=10.1093/bja/52.3.349 |url=}}</ref>
==Historical Perspective==
*January 30, 2020 - [[World Health Organization]]([[WHO]]) declared the outbreak as a Public Health Emergency of International Concern.<ref name="pmid71894032">{{cite journal |vauthors=Khan AA |title=Preliminary in vitro study of diazepam and droperidol on oestrus rat uterus |journal=Br J Anaesth |volume=52 |issue=3 |pages=349–54 |date=March 1980 |pmid=7189403 |doi=10.1093/bja/52.3.349 |url=}}</ref>
*March 12, 2020 - WHO declared the [[COVID-19]] outbreak a [[pandemic]].<ref name="urlwww.cdc.gov">{{cite web |url=https://www.cdc.gov/nchs/data/icd/Announcement-New-ICD-code-for-coronavirus-3-18-2020.pdf#:~:text=On%20March%2011%2C%202020,COVID%2D19%20Outbreak. |title=www.cdc.gov |format= |work= |accessdate=}}</ref>


*One of the first reports of myocardial injury associated with SARS-CoV-2 was a study of 41 patients diagnosed with COVID-19 in Wuhan, China, wherein 5 patients (12%) had a high-sensitivity troponin I above the threshold of 28 pg/mL <ref name="HuangWang2020">{{cite journal|last1=Huang|first1=Chaolin|last2=Wang|first2=Yeming|last3=Li|first3=Xingwang|last4=Ren|first4=Lili|last5=Zhao|first5=Jianping|last6=Hu|first6=Yi|last7=Zhang|first7=Li|last8=Fan|first8=Guohui|last9=Xu|first9=Jiuyang|last10=Gu|first10=Xiaoying|last11=Cheng|first11=Zhenshun|last12=Yu|first12=Ting|last13=Xia|first13=Jiaan|last14=Wei|first14=Yuan|last15=Wu|first15=Wenjuan|last16=Xie|first16=Xuelei|last17=Yin|first17=Wen|last18=Li|first18=Hui|last19=Liu|first19=Min|last20=Xiao|first20=Yan|last21=Gao|first21=Hong|last22=Guo|first22=Li|last23=Xie|first23=Jungang|last24=Wang|first24=Guangfa|last25=Jiang|first25=Rongmeng|last26=Gao|first26=Zhancheng|last27=Jin|first27=Qi|last28=Wang|first28=Jianwei|last29=Cao|first29=Bin|title=Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China|journal=The Lancet|volume=395|issue=10223|year=2020|pages=497–506|issn=01406736|doi=10.1016/S0140-6736(20)30183-5}}</ref>
*January 2, 2020 - first observational study of 41 patients with COVID-19 [[pneumonia]] showed that 5 (12%) of the 41 patients had elevated hs-TnI ( [[Troponin|high sensitivity troponin]]) level above the defined threshold (28 pg/ml) <ref name="HuangWang2020">{{cite journal|last1=Huang|first1=Chaolin|last2=Wang|first2=Yeming|last3=Li|first3=Xingwang|last4=Ren|first4=Lili|last5=Zhao|first5=Jianping|last6=Hu|first6=Yi|last7=Zhang|first7=Li|last8=Fan|first8=Guohui|last9=Xu|first9=Jiuyang|last10=Gu|first10=Xiaoying|last11=Cheng|first11=Zhenshun|last12=Yu|first12=Ting|last13=Xia|first13=Jiaan|last14=Wei|first14=Yuan|last15=Wu|first15=Wenjuan|last16=Xie|first16=Xuelei|last17=Yin|first17=Wen|last18=Li|first18=Hui|last19=Liu|first19=Min|last20=Xiao|first20=Yan|last21=Gao|first21=Hong|last22=Guo|first22=Li|last23=Xie|first23=Jungang|last24=Wang|first24=Guangfa|last25=Jiang|first25=Rongmeng|last26=Gao|first26=Zhancheng|last27=Jin|first27=Qi|last28=Wang|first28=Jianwei|last29=Cao|first29=Bin|title=Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China|journal=The Lancet|volume=395|issue=10223|year=2020|pages=497–506|issn=01406736|doi=10.1016/S0140-6736(20)30183-5}}</ref>
*To view the full historical perspective of COVID-19, [[COVID-19 historical perspective|click here]].


==Classification==
==Classification==
There is no established system for the classification of Acute myocardial injury.
 
*
 
Following careful clinical evaluation, patients with cTn increases indicative of myocardial injury, including those with COVID-19, should be classified as <ref name="urlKey Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology">{{cite web |url=https://www.acc.org/latest-in-cardiology/articles/2020/07/17/08/00/key-points-about-myocardial-injury-and-cardiac-troponin-in-covid-19 |title=Key Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology |format= |work= |accessdate=}}</ref>
 
* Chronic myocardial injury
* Acute non-ischemic myocardial injury
* Acute myocardial infarction (MI).
 
'''Chronic myocardial injury:'''<ref name="urlKey Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology2">{{cite web |url=https://www.acc.org/latest-in-cardiology/articles/2020/07/17/08/00/key-points-about-myocardial-injury-and-cardiac-troponin-in-covid-19 |title=Key Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology |format= |work= |accessdate=}}</ref>
 
* Chronic myocardial injury, a term that applies to patients with chronic stable (<20% change) cTn increases, can be frequently encountered in patients with COVID-19 as the patients are of older age and they have high prevalence of chronic cardiovascular disease.
 
'''Acute non-ischemic myocardial injury''':<ref name="urlKey Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology3">{{cite web |url=https://www.acc.org/latest-in-cardiology/articles/2020/07/17/08/00/key-points-about-myocardial-injury-and-cardiac-troponin-in-covid-19 |title=Key Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology |format= |work= |accessdate=}}</ref>
 
* Acute non-ischemic myocardial injury, a term that applies to patients with dynamic rising and/or falling cTn concentration without clinical evidence of myocardial ischemia, is probably the predominant mechanism for cTn increases in patients with COVID-19.
 
'''Acute myocardial infarction (MI)''': <ref name="urlFourth Universal Definition of Myocardial Infarction - American College of Cardiology">{{cite web |url=https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2018/08/24/00/09/fourth-universal-definition-of-mi-esc-2018 |title=Fourth Universal Definition of Myocardial Infarction - American College of Cardiology |format= |work= |accessdate=}}</ref>
 
* Symptoms of acute myocardial ischemia;
* New ischemic electrocardiographic (ECG) changes;
* Development of pathological Q waves;
* Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality in a pattern consistent with an ischemic etiology;
* Identification of a coronary thrombus by angiography including intracoronary imaging or by autopsy
**To view the classification of COVID-19, [[COVID-19 classification|click here]].
 
==Pathophysiology==
==Pathophysiology==
The [[pathophysiology]] of COVID-19 acute [[myocardial injury]] depends on the underlying cause of [[Myocardium|myocardial]] tissue death. However, the overall trigger is an exaggerated [[Inflammation|inflammatory]] response (hyperinflammation) in response to viral infiltration into cells. [[SARS-CoV-2]] virus gains entry via the ACE-2 ([[Angiotensin Converting Enzyme]] 2) receptor that is found abundantly in [[Myocardium|myocardial]] tissue and [[endothelium]] of blood vessels.
====Proposed pathophysiological mechanisms of COVID-19 associated myocardial injury:====
*SARS-CoV-2 downregulates ACE-2 expression and subsequent protective signaling pathways in [[cardiac myocytes]]
*[[Hyperinflammation]] and [[cytokine storm]] mediated through pathologic [[T cell|T-cells]] and [[Monocyte|monocytes]] leading to [[myocarditis]]<ref name="WeiXu2020">{{cite journal|last1=Wei|first1=Haiming|last2=Xu|first2=Xiaoling|last3=Tian|first3=Zhigang|last4=Sun|first4=Rui|last5=Qi|first5=Yingjie|last6=Zhao|first6=Changcheng|last7=Wang|first7=Dongsheng|last8=Zheng|first8=Xiaohu|last9=Fu|first9=Binqing|last10=Zhou|first10=Yonggang|title=Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients|journal=National Science Review|volume=7|issue=6|year=2020|pages=998–1002|issn=2095-5138|doi=10.1093/nsr/nwaa041}}</ref>
*[[Respiratory failure]] and [[hypoxemia]] resulting in damage to [[cardiac myocytes]]<ref name="KubasiakHernandez2002">{{cite journal|last1=Kubasiak|first1=L. A.|last2=Hernandez|first2=O. M.|last3=Bishopric|first3=N. H.|last4=Webster|first4=K. A.|title=Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3|journal=Proceedings of the National Academy of Sciences|volume=99|issue=20|year=2002|pages=12825–12830|issn=0027-8424|doi=10.1073/pnas.202474099}}</ref>
*[[Hypercoagulability]] and development of [[coronary]] microvascular [[thrombosis]]<ref name="HanYang2020">{{cite journal|last1=Han|first1=Huan|last2=Yang|first2=Lan|last3=Liu|first3=Rui|last4=Liu|first4=Fang|last5=Wu|first5=Kai-lang|last6=Li|first6=Jie|last7=Liu|first7=Xing-hui|last8=Zhu|first8=Cheng-liang|title=Prominent changes in blood coagulation of patients with SARS-CoV-2 infection|journal=Clinical Chemistry and Laboratory Medicine (CCLM)|volume=58|issue=7|year=2020|pages=1116–1120|issn=1437-4331|doi=10.1515/cclm-2020-0188}}</ref>
*Diffuse [[endothelial injury]] and ‘endothelitis’ from direct cell invasion of SARS-CoV-2 and/or resulting from host [[inflammatory]] response.<ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref>
*Inflammation and/or stress causing [[coronary]] plaque rupture or supply-demand mismatch leading to [[myocardial ischemia]]/[[infarction]].<ref name="ZhouYu20202">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>
*Direct invasion of the [[cardiac]] tissue by [[COVID-19]].<ref name="TavazziPellegrini20202">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref>


*The pathophysiology of myocardial injury include,
**Hyperinflammation and cytokine storm mediated through pathologic T-cells and monocytes leading to myocarditis<ref name="WeiXu2020">{{cite journal|last1=Wei|first1=Haiming|last2=Xu|first2=Xiaoling|last3=Tian|first3=Zhigang|last4=Sun|first4=Rui|last5=Qi|first5=Yingjie|last6=Zhao|first6=Changcheng|last7=Wang|first7=Dongsheng|last8=Zheng|first8=Xiaohu|last9=Fu|first9=Binqing|last10=Zhou|first10=Yonggang|title=Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients|journal=National Science Review|volume=7|issue=6|year=2020|pages=998–1002|issn=2095-5138|doi=10.1093/nsr/nwaa041}}</ref>
**Respiratory failure and hypoxemia resulting in damage to cardiac myocytes<ref name="KubasiakHernandez2002">{{cite journal|last1=Kubasiak|first1=L. A.|last2=Hernandez|first2=O. M.|last3=Bishopric|first3=N. H.|last4=Webster|first4=K. A.|title=Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3|journal=Proceedings of the National Academy of Sciences|volume=99|issue=20|year=2002|pages=12825–12830|issn=0027-8424|doi=10.1073/pnas.202474099}}</ref>
**Down regulation of ACE2 expression and subsequent protective signaling pathways in cardiac myocytes
**Hypercoagulability and development of coronary microvascular thrombosis<ref name="HanYang2020">{{cite journal|last1=Han|first1=Huan|last2=Yang|first2=Lan|last3=Liu|first3=Rui|last4=Liu|first4=Fang|last5=Wu|first5=Kai-lang|last6=Li|first6=Jie|last7=Liu|first7=Xing-hui|last8=Zhu|first8=Cheng-liang|title=Prominent changes in blood coagulation of patients with SARS-CoV-2 infection|journal=Clinical Chemistry and Laboratory Medicine (CCLM)|volume=58|issue=7|year=2020|pages=1116–1120|issn=1437-4331|doi=10.1515/cclm-2020-0188}}</ref>
**Diffuse endothelial injury and ‘endotheliitis’ in several organs, including the heart as a direct consequence of SARS-CoV-2 viral involvement and/or resulting from host inflammatory response.<ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref>
**inflammation and/or stress causing coronary plaque rupture or supply-demand mismatch leading to myocardial ischemia/infarction.<ref name="ZhouYu20202">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>
**Electrolyte imbalances and adverse medication effects may disproportionately challenge a diseased heart, with special consideration for the regimen of hydroxychloroquine and azithromycin treatment due to the potential for QTc prolongation <ref name="Bansal2020">{{cite journal|last1=Bansal|first1=Manish|title=Cardiovascular disease and COVID-19|journal=Diabetes & Metabolic Syndrome: Clinical Research & Reviews|volume=14|issue=3|year=2020|pages=247–250|issn=18714021|doi=10.1016/j.dsx.2020.03.013}}</ref>
**Direct invasion of the cardiac tissue by COVID-19.<ref name="TavazziPellegrini20202">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref>


'''Hyperinflammation and cytokine storm:'''
'''Hyperinflammation and cytokine storm:'''


*Immune dysregulation, including T cell and immune signaling dysfunction, recognized as an important factor in the pathogenesis of vascular disease, may also adversely affect the body's response to SARS-CoV-2 infection<ref name="MengYang20152">{{cite journal|last1=Meng|first1=Xiao|last2=Yang|first2=Jianmin|last3=Dong|first3=Mei|last4=Zhang|first4=Kai|last5=Tu|first5=Eric|last6=Gao|first6=Qi|last7=Chen|first7=Wanjun|last8=Zhang|first8=Cheng|last9=Zhang|first9=Yun|title=Regulatory T cells in cardiovascular diseases|journal=Nature Reviews Cardiology|volume=13|issue=3|year=2015|pages=167–179|issn=1759-5002|doi=10.1038/nrcardio.2015.169}}</ref>
*[[Immune]] dysregulation, including [[T cell]] and immune signaling dysfunction, recognized as an important factor in the [[pathogenesis]] of [[vascular disease]], may also adversely affect the body's response to [[SARS-CoV-2]] infection<ref name="MengYang20152">{{cite journal|last1=Meng|first1=Xiao|last2=Yang|first2=Jianmin|last3=Dong|first3=Mei|last4=Zhang|first4=Kai|last5=Tu|first5=Eric|last6=Gao|first6=Qi|last7=Chen|first7=Wanjun|last8=Zhang|first8=Cheng|last9=Zhang|first9=Yun|title=Regulatory T cells in cardiovascular diseases|journal=Nature Reviews Cardiology|volume=13|issue=3|year=2015|pages=167–179|issn=1759-5002|doi=10.1038/nrcardio.2015.169}}</ref>
*The role of CD4(+)CD25(+)FOXP3(+) regulatory T (TREG) cells in the modulation of inflammation and immunity has received increasing attention. Given the important role of TREG cells in the induction and maintenance of immune homeostasis and tolerance, dysregulation in the generation or function of TREG cells can trigger abnormal immune responses and lead to pathology.
*[[CD4+ cell|CD4]](+) [[CD25]](+) [[FOXP3]](+) [[Regulatory T cell|regulatory T]] (TREG) cells have played a role in [[inflammation]]. TREG cells { T regulatory cells}) plays a vital role in the induction and maintenance of immune [[homeostasis]] and tolerance, any dysregulation in the function or regenaration of TREG cells{  [[Regulatory T cell|Regulatory T]] cells}) can trigger abnormal [[immune responses]], that can lead to [[pathology]].
*Evidence from experimental and clinical studies has indicated that TREG cells might have an important role in protecting against cardiovascular disease, in particular atherosclerosis and abdominal aortic aneurysm.
*[[Naive T cell|Naive]] [[T lymphocytes]] can be primed for [[viral]] [[antigens]] via [[antigen-presenting cells]].<ref name="KomarowskaCoe2015">{{cite journal|last1=Komarowska|first1=Izabela|last2=Coe|first2=David|last3=Wang|first3=Guosu|last4=Haas|first4=Robert|last5=Mauro|first5=Claudio|last6=Kishore|first6=Madhav|last7=Cooper|first7=Dianne|last8=Nadkarni|first8=Suchita|last9=Fu|first9=Hongmei|last10=Steinbruchel|first10=Daniel A.|last11=Pitzalis|first11=Costantino|last12=Anderson|first12=Graham|last13=Bucy|first13=Pat|last14=Lombardi|first14=Giovanna|last15=Breckenridge|first15=Ross|last16=Marelli-Berg|first16=Federica M.|title=Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release|journal=Immunity|volume=42|issue=6|year=2015|pages=1087–1099|issn=10747613|doi=10.1016/j.immuni.2015.05.014}}</ref>
*The role of TREG cells is evident in the pathogenesis of a number of cardiovascular diseases, including atherosclerosis, hypertension, ischaemic stroke, abdominal aortic aneurysm, Kawasaki disease, pulmonary arterial hypertension, myocardial infarction and remodelling, postischaemic neovascularization, myocarditis and dilated cardiomyopathy, and heart failure.<ref name="MengYang2015">{{cite journal|last1=Meng|first1=Xiao|last2=Yang|first2=Jianmin|last3=Dong|first3=Mei|last4=Zhang|first4=Kai|last5=Tu|first5=Eric|last6=Gao|first6=Qi|last7=Chen|first7=Wanjun|last8=Zhang|first8=Cheng|last9=Zhang|first9=Yun|title=Regulatory T cells in cardiovascular diseases|journal=Nature Reviews Cardiology|volume=13|issue=3|year=2015|pages=167–179|issn=1759-5002|doi=10.1038/nrcardio.2015.169}}</ref>
*The primed [[CD8+ T cells|CD8+]] [[T lymphocytes]] migrate to the [[Cardiomyocyte|cardiomyocytes]] and through cell-mediated cytotoxicity, cause [[Myocardium|myocardial]] [[inflammation]] and cardio-[[tropism]] by heart-produced [[Hepatocyte Growth Factor]] ([[Hepatocyte Growth Factor|HGF]]) which interacts with [[c-Met]], an [[Hepatocyte Growth Factor|HGF]] receptor on naïve [[T lymphocytes]].<ref name="KomarowskaCoe20152">{{cite journal|last1=Komarowska|first1=Izabela|last2=Coe|first2=David|last3=Wang|first3=Guosu|last4=Haas|first4=Robert|last5=Mauro|first5=Claudio|last6=Kishore|first6=Madhav|last7=Cooper|first7=Dianne|last8=Nadkarni|first8=Suchita|last9=Fu|first9=Hongmei|last10=Steinbruchel|first10=Daniel A.|last11=Pitzalis|first11=Costantino|last12=Anderson|first12=Graham|last13=Bucy|first13=Pat|last14=Lombardi|first14=Giovanna|last15=Breckenridge|first15=Ross|last16=Marelli-Berg|first16=Federica M.|title=Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release|journal=Immunity|volume=42|issue=6|year=2015|pages=1087–1099|issn=10747613|doi=10.1016/j.immuni.2015.05.014}}</ref>
*In the [[Cytokine storm|cytokine storm syndrome]], [[proinflammatory]] [[cytokines]] such as [[Interleukin-6]] ([[IL-6]]) are released into the [[circulation]], which further augments [[T-lymphocytes|T-lymphocyte]] activation and causes the release of more [[Cytokine|cytokines]].<ref name="ZhouYu20203">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>
*[[Cytokine storm|Cytokine storms]] result in increased [[vascular]] wall [[Permeability|permeabilityand]] [[Myocardium|myocardial]] [[edema]].<ref name="HanKim2020">{{cite journal|last1=Han|first1=Seongwook|last2=Kim|first2=Hyun Ah|last3=Kim|first3=Jin Young|last4=Kim|first4=In-Cheol|title=COVID-19-related myocarditis in a 21-year-old female patient|journal=European Heart Journal|volume=41|issue=19|year=2020|pages=1859–1859|issn=0195-668X|doi=10.1093/eurheartj/ehaa288}}</ref>
*A [[positive feedback]] loop of [[immune]] activation and [[myocardial]] damage is established.
*Thus [[cytokine storm]] activated by [[T helper cells]] ([[Th1]] and [[Th2]]) and a systemic hyperinflammatory response is triggered.<ref name="MehtaMcAuley2020">{{cite journal|last1=Mehta|first1=Puja|last2=McAuley|first2=Daniel F|last3=Brown|first3=Michael|last4=Sanchez|first4=Emilie|last5=Tattersall|first5=Rachel S|last6=Manson|first6=Jessica J|title=COVID-19: consider cytokine storm syndromes and immunosuppression|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1033–1034|issn=01406736|doi=10.1016/S0140-6736(20)30628-0}}</ref>


'''Role of ACE Receptor :'''
'''Role of ACE-2 Receptor :'''


*ACE-2 is a membrane-bound aminopeptidate receptor expressed on the epithelial cells of the lungs, intestines, kidneys and blood vessels. It has important immune and cardiovascular roles. Angiotensin-converting enzyme (ACE) cleaves angiotensin I to generate angiotensin II (Ang II), which binds to and activates AT<sub>1</sub>R, thus promoting vasoconstriction.
*ACE-2 is a membrane-bound aminopeptidate [[receptor]] expressed on the [[epithelial cells]] of the lungs, intestines, kidneys and [[blood vessels]]. It has important immune and cardiovascular roles. [[Angiotensin-converting enzyme]] (ACE) cleaves [[angiotensin I]] to generate [[angiotensin II]] (Ang II), which binds to and activates AT<sub>1</sub>R, thus promoting [[vasoconstriction]].<ref name="ZhouYang20202">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*ACE-2 cleaves angiotensin II and generates angiotensin 1–7, a powerful vasodilator acting through Mas receptors.
*ACE-2 cleaves [[angiotensin II]] and generates [[angiotensin]] 1–7, a powerful [[vasodilator]] acting through Mas receptors
*SARS-CoV-2 has a spike protein receptor-binding domain, similar to SARS-CoV-1, which interacts with the ACE-2 receptor and acts as the primary functional receptor for pathogenicity and human-to-human transmission.<ref name="WanShang2020">{{cite journal|last1=Wan|first1=Yushun|last2=Shang|first2=Jian|last3=Graham|first3=Rachel|last4=Baric|first4=Ralph S.|last5=Li|first5=Fang|last6=Gallagher|first6=Tom|title=Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus|journal=Journal of Virology|volume=94|issue=7|year=2020|issn=0022-538X|doi=10.1128/JVI.00127-20}}</ref> Furthermore, SARS-CoV-2 binding to ACE-2 leads to its down regulation and increases angiotensin II,a pro-inflammatory factor in the lung.
*[[SARS-CoV-2]] has a spike protein receptor-binding domain, similar to [[SARS-CoV]], which interacts with the ACE-2 receptor and acts as the primary functional receptor for [[pathogenicity]] and human-to-human transmission. Furthermore, [[SARS-CoV-2]] binding to ACE-2 leads to its down regulation and increases [[angiotensin II]],a pro-inflammatory factor in the lung.<ref name="WanShang2020">{{cite journal|last1=Wan|first1=Yushun|last2=Shang|first2=Jian|last3=Graham|first3=Rachel|last4=Baric|first4=Ralph S.|last5=Li|first5=Fang|last6=Gallagher|first6=Tom|title=Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus|journal=Journal of Virology|volume=94|issue=7|year=2020|issn=0022-538X|doi=10.1128/JVI.00127-20}}</ref> <ref name="ZhouYang20203">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*This subsequently leads to lower amount of angiotensin 1–7. Thus loss of protective signaling pathway in cardiac myocytes. The detrimental effect of ACE-2 downregulation would impede cardioprotective effects of angiotensin 1–7 leading to increased TNFα production, other cytokines release that can result in acute respiratory syndrome, acute cardiac injury and multiorgan dysfunction.<ref name="ZhouYang2020">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*This subsequently leads to lower amount of [[angiotensin]] 1–7. Thus loss of protective signaling pathway in [[cardiac myocytes]]. The detrimental effect of ACE-2 downregulation would impede cardioprotective effects of [[Angiotensin|angiotensin 1]]–7 leading to increased [[TNFα|TNFα production]], other [[cytokines]] release that can result in [[acute respiratory distress syndrome]], acute cardiac injury and multiorgan dysfunction.<ref name="ZhouYang2020">{{cite journal|last1=Zhou|first1=Peng|last2=Yang|first2=Xing-Lou|last3=Wang|first3=Xian-Guang|last4=Hu|first4=Ben|last5=Zhang|first5=Lei|last6=Zhang|first6=Wei|last7=Si|first7=Hao-Rui|last8=Zhu|first8=Yan|last9=Li|first9=Bei|last10=Huang|first10=Chao-Lin|last11=Chen|first11=Hui-Dong|last12=Chen|first12=Jing|last13=Luo|first13=Yun|last14=Guo|first14=Hua|last15=Jiang|first15=Ren-Di|last16=Liu|first16=Mei-Qin|last17=Chen|first17=Ying|last18=Shen|first18=Xu-Rui|last19=Wang|first19=Xi|last20=Zheng|first20=Xiao-Shuang|last21=Zhao|first21=Kai|last22=Chen|first22=Quan-Jiao|last23=Deng|first23=Fei|last24=Liu|first24=Lin-Lin|last25=Yan|first25=Bing|last26=Zhan|first26=Fa-Xian|last27=Wang|first27=Yan-Yi|last28=Xiao|first28=Geng-Fu|last29=Shi|first29=Zheng-Li|title=A pneumonia outbreak associated with a new coronavirus of probable bat origin|journal=Nature|volume=579|issue=7798|year=2020|pages=270–273|issn=0028-0836|doi=10.1038/s41586-020-2012-7}}</ref>
*To view the pathophysiology of COVID-19, [[COVID-19 pathophysiology|click here]]
 
[[File:Acute myocardial injury in COVID19.jpg|thumb|500px|center|Pathophysiology of Acute myocardial injury]]


==Causes==
==Causes==
* Common causes of high [[troponin]] level in [[COVID-19]] are:<ref name="pmid33186055">{{cite journal |vauthors=Metkus TS, Sokoll LJ, Barth AS, Czarny MJ, Hays AG, Lowenstein CJ, Michos ED, Nolley EP, Post WS, Resar JR, Thiemann DR, Trost JC, Hasan RK |title=Myocardial Injury in Severe COVID-19 Compared With Non-COVID-19 Acute Respiratory Distress Syndrome |journal=Circulation |volume=143 |issue=6 |pages=553–565 |date=February 2021 |pmid=33186055 |pmc=7864609 |doi=10.1161/CIRCULATIONAHA.120.050543 |url=}}</ref>
* [[Thrombotic]] , [[plaque rupture events]]
* [[Supply-demand mismatch]]
* Direct [[cardiac viral toxicity]]
* [[Older age]]
* Acute [[renal dysfunction]]
* Chronic [[renal dysfunction]]
* High serum [[lactate]] level
* [[Inflammation]], [[prothrombothic state]] in [[COVID-19]]
* High level of [[ferritin]] as a marker of [[inflammation]]
* Low level of [[fibrinogen]] as a marker of consumption, [[microvascular thrombi]], [[endothelial dysfunction]]<ref name="pmid16879728">{{cite journal |vauthors=Levi M, Opal SM |title=Coagulation abnormalities in critically ill patients |journal=Crit Care |volume=10 |issue=4 |pages=222 |date=2006 |pmid=16879728 |pmc=1750988 |doi=10.1186/cc4975 |url=}}</ref>
==Differentiating COVID-19 associated Acute myocardial injury from other Diseases==
*[[COVID-19]] associated acute myocardial injury must be differentiated from other causes of [[myocardial injury]] not related to [[COVID-19]] infection.
*<nowiki/>The signs and symptoms of [[Acute coronary syndromes|acute coronary syndrome]], acute [[Congestive heart failure|heart failure]] and [[Myocarditis in COVID 19|myocarditis i]]<nowiki/>nduced by [[COVID-19]] cannot be differentiated from non-COVID-19 acute cardiac disease. Laboratory evaluation with hs-TnI, [[CK]] and [[LDH]] as well as [[EKG]] changes are similar and cannot differentiate between the two disease states
*All patients with [[COVID-19]] induced [[myocardial injury]] must be [[PCR]] positive for [[SARS-CoV-2]]
* Table below shows the differentiating diagnosis of elevated [[troponin]] level:
{| class="wikitable"
| colspan="3" align="center" style="background: #4479BA; color: #FFFFFF " |'''COVID-19  associated AMI vs non COVID-19 AMI'''
|-
| align="center" |'''Causes'''
| align="center" |'''Similar features'''
| align="center" |'''Features specific to COVID-19'''
|-
|[[Acute coronary syndromes|Acute coronary syndrome]]


*Acute respiratory distress syndrome. (ARDS)
-          [[STEMI]], [[Unstable angina / non ST elevation myocardial infarction|NSTEMI]],<ref name="urlFourth Universal Definition of Myocardial Infarction - American College of Cardiology2">{{cite web |url=https://www.acc.org/latest-in-cardiology/ten-points-to-remember/2018/08/24/00/09/fourth-universal-definition-of-mi-esc-2018 |title=Fourth Universal Definition of Myocardial Infarction - American College of Cardiology |format= |work= |accessdate=}}</ref>
*Pneumonia.
 
*Hypercoagulability and plaque rupture.
[[Unstable Angina]]
*Hyperinflammation and cytokine storm.
 
*Electrolyte imbalances and adverse medication effects
-          Type I & II MI
*Direct invasion of the cardiac tissue by COVID-19.
|Chest pain
*Myocarditis and myocyte necrosis.
 
Shortness of breath
 
[[Diaphoresis]]
 
[[EKG|EKG changes]]
 
Elevated [[troponin I]] level
 
Evidence of [[coronary occlusion]] by imaging/[[PCI]]
| rowspan="3" |Clinical evidence of SARS-CoV2 infection<ref name="GuanNi2020">{{cite journal|last1=Guan|first1=Wei-jie|last2=Ni|first2=Zheng-yi|last3=Hu|first3=Yu|last4=Liang|first4=Wen-hua|last5=Ou|first5=Chun-quan|last6=He|first6=Jian-xing|last7=Liu|first7=Lei|last8=Shan|first8=Hong|last9=Lei|first9=Chun-liang|last10=Hui|first10=David S.C.|last11=Du|first11=Bin|last12=Li|first12=Lan-juan|last13=Zeng|first13=Guang|last14=Yuen|first14=Kwok-Yung|last15=Chen|first15=Ru-chong|last16=Tang|first16=Chun-li|last17=Wang|first17=Tao|last18=Chen|first18=Ping-yan|last19=Xiang|first19=Jie|last20=Li|first20=Shi-yue|last21=Wang|first21=Jin-lin|last22=Liang|first22=Zi-jing|last23=Peng|first23=Yi-xiang|last24=Wei|first24=Li|last25=Liu|first25=Yong|last26=Hu|first26=Ya-hua|last27=Peng|first27=Peng|last28=Wang|first28=Jian-ming|last29=Liu|first29=Ji-yang|last30=Chen|first30=Zhong|last31=Li|first31=Gang|last32=Zheng|first32=Zhi-jian|last33=Qiu|first33=Shao-qin|last34=Luo|first34=Jie|last35=Ye|first35=Chang-jiang|last36=Zhu|first36=Shao-yong|last37=Zhong|first37=Nan-shan|title=Clinical Characteristics of Coronavirus Disease 2019 in China|journal=New England Journal of Medicine|volume=382|issue=18|year=2020|pages=1708–1720|issn=0028-4793|doi=10.1056/NEJMoa2002032}}</ref>
 
-          Fever
 
-          Cough
 
-          [[Dyspnea]]
 
-          Bilateral ground glass opacities on chest  imaging
 
-          Positive [[SARS-CoV-2|SARS-CoV2]] [[PCR]]
 
(Patients  may have nonspecific symptoms such as fatigue and malaise without specific  symptoms of [[cardiac]] disease)
|-
|Acute [[Heart failure]]<ref name="pmid28785969">{{cite journal |vauthors=Kurmani S, Squire I |title=Acute Heart Failure: Definition, Classification and Epidemiology |journal=Curr Heart Fail Rep |volume=14 |issue=5 |pages=385–392 |date=October 2017 |pmid=28785969 |pmc=5597697 |doi=10.1007/s11897-017-0351-y |url=}}</ref>
|Chest pain/pressure
 
Shortness of breath
 
[[Orthopnea]]
 
[[Pulmonary edema]]
 
[[Jugular venous distention]]
 
[[Peripheral edema]]
 
Elevated [[BNP]]
 
Depressed [[ventricular function]] on [[echocardiography]]
|-
|[[Myocarditis]]<ref name="FungLuo2016">{{cite journal|last1=Fung|first1=Gabriel|last2=Luo|first2=Honglin|last3=Qiu|first3=Ye|last4=Yang|first4=Decheng|last5=McManus|first5=Bruce|title=Myocarditis|journal=Circulation Research|volume=118|issue=3|year=2016|pages=496–514|issn=0009-7330|doi=10.1161/CIRCRESAHA.115.306573}}</ref>
|Chest pain
Fatigue
 
[[S3]],[[S4]] or [[summation gallop]]
 
Elevated [[troponin I]]
 
[[EKG]] abnormalities
 
Absence of [[coronary occlusion]]
|-
| colspan="3" |AMI- acute myocardial injury; [[Brain natriuretic peptide|BNP]] – Brain Natriuretic peptide; MI –  [[myocardial infarction]]; [[NSTEMI]] - [[non ST Elevation Myocardial Infarction]]; [[PCI]] – [[Percutaneous coronary intervention: basic principles and guidelines|percutaneous intervention]]; [[STEMI]] - [[STEMI|ST elevation Myocardial Infarction]]
|}


==Epidemiology and Demographics==
==Epidemiology and Demographics==
{| class="wikitable"
|+
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Study'''
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Site/'''
'''Location'''
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Sample size (n)'''
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Age (years)'''
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Pre-existing cardiac disease'''
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Definition of myocardial injury used in study'''
| colspan="1" rowspan="1" align="center" style="background: #4479BA; color: #FFFFFF " |'''Percent with myocardial injury'''
|-
| colspan="1" rowspan="1" |Huang ''et al'' <ref name="HuangWang20202">{{cite journal|last1=Huang|first1=Chaolin|last2=Wang|first2=Yeming|last3=Li|first3=Xingwang|last4=Ren|first4=Lili|last5=Zhao|first5=Jianping|last6=Hu|first6=Yi|last7=Zhang|first7=Li|last8=Fan|first8=Guohui|last9=Xu|first9=Jiuyang|last10=Gu|first10=Xiaoying|last11=Cheng|first11=Zhenshun|last12=Yu|first12=Ting|last13=Xia|first13=Jiaan|last14=Wei|first14=Yuan|last15=Wu|first15=Wenjuan|last16=Xie|first16=Xuelei|last17=Yin|first17=Wen|last18=Li|first18=Hui|last19=Liu|first19=Min|last20=Xiao|first20=Yan|last21=Gao|first21=Hong|last22=Guo|first22=Li|last23=Xie|first23=Jungang|last24=Wang|first24=Guangfa|last25=Jiang|first25=Rongmeng|last26=Gao|first26=Zhancheng|last27=Jin|first27=Qi|last28=Wang|first28=Jianwei|last29=Cao|first29=Bin|title=Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China|journal=The Lancet|volume=395|issue=10223|year=2020|pages=497–506|issn=01406736|doi=10.1016/S0140-6736(20)30183-5}}</ref>
| colspan="1" rowspan="1" |Wuhan, China
| colspan="1" rowspan="1" |41
| colspan="1" rowspan="1" |Median 49.0
| colspan="1" rowspan="1" |15% [[cardiovascular disease]]
15% [[hypertension]]
| colspan="1" rowspan="1" |Cardiac injury=[[troponin I]] above 99th percentile upper reference limit or new abnormalities on electrocardiography or [[echocardiography]]
| colspan="1" rowspan="1" |12
|-
| colspan="1" rowspan="1" |Shi ''et al''<ref name="pmid322118162">{{cite journal |vauthors=Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C |title=Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China |journal=JAMA Cardiol |volume= |issue= |pages= |date=March 2020 |pmid=32211816 |pmc=7097841 |doi=10.1001/jamacardio.2020.0950 |url=}}</ref>
| colspan="1" rowspan="1" |Wuhan, China
| colspan="1" rowspan="1" |416
| colspan="1" rowspan="1" |Median 64.0 (range 21.0–95.0)
| colspan="1" rowspan="1" |4% [[Congestive heart failure|chronic heart failure]]
11% [[coronary heart disease]]
31% [[hypertension]]
| colspan="1" rowspan="1" |Cardiac injury=[[troponin I]] above 99th percentile upper reference limit, regardless of new abnormalities on [[electrocardiography]] or [[echocardiography]]
| colspan="1" rowspan="1" |19.7
|-
| colspan="1" rowspan="1" |Zhou ''et al'' <ref name="pmid32171076">{{cite journal |vauthors=Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B |title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study |journal=Lancet |volume=395 |issue=10229 |pages=1054–1062 |date=March 2020 |pmid=32171076 |pmc=7270627 |doi=10.1016/S0140-6736(20)30566-3 |url=}}</ref>
| colspan="1" rowspan="1" |Wuhan, China
| colspan="1" rowspan="1" |191
| colspan="1" rowspan="1" |Median 56.0
| colspan="1" rowspan="1" |8% [[coronary heart disease]]
30% [[hypertension]]
| colspan="1" rowspan="1" |Cardiac injury=high-sensitivity [[troponin I]] above 99th percentile upper reference limit or new abnormalities on [[electrocardiography]] or [[echocardiography]]
| colspan="1" rowspan="1" |17
|-
| colspan="1" rowspan="1" |Guo ''et al''<ref name="GuoFan20203">{{cite journal|last1=Guo|first1=Tao|last2=Fan|first2=Yongzhen|last3=Chen|first3=Ming|last4=Wu|first4=Xiaoyan|last5=Zhang|first5=Lin|last6=He|first6=Tao|last7=Wang|first7=Hairong|last8=Wan|first8=Jing|last9=Wang|first9=Xinghuan|last10=Lu|first10=Zhibing|title=Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|year=2020|issn=2380-6583|doi=10.1001/jamacardio.2020.1017}}</ref>
| colspan="1" rowspan="1" |Wuhan, China
| colspan="1" rowspan="1" |187
| colspan="1" rowspan="1" |Mean 58.5±14.7
| colspan="1" rowspan="1" |4% [[cardiomyopathy]]
11% [[coronary heart disease]]
33% [[hypertension]]
| colspan="1" rowspan="1" |Myocardial injury=[[troponin T]] above 99th percentile upper reference limit
| colspan="1" rowspan="1" |27.8
|-
| colspan="1" rowspan="1" |Wang ''et al'' <ref name="WangHu2020">{{cite journal|last1=Wang|first1=Dawei|last2=Hu|first2=Bo|last3=Hu|first3=Chang|last4=Zhu|first4=Fangfang|last5=Liu|first5=Xing|last6=Zhang|first6=Jing|last7=Wang|first7=Binbin|last8=Xiang|first8=Hui|last9=Cheng|first9=Zhenshun|last10=Xiong|first10=Yong|last11=Zhao|first11=Yan|last12=Li|first12=Yirong|last13=Wang|first13=Xinghuan|last14=Peng|first14=Zhiyong|title=Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China|journal=JAMA|volume=323|issue=11|year=2020|pages=1061|issn=0098-7484|doi=10.1001/jama.2020.1585}}</ref>
| colspan="1" rowspan="1" |Wuhan, China
| colspan="1" rowspan="1" |138
| colspan="1" rowspan="1" |Median 56.0
| colspan="1" rowspan="1" |15% [[cardiovascular disease]]
31% [[hypertension]]
| colspan="1" rowspan="1" |Cardiac injury=[[troponin I]] above 99th percentile upper reference limit or new abnormalities on [[electrocardiography]] or [[echocardiography]]
| colspan="1" rowspan="1" |7.2
|}<br />
===Incidence===
*The incidence of [[COVID-19]] associated [[myocardial injury]] has not been established yet.
===Prevalence===
*The prevalence of [[myocardial]] injury (as reflected by elevation in [[Cardiac troponin I (cTnI) and T (cTnT)|cardiac troponin]] levels) is variable among hospitalized patients with [[COVID-19]] and is known to be approximately 5,000-38,000  per 100,000  hospitalized individuals worldwide.<ref name="pmid32512122">{{cite journal |vauthors=Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL |title=Acute myocardial injury in patients hospitalized with COVID-19 infection: A review |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=June 2020 |pmid=32512122 |pmc=7274977 |doi=10.1016/j.pcad.2020.05.013 |url=}}</ref>
*Reported frequencies range from 5% to 38%<ref name="pmid325121222">{{cite journal |vauthors=Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL |title=Acute myocardial injury in patients hospitalized with COVID-19 infection: A review |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=June 2020 |pmid=32512122 |pmc=7274977 |doi=10.1016/j.pcad.2020.05.013 |url=}}</ref> <ref name="pmid32211816">{{cite journal |vauthors=Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C |title=Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China |journal=JAMA Cardiol |volume= |issue= |pages= |date=March 2020 |pmid=32211816 |pmc=7097841 |doi=10.1001/jamacardio.2020.0950 |url=}}</ref> <ref name="pmid32169400">{{cite journal |vauthors=Lippi G, Lavie CJ, Sanchis-Gomar F |title=Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=March 2020 |pmid=32169400 |pmc=7127395 |doi=10.1016/j.pcad.2020.03.001 |url=}}</ref>
*In a series of 416 patients with COVID-19 who were hospitalized in Wuhan, China, 19.7 percent had high-sensitivity [[troponin I]] (hs-TnI) above the 99th percentile upper reference limit on admission.<ref name="pmid322118163">{{cite journal |vauthors=Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C |title=Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China |journal=JAMA Cardiol |volume= |issue= |pages= |date=March 2020 |pmid=32211816 |pmc=7097841 |doi=10.1001/jamacardio.2020.0950 |url=}}</ref>
===Case-fatality rate/Mortality rate===
*A summary of 44,672 COVID-19 cases documented by the Chinese Center for Disease Control and Prevention demonstrated a [[case fatality rate]] of 10.5% with comorbid CVD ([[cardiovascular]] disease) compared to a 2.4% overall [[case fatality rate]]<ref name="pmid32294238">{{cite journal |vauthors=Bodini G, Demarzo MG, Casagrande E, De Maria C, Kayali S, Ziola S, Giannini EG |title=Concerns related to COVID-19 pandemic among patients with inflammatory bowel disease and its influence on patient management |journal=Eur. J. Clin. Invest. |volume=50 |issue=5 |pages=e13233 |date=May 2020 |pmid=32294238 |pmc=7235524 |doi=10.1111/eci.13233 |url=}}</ref>
*The [[mortality rate]] was also higher in those with [[myocardial injury]] (51.2% ).<ref name="pmid32294238" />
===Age===


*A summary of 44,672 COVID-19 cases documented by the Chinese Center for Disease Control and Prevention demonstrated a case fatality rate of 10.5% with comorbid CVD ( cardiovascular disease) compared to a 2.4% overall case fatality rate<ref name="pmid32294238">{{cite journal |vauthors=Bodini G, Demarzo MG, Casagrande E, De Maria C, Kayali S, Ziola S, Giannini EG |title=Concerns related to COVID-19 pandemic among patients with inflammatory bowel disease and its influence on patient management |journal=Eur. J. Clin. Invest. |volume=50 |issue=5 |pages=e13233 |date=May 2020 |pmid=32294238 |pmc=7235524 |doi=10.1111/eci.13233 |url=}}</ref>
*Patients with this marker of [[myocardial injury]] were older and had more comorbidities (including chronic [[Congestive heart failure|heart failure]], greater laboratory abnormalities (including higher levels of [[C-reactive protein]], [[procalcitonin]], and [[aspartate aminotransferase]]), more lung [[Radiography|radiographic]] abnormalities, and more complications compared with those without [[myocardial injury]].
*The frequency of myocardial injury (as reflected by elevation in [[Cardiac troponin I (cTnI) and T (cTnT)|cardiac troponin]] levels) is variable among hospitalized patients with COVID-19, with reported frequencies of 7 to 28 percent<ref name="pmid32211816">{{cite journal |vauthors=Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C |title=Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China |journal=JAMA Cardiol |volume= |issue= |pages= |date=March 2020 |pmid=32211816 |pmc=7097841 |doi=10.1001/jamacardio.2020.0950 |url=}}</ref> <ref name="pmid32169400">{{cite journal |vauthors=Lippi G, Lavie CJ, Sanchis-Gomar F |title=Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=March 2020 |pmid=32169400 |pmc=7127395 |doi=10.1016/j.pcad.2020.03.001 |url=}}</ref>. Some studies have identified greater frequency and magnitude of [[troponin]] elevations in hospitalized patients with more severe disease and worse outcomes <ref name="pmid322118162">{{cite journal |vauthors=Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C |title=Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China |journal=JAMA Cardiol |volume= |issue= |pages= |date=March 2020 |pmid=32211816 |pmc=7097841 |doi=10.1001/jamacardio.2020.0950 |url=}}</ref>
 
*In a series of 416 patients with COVID-19 who were hospitalized in Wuhan, China, 19.7 percent had high-sensitivity troponin I (hs-TnI) above the 99th percentile upper reference limit on admission <ref name="pmid322118163">{{cite journal |vauthors=Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C |title=Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China |journal=JAMA Cardiol |volume= |issue= |pages= |date=March 2020 |pmid=32211816 |pmc=7097841 |doi=10.1001/jamacardio.2020.0950 |url=}}</ref>. Patients with this marker of myocardial injury were older and had more comorbidities (including chronic heart failure in 14.6 versus 1.5 percent), greater laboratory abnormalities (including higher levels of C-reactive protein, procalcitonin, and aspartate aminotransferase), more lung radiographic abnormalities, and more complications compared with those without myocardial injury. The mortality rate was also higher in those with myocardial injury (51.2 versus 4.5 percent). The risk of death starting from the time of symptom onset was more than four times higher in patients with evidence of myocardial injury on admission.
===Race===
 
*There is no racial predilection in [[myocardial injury]] associated [[COVID-19]].
 
===Gender===
 
*There is no data on gender predilection to acute [[myocardial injury]] in [[COVID-19]].


==Risk Factors==
==Risk Factors==
A meta-analysis of 6 studies inclusive of 1,527 patients with COVID-19 examined the prevalence of cardio vascular disease (CVD) and reported the prevalence of hypertension, cardiac and cerebrovascular disease, and diabetes to be 17.1%, 16.4%, and 9.7%, respectively <ref name="LiYang2020">{{cite journal|last1=Li|first1=Bo|last2=Yang|first2=Jing|last3=Zhao|first3=Faming|last4=Zhi|first4=Lili|last5=Wang|first5=Xiqian|last6=Liu|first6=Lin|last7=Bi|first7=Zhaohui|last8=Zhao|first8=Yunhe|title=Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China|journal=Clinical Research in Cardiology|volume=109|issue=5|year=2020|pages=531–538|issn=1861-0684|doi=10.1007/s00392-020-01626-9}}</ref>
 
Predictors of elevated [[troponin]] level in hospitalized [[COVID-19]] were:<ref name="pmid33635914">{{cite journal |vauthors=Efros O, Barda N, Meisel E, Leibowitz A, Fardman A, Rahav G, Klempfner R, Grossman E |title=Myocardial injury in hospitalized patients with COVID-19 infection-Risk factors and outcomes |journal=PLoS One |volume=16 |issue=2 |pages=e0247800 |date=2021 |pmid=33635914 |pmc=7909655 |doi=10.1371/journal.pone.0247800 |url=}}</ref>
*[[Age]]
*[[Female sex]]
*Low [[systolic blood pressure]]
*High level of [[creatinine]]
 
==Screening==
==Screening==


*There is insufficient evidence to recommend routine screening for acute myocardial injury in COVID-19 patients.
*There is insufficient evidence to recommend routine [[Screening (medicine)|screening]] for acute [[myocardial injury]] in [[COVID-19]] patients.
*To view screening for COVID-19, [[COVID-19 screening|click here]].


==Natural History, Complications, and Prognosis==
==Natural History, Complications, and Prognosis==
* [[Myocardial injury]] in severe [[COVID-19]] was associated with underlying [[comorbidities]], [[older age]], [[multisystem organ dysfunction]] similar to non [[COVID-19]] critically ill [[patients]].<ref name="pmid33186055">{{cite journal |vauthors=Metkus TS, Sokoll LJ, Barth AS, Czarny MJ, Hays AG, Lowenstein CJ, Michos ED, Nolley EP, Post WS, Resar JR, Thiemann DR, Trost JC, Hasan RK |title=Myocardial Injury in Severe COVID-19 Compared With Non-COVID-19 Acute Respiratory Distress Syndrome |journal=Circulation |volume=143 |issue=6 |pages=553–565 |date=February 2021 |pmid=33186055 |pmc=7864609 |doi=10.1161/CIRCULATIONAHA.120.050543 |url=}}</ref>
* [[COVID-19]]  critically ill [[patients]] with  [[increased ]] level of [[troponin]] were more likely to be intubated.<ref name="pmid33635914">{{cite journal |vauthors=Efros O, Barda N, Meisel E, Leibowitz A, Fardman A, Rahav G, Klempfner R, Grossman E |title=Myocardial injury in hospitalized patients with COVID-19 infection-Risk factors and outcomes |journal=PLoS One |volume=16 |issue=2 |pages=e0247800 |date=2021 |pmid=33635914 |pmc=7909655 |doi=10.1371/journal.pone.0247800 |url=}}</ref>
*  [[Myocardial injury]] was less common among [[COVID-19]] [[patients]] compared with [[ARDS]] without [[COVID-19]] after adjusting confounders including [[age]], [[renal dysfunction]], [[degree]] of [[critical illness]].
* [[Myocardial injury]] was estimated to be approximately in 50% of intubated [[patients]]. However, [[mortality]] risk decreased after adjustment for the degree of [[critical illness]].<ref name="pmid33186055">{{cite journal |vauthors=Metkus TS, Sokoll LJ, Barth AS, Czarny MJ, Hays AG, Lowenstein CJ, Michos ED, Nolley EP, Post WS, Resar JR, Thiemann DR, Trost JC, Hasan RK |title=Myocardial Injury in Severe COVID-19 Compared With Non-COVID-19 Acute Respiratory Distress Syndrome |journal=Circulation |volume=143 |issue=6 |pages=553–565 |date=February 2021 |pmid=33186055 |pmc=7864609 |doi=10.1161/CIRCULATIONAHA.120.050543 |url=}}</ref>
===Complications===
*[[Mycardial injury]] also contributes to [[cardiovascular]] complications including: <ref name="pmid32317203">{{cite journal |vauthors=Long B, Brady WJ, Koyfman A, Gottlieb M |title=Cardiovascular complications in COVID-19 |journal=Am J Emerg Med |volume=38 |issue=7 |pages=1504–1507 |date=July 2020 |pmid=32317203 |pmc=7165109 |doi=10.1016/j.ajem.2020.04.048 |url=}}</ref>
**[[Acute coronary syndromes]]
**[[Cardiac arrhythmia|Arrhythmias]]
**[[Myocarditis]]
**[[Pericarditis]]
**[[Heart failure]]
**[[Cardiogenic shock]]
**Death
===Prognosis===


*The disease also contributes to cardiovascular complications, including
*Prognosis of [[COVID-19]] [[myocardial]] injury patients is generally poor and was associated with [[multisystem organ involvement]] and critical [[illness]].<ref name="pmid33186055">{{cite journal |vauthors=Metkus TS, Sokoll LJ, Barth AS, Czarny MJ, Hays AG, Lowenstein CJ, Michos ED, Nolley EP, Post WS, Resar JR, Thiemann DR, Trost JC, Hasan RK |title=Myocardial Injury in Severe COVID-19 Compared With Non-COVID-19 Acute Respiratory Distress Syndrome |journal=Circulation |volume=143 |issue=6 |pages=553–565 |date=February 2021 |pmid=33186055 |pmc=7864609 |doi=10.1161/CIRCULATIONAHA.120.050543 |url=}}</ref><ref name="pmid32352535">{{cite journal |vauthors=Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P, D'Acquisto F, Nicklin SA, Marian AJ, Nosalski R, Murray EC, Guzik B, Berry C, Touyz RM, Kreutz R, Wang DW, Bhella D, Sagliocco O, Crea F, Thomson EC, McInnes IB |title=COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options |journal=Cardiovasc. Res. |volume= |issue= |pages= |date=April 2020 |pmid=32352535 |pmc=7197627 |doi=10.1093/cvr/cvaa106 |url=}}</ref>
**Acute coronary syndromes
* [[Mortality]] was higher among [[intubated]] [[COVID-19]] [[patients]] with highest level of [[troponin]]  compared with [[troponin]] below the [[ULN]] (61.5% vs 22.7%).<ref name="pmid33186055">{{cite journal |vauthors=Metkus TS, Sokoll LJ, Barth AS, Czarny MJ, Hays AG, Lowenstein CJ, Michos ED, Nolley EP, Post WS, Resar JR, Thiemann DR, Trost JC, Hasan RK |title=Myocardial Injury in Severe COVID-19 Compared With Non-COVID-19 Acute Respiratory Distress Syndrome |journal=Circulation |volume=143 |issue=6 |pages=553–565 |date=February 2021 |pmid=33186055 |pmc=7864609 |doi=10.1161/CIRCULATIONAHA.120.050543 |url=}}</ref>
**Arrhythmias
**Myocarditis
**Pericarditis
**Heart failure
**Cardiogenic shock
**Death'''.'''


*Older patients with preexisting cardiovascular comorbidities and diabetes are prone to develop a higher acuity of illness after contracting SARS-CoV-2 associated with higher risk of myocardial injury and a markedly higher short-term mortality rate.<ref name="GuoFan2020">{{cite journal|last1=Guo|first1=Tao|last2=Fan|first2=Yongzhen|last3=Chen|first3=Ming|last4=Wu|first4=Xiaoyan|last5=Zhang|first5=Lin|last6=He|first6=Tao|last7=Wang|first7=Hairong|last8=Wan|first8=Jing|last9=Wang|first9=Xinghuan|last10=Lu|first10=Zhibing|title=Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|year=2020|issn=2380-6583|doi=10.1001/jamacardio.2020.1017}}</ref>
*A [[retrospective]] analysis of the cause of death in Chinese patients infected with [[COVID-19]] revealed that 40% of patients died at least in part because of [[myocardial injury]] and [[circulatory]] collapse.<ref name="GuoFan20204">{{cite journal|last1=Guo|first1=Tao|last2=Fan|first2=Yongzhen|last3=Chen|first3=Ming|last4=Wu|first4=Xiaoyan|last5=Zhang|first5=Lin|last6=He|first6=Tao|last7=Wang|first7=Hairong|last8=Wan|first8=Jing|last9=Wang|first9=Xinghuan|last10=Lu|first10=Zhibing|title=Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|volume=5|issue=7|year=2020|pages=811|issn=2380-6583|doi=10.1001/jamacardio.2020.1017}}</ref>
*In another study, patients hospitalized for [[COVID-19]] infection developed [[cardiac]] injury in roughly 20% of cases; thus leading to greater than 50% [[mortality]].<ref name="BonowFonarow2020">{{cite journal|last1=Bonow|first1=Robert O.|last2=Fonarow|first2=Gregg C.|last3=O’Gara|first3=Patrick T.|last4=Yancy|first4=Clyde W.|title=Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality|journal=JAMA Cardiology|volume=5|issue=7|year=2020|pages=751|issn=2380-6583|doi=10.1001/jamacardio.2020.1105}}</ref>
*Older patients with preexisting cardiovascular [[comorbidities]] and [[diabetes]] are prone to develop a higher acuity of illness after contracting [[SARS-CoV-2]] associated with higher risk of myocardial injury and a markedly higher short-term mortality rate.<ref name="GuoFan2020">{{cite journal|last1=Guo|first1=Tao|last2=Fan|first2=Yongzhen|last3=Chen|first3=Ming|last4=Wu|first4=Xiaoyan|last5=Zhang|first5=Lin|last6=He|first6=Tao|last7=Wang|first7=Hairong|last8=Wan|first8=Jing|last9=Wang|first9=Xinghuan|last10=Lu|first10=Zhibing|title=Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|year=2020|issn=2380-6583|doi=10.1001/jamacardio.2020.1017}}</ref>


==Diagnosis==
==Diagnosis==
===Diagnostic Study of Choice===
* The diagnosis is made when the level of [[cardiac troponin]] is above the 99th percentile.
* [[Clinical]] evaluation and obtaining [[ECG]] for diagnosis the causes of [[cardiac injury]] including  [[acute myocardial infarction]], [[myocarditis]], [[Takotsubo syndrome]], direct injury from [[covid-19]], as well as noncardiac [[condition]] such as [[pulmonary emboli]], [[critical illness]], [[sepsis]], [[ACS]] with normal or near normal [[coronary artery]] should be considered.<ref name="pmid33949887">{{cite journal |vauthors=Manolis AS, Manolis AA, Manolis TA, Melita H |title=COVID-19 and Acute Myocardial Injury and Infarction: Related Mechanisms and Emerging Challenges |journal=J Cardiovasc Pharmacol Ther |volume=26 |issue=5 |pages=399–414 |date=September 2021 |pmid=33949887 |doi=10.1177/10742484211011026 |url=}}</ref>
{| class="wikitable"
| align="center" style="background: #4479BA; color: #FFFFFF " |'''Initial Evaluation of Suspected Acute Myocardial Injury in COVID-19'''
|-
|'''History''' <ref name="pmid325121223">{{cite journal |vauthors=Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL |title=Acute myocardial injury in patients hospitalized with COVID-19 infection: A review |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=June 2020 |pmid=32512122 |pmc=7274977 |doi=10.1016/j.pcad.2020.05.013 |url=}}</ref>
|-
|
*Chest pain, [[diaphoresis]]
 
*[[Dyspnea]] is a nonspecific symptom  and usually secondary to [[pneumonia]]/[[ARDS]]
|-
|'''Physical exam'''
|-
|
*No  specific findings in [[ACS]]
 
*[[JVD]], [[pulmonary edema]]
|-
|'''EKG changes'''
|-
|
*[[ST elevation]]/[[ST depression|depression]]


*'''Cardiac Biomarkers and Acute Cardiac Injury'''
*[[Q wave]]
**he upper reference limit for the high-sensitivity [[troponin I]] (hs-TnI) test (0.04ng/mL), based on the 99th percentile of measurements reported in healthy population without the occlusion of [[coronary arteries]].
**In the recently published retrospective study of 191 COVID-19 patients from two separate hospitals in China, the incidence of elevation in high-sensitivity cardiac troponin I (cTnI) (>28 pg/ml) was 17%, and it was significantly higher among non-survivors (46% versus 1%, p<0.001).<sup>10</sup> Furthermore, elevation of this biomarker was noted to be a predictor of in-hospital death (univariable OR 80.07, 95% CI [10.34–620.36], p<0.0001). The most abrupt increase in cTnI in non-survivors was noted beyond day 16 after the onset of disease. In the same study, the incidence of acute cardiac injury was 17% among all-comers, but significantly higher among non-survivors (59% versus 1%, p<0.0001).<ref name="ZhouYu2020">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>
**CK-MB >2.2 ng/mL
**Guo et al<sup>11</sup> provide additional novel insights that TnT levels are significantly associated with levels of C-reactive protein and N-terminal pro-B-type natriuretic peptide (NT-proBNP), thus linking myocardial injury to severity of inflammation and ventricular dysfunction<ref name="GuoFan20202">{{cite journal|last1=Guo|first1=Tao|last2=Fan|first2=Yongzhen|last3=Chen|first3=Ming|last4=Wu|first4=Xiaoyan|last5=Zhang|first5=Lin|last6=He|first6=Tao|last7=Wang|first7=Hairong|last8=Wan|first8=Jing|last9=Wang|first9=Xinghuan|last10=Lu|first10=Zhibing|title=Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|year=2020|issn=2380-6583|doi=10.1001/jamacardio.2020.1017}}</ref>


*[[T wave inversions|T wave inversion]]
*[[QT prolongation]]
*[[Left bundle branch block]]
|-
|'''Laboratory evaluation'''
|-
|
*Serial [[Troponin I|Troponin l]]
*[[CK]]
*[[BNP]]
|-
|'''Imaging studies'''
|-
|
*[[Echocardiogram]]
|-
|<ref name="pmid325121223" />
|}
<br />
[[File:Diagnostic approach to chest pain in COVID-19.jpg|thumb|700x700px|Diagnostic approach to chest pain in COVID-19 <ref name="pmid325121224">{{cite journal |vauthors=Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL |title=Acute myocardial injury in patients hospitalized with COVID-19 infection: A review |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=June 2020 |pmid=32512122 |pmc=7274977 |doi=10.1016/j.pcad.2020.05.013 |url=}}</ref>|center]]
For chest pain diagnostics [[Chest pain diagnostic studies|click here]]
===History and Symptoms===
===History and Symptoms===


*Patients with COVID-19 can present with the typical symptoms and signs of SARS-CoV-2 nfection such as fever, cough, dyspnea, and bilateral infiltrates on chest imaging can present with chest pain, dyspnea, dysarrhythmia, and acute left ventricular dysfunction <ref name="WuMcGoogan2020">{{cite journal|last1=Wu|first1=Zunyou|last2=McGoogan|first2=Jennifer M.|title=Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China|journal=JAMA|volume=323|issue=13|year=2020|pages=1239|issn=0098-7484|doi=10.1001/jama.2020.2648}}</ref> <ref name="RuanYang2020">{{cite journal|last1=Ruan|first1=Qiurong|last2=Yang|first2=Kun|last3=Wang|first3=Wenxia|last4=Jiang|first4=Lingyu|last5=Song|first5=Jianxin|title=Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China|journal=Intensive Care Medicine|volume=46|issue=5|year=2020|pages=846–848|issn=0342-4642|doi=10.1007/s00134-020-05991-x}}</ref>
*Patients with [[COVID-19]] present with the typical symptoms and signs of [[SARS-CoV-2]] infection such as [[fever]], [[cough]], [[dyspnea]]. Acute myocardial injury in [[COVID-19]] presents similar to non COVID-19 related [[ACS]] and [[Congestive heart failure|heart failure]]. <ref name="WuMcGoogan2020">{{cite journal|last1=Wu|first1=Zunyou|last2=McGoogan|first2=Jennifer M.|title=Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China|journal=JAMA|volume=323|issue=13|year=2020|pages=1239|issn=0098-7484|doi=10.1001/jama.2020.2648}}</ref> <ref name="RuanYang2020">{{cite journal|last1=Ruan|first1=Qiurong|last2=Yang|first2=Kun|last3=Wang|first3=Wenxia|last4=Jiang|first4=Lingyu|last5=Song|first5=Jianxin|title=Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China|journal=Intensive Care Medicine|volume=46|issue=5|year=2020|pages=846–848|issn=0342-4642|doi=10.1007/s00134-020-05991-x}}</ref>
*For [[Acute coronary syndromes|ACS]]  sign and symptoms please [[Acute coronary syndromes|Click here]]
*For [[Heart failure]] sign and symptoms please [[Heart failure|Click here]]
*To view the history and symptoms of COVID-19, [[COVID-19 history and symptoms|click here]].


===Physical Examination===
===Physical Examination===
*To view the complete physical examination in COVID-19, [[COVID-19 physical examination|click here]].
*To view physical exam of [[Acute coronary syndromes|ACS]] [[Acute coronary syndromes|Click here]]
*To view physical exam of [[Heart failure]] [[Heart failure|Click here]]
===Laboratory Findings===
===Laboratory Findings===
*'''Cardiac Biomarkers:'''
**The upper reference limit for the high-sensitivity [[troponin I]] (hs-TnI) test (0.04ng/mL), is based on the 99th percentile of measurements reported in healthy population without the occlusion of [[coronary arteries]].<ref name="DrigginMadhavan20202">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref><ref name="LiChen2020">{{cite journal|last1=Li|first1=Dongze|last2=Chen|first2=You|last3=Jia|first3=Yu|last4=Tong|first4=Le|last5=Tong|first5=Jiale|last6=Wang|first6=Wei|last7=Liu|first7=Yanmei|last8=Wan|first8=Zhi|last9=Cao|first9=Yu|last10=Zeng|first10=Rui|title=SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study|journal=Circulation Research|year=2020|issn=0009-7330|doi=10.1161/CIRCRESAHA.120.317070}}</ref>
**In the recently published [[Retrospective cohort study|retrospective study]] of 191 [[COVID-19]] patients from two separate hospitals in China, the incidence of elevation in high-sensitivity cardiac [[troponin I]] (cTnI) (>28 pg/ml) was 17%, and it was significantly higher among non-survivors (46% versus 1%, p<0.001).
**Furthermore, elevation of this [[biomarker]] was noted to be a predictor of in-hospital death (univariable OR 80.07, 95% CI [10.34–620.36], p<0.0001). The most abrupt increase in [[cTnI]] in non-survivors was noted beyond day 16 after the onset of disease. In the same study, the incidence of acute cardiac injury was 17% among all-comers, but significantly higher among non-survivors (59% versus 1%, p<0.0001).<ref name="ZhouYu2020">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>
**[[CK-MB]] >2.2 ng/mL
**Guo et al<sup>11</sup> provide additional novel insights that TnT levels are significantly associated with levels of [[C-reactive protein]] and [[Natriuretic peptides|N-terminal pro-B-type natriuretic peptide]] (NT-proBNP), thus linking myocardial injury to severity of [[inflammation]] and [[ventricular dysfunction]]<ref name="GuoFan20202">{{cite journal|last1=Guo|first1=Tao|last2=Fan|first2=Yongzhen|last3=Chen|first3=Ming|last4=Wu|first4=Xiaoyan|last5=Zhang|first5=Lin|last6=He|first6=Tao|last7=Wang|first7=Hairong|last8=Wan|first8=Jing|last9=Wang|first9=Xinghuan|last10=Lu|first10=Zhibing|title=Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)|journal=JAMA Cardiology|year=2020|issn=2380-6583|doi=10.1001/jamacardio.2020.1017}}</ref>
=====Inflammatory biomarkers:=====
*Elevated levels of inflammatory markers including [[erythrocyte sedimentation rate]], [[C reactive protein]], and [[procalcitonin]] are usually seen in myocarditis but they are non-specific and do not confirm the diagnosis. Increases levels of [[Interleukin-6]] (IL-6), [[d-dimer]], serum [[ferritin]], [[prothrombin time]] were seen in COVID-19 patients.
**To view the laboratory findings on COVID-19, [[COVID-19 laboratory findings|click here]].
===Electrocardiogram===
===Electrocardiogram===


*The electrocardiogram (ECG) can demonstrate a range of findings
*The [[electrocardiogram]] ([[The electrocardiogram|ECG]]) can demonstrate a range of findings<ref name="pmid325121225">{{cite journal |vauthors=Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL |title=Acute myocardial injury in patients hospitalized with COVID-19 infection: A review |journal=Prog Cardiovasc Dis |volume= |issue= |pages= |date=June 2020 |pmid=32512122 |pmc=7274977 |doi=10.1016/j.pcad.2020.05.013 |url=}}</ref>
**In some cases mimicking acute coronary syndrome (ACS).
**In some cases mimicking [[Acute coronary syndromes|acute coronary syndrome]] (ACS).
**The ECG abnormalities result from myocardial inflammation and include non-specific ST segment-T wave abnormalities.
**The [[The electrocardiogram|ECG]] abnormalities result from [[myocardial inflammation]] and include non-specific [[ST segment]]-[[T wave]] abnormalities.
**T wave inversion.
**[[T wave inversion]].
**PR segment and ST segment deviations (depression and elevation)
**[[PR segment]] and [[ST segment]] deviations (depression and elevation)
**An [[ECG]] can help to find previous cardiac abnormalities and triggering factors, such as [[acute myocardial infarction]], and [[arrhythmias]].
***To view the electrocardiogram findings of [[ACS]] [[ACS|Click here]]
***To view the electrocardiogram findings [[Congestive heart failure|heart failure]] [[Congestive heart failure electrocardiogram|Click here]]
***To view the electrocardiogram findings on COVID-19, [[COVID-19 electrocardiogram|click here]].


===X-ray===
===X-ray===
===Echocardiography or Ultrasound===
 
===CT scan===
*There are no specific X-ray findings in [[COVID-19]] associated myocardial injury.
*To view the x-ray findings on COVID-19, [[COVID-19 x ray|click here]].<br />
 
===Ultrasound/Echocardiography===
 
*Concomitant [[myocardial injury]] and [[echocardiography]] abnormalities]] were associated with high [[mortality]]. However, [[mortality]] was not increased in the presence of [[myocardial injury]] without [[echocardiography]] abnormalities.([[ACC,2020]])
 
===CT Scan===
 
*There are no specific CT scan findings related to COVID-19-associated acute myocardial injury.
*To view the CT scan findings on COVID-19, [[COVID-19 CT scan|click here]].
 
===MRI===
===MRI===
* [[Cardiac MRI]] can be used for evaluation of [[myocardial injury]] associated [[COVID-19]].<ref name="pmid32763118">{{cite journal |vauthors=Huang L, Zhao P, Tang D, Zhu T, Han R, Zhan C, Liu W, Zeng H, Tao Q, Xia L |title=Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging |journal=JACC Cardiovasc Imaging |volume=13 |issue=11 |pages=2330–2339 |date=November 2020 |pmid=32763118 |pmc=7214335 |doi=10.1016/j.jcmg.2020.05.004 |url=}}</ref>
* Findings of [[CMR]] among recovered [[COVID-19]] with [[myocardial injury]] include:
*:[[Myocardial edema]]
*: [[ Myocardial fibrosis]]
*: Impaired [[right ventricular function]]
===Other Imaging Findings===
===Other Imaging Findings===
===Other Diagnostic Studies===
 
*There are no other [[imaging]] findings related to COVID-19-associated acute myocardial injury.
*To view other [[imaging]] findings on COVID-19, [[COVID-19 other imaging findings|click here]].<br />
 
===Other Diagnostic Findings===
 
*There are no other [[diagnostic]] studies related to COVID-19-associated acute myocardial injury.
*To view other [[diagnostic]] studies for COVID-19, [[COVID-19 other diagnostic studies|click here]].<br />
 
==Treatment==
==Treatment==
'''Treatment of Acute myocardial injury depends upon the complication the'''
 
===Medical Therapy===
 
The mainstay of therapy in [[myocardial injury]] is:<ref name="pmid32987060">{{cite journal |vauthors=Peng W, Wu H, Tan Y, Li M, Yang D, Li S |title=Mechanisms and treatments of myocardial injury in patients with corona virus disease 2019 |journal=Life Sci |volume=262 |issue= |pages=118496 |date=December 2020 |pmid=32987060 |pmc=7518803 |doi=10.1016/j.lfs.2020.118496 |url=}}</ref>
* [[Antiviral therapy]]: [[favipiravir]], [[remdesivir]], [[chloroquine]]
* Treatment of [[cytokine storm]] associated with [[SARS-COV-2]] [[infection]]: [[antishock therapy]], [[steroid]], [[neutralized antibodies]]
* [[Treatment of underlying]] [[cardiovascular comorbidities]]: use of [[statin]], [[betablocker]], [[ACEI]], [[aspirin]] for plaques stabilization, [[heart failure]] treatment, [[ECMO]]
**To view medical treatment for COVID-19, click here.
 
===Surgery===
 
*There is no established surgical intervention for the treatment of COVID-19-associated acute myocardial injury.
 
===Primary Prevention===
 
*Effective measure for [[primary prevention]] strategy in [[myocardial injury]] associated [[COVID-19]] is [[vaccination]].
*Other [[primary prevention]] strategies include measures to reduce the occurrence of [[myocardial injury]] among [[COVID-19]] [[patients]].<ref name="MontoneIannaccone2020">{{cite journal|last1=Montone|first1=Rocco A|last2=Iannaccone|first2=Giulia|last3=Meucci|first3=Maria Chiara|last4=Gurgoglione|first4=Filippo|last5=Niccoli|first5=Giampaolo|title=Myocardial and Microvascular Injury Due to Coronavirus Disease 2019|journal=European Cardiology Review|volume=15|year=2020|issn=17583764|doi=10.15420/ecr.2020.22}}</ref>
 
===Secondary Prevention===
 
*There are no established measures for the [[secondary prevention]] of [[COVID-19]]-associated [[myocardial injury]].
 
==References==
==References==
{{reflist|2}}'''COVID 19'''
{{reflist|2}}'''COVID 19'''

Latest revision as of 11:37, 21 November 2021

WikiDoc Resources for COVID-19-associated myocardial injury

Articles

Most recent articles on COVID-19-associated myocardial injury

Most cited articles on COVID-19-associated myocardial injury

Review articles on COVID-19-associated myocardial injury

Articles on COVID-19-associated myocardial injury in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated myocardial injury

Images of COVID-19-associated myocardial injury

Photos of COVID-19-associated myocardial injury

Podcasts & MP3s on COVID-19-associated myocardial injury

Videos on COVID-19-associated myocardial injury

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated myocardial injury

Bandolier on COVID-19-associated myocardial injury

TRIP on COVID-19-associated myocardial injury

Clinical Trials

Ongoing Trials on COVID-19-associated myocardial injury at Clinical Trials.gov

Trial results on COVID-19-associated myocardial injury

Clinical Trials on COVID-19-associated myocardial injury at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated myocardial injury

NICE Guidance on COVID-19-associated myocardial injury

NHS PRODIGY Guidance

FDA on COVID-19-associated myocardial injury

CDC on COVID-19-associated myocardial injury

Books

Books on COVID-19-associated myocardial injury

News

COVID-19-associated myocardial injury in the news

Be alerted to news on COVID-19-associated myocardial injury

News trends on COVID-19-associated myocardial injury

Commentary

Blogs on COVID-19-associated myocardial injury

Definitions

Definitions of COVID-19-associated myocardial injury

Patient Resources / Community

Patient resources on COVID-19-associated myocardial injury

Discussion groups on COVID-19-associated myocardial injury

Patient Handouts on COVID-19-associated myocardial injury

Directions to Hospitals Treating COVID-19-associated myocardial injury

Risk calculators and risk factors for COVID-19-associated myocardial injury

Healthcare Provider Resources

Symptoms of COVID-19-associated myocardial injury

Causes & Risk Factors for COVID-19-associated myocardial injury

Diagnostic studies for COVID-19-associated myocardial injury

Treatment of COVID-19-associated myocardial injury

Continuing Medical Education (CME)

CME Programs on COVID-19-associated myocardial injury

International

COVID-19-associated myocardial injury en Espanol

COVID-19-associated myocardial injury en Francais

Business

COVID-19-associated myocardial injury in the Marketplace

Patents on COVID-19-associated myocardial injury

Experimental / Informatics

List of terms related to COVID-19-associated myocardial injury

Main article: COVID-19

For COVID-19 frequently asked inpatient questions, click here

For COVID-19 frequently asked outpatient questions, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sara Zand, M.D.[2] Syed rizvi, M.B.B.S[[2]]

Synonyms and Keywords: Novel coronavirus, COVID-19, Wuhan coronavirus, coronavirus disease-19, coronavirus disease 2019, SARS-CoV-2, COVID-19, COVID-19, 2019-nCoV, 2019 novel coronavirus, cardiovascular finding in COVID-19, myocardial injury in COVID-19, COVID-19-associated myocardial injury, SARS-CoV2-associated myocardial injury, COVID-19 myocardial injury.

Overview

Coronavirus disease 2019 (COVID-19) is a rapidly expanding global pandemic which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Myocardial injury presented by high level of cardiac troponin is a common manifestation in COVID-19. The exact pathogenesis of myocardial injury in COVID-19 is not clear yet. However, systemic inflammation, hypoxemia, vasopressor requirement, thrombophilia have been proposed as the underlying mechanisms of myocardial injury. Factors associated with myocardial injury including age, creatinine, multisystem organ failure were similar in both COVID-19 and non COVID-19 patients. Myocardial injury was less common in severe COVID-19 in comparisson with ARDS without COVID-19. However, it was associated with poor outcome in critically ill COVID-19 patients and increased risk of intubation and death. So, Myocardial injury can be the manifestation of underlying critically illness and multisystem organ dysfunction, especially concomitant renal dysfunction, as well as thrombotic complications among COVID-19 patients.

Historical Perspective

  • January 2, 2020 - first observational study of 41 patients with COVID-19 pneumonia showed that 5 (12%) of the 41 patients had elevated hs-TnI ( high sensitivity troponin) level above the defined threshold (28 pg/ml) [4]
  • To view the full historical perspective of COVID-19, click here.

Classification

Following careful clinical evaluation, patients with cTn increases indicative of myocardial injury, including those with COVID-19, should be classified as [5]

  • Chronic myocardial injury
  • Acute non-ischemic myocardial injury
  • Acute myocardial infarction (MI).

Chronic myocardial injury:[6]

  • Chronic myocardial injury, a term that applies to patients with chronic stable (<20% change) cTn increases, can be frequently encountered in patients with COVID-19 as the patients are of older age and they have high prevalence of chronic cardiovascular disease.

Acute non-ischemic myocardial injury:[7]

  • Acute non-ischemic myocardial injury, a term that applies to patients with dynamic rising and/or falling cTn concentration without clinical evidence of myocardial ischemia, is probably the predominant mechanism for cTn increases in patients with COVID-19.

Acute myocardial infarction (MI): [8]

  • Symptoms of acute myocardial ischemia;
  • New ischemic electrocardiographic (ECG) changes;
  • Development of pathological Q waves;
  • Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality in a pattern consistent with an ischemic etiology;
  • Identification of a coronary thrombus by angiography including intracoronary imaging or by autopsy
    • To view the classification of COVID-19, click here.

Pathophysiology

The pathophysiology of COVID-19 acute myocardial injury depends on the underlying cause of myocardial tissue death. However, the overall trigger is an exaggerated inflammatory response (hyperinflammation) in response to viral infiltration into cells. SARS-CoV-2 virus gains entry via the ACE-2 (Angiotensin Converting Enzyme 2) receptor that is found abundantly in myocardial tissue and endothelium of blood vessels.

Proposed pathophysiological mechanisms of COVID-19 associated myocardial injury:


Hyperinflammation and cytokine storm:

Role of ACE-2 Receptor :

Pathophysiology of Acute myocardial injury

Causes

Differentiating COVID-19 associated Acute myocardial injury from other Diseases

COVID-19 associated AMI vs non COVID-19 AMI
Causes Similar features Features specific to COVID-19
Acute coronary syndrome

-         STEMI, NSTEMI,[27]

Unstable Angina

-         Type I & II MI

Chest pain

Shortness of breath

Diaphoresis

EKG changes

Elevated troponin I level

Evidence of coronary occlusion by imaging/PCI

Clinical evidence of SARS-CoV2 infection[28]

-         Fever

-         Cough

-         Dyspnea

-         Bilateral ground glass opacities on chest imaging

-         Positive SARS-CoV2 PCR

(Patients may have nonspecific symptoms such as fatigue and malaise without specific symptoms of cardiac disease)

Acute Heart failure[29] Chest pain/pressure

Shortness of breath

Orthopnea

Pulmonary edema

Jugular venous distention

Peripheral edema

Elevated BNP

Depressed ventricular function on echocardiography

Myocarditis[30] Chest pain

Fatigue

S3,S4 or summation gallop

Elevated troponin I

EKG abnormalities

Absence of coronary occlusion

AMI- acute myocardial injury; BNP – Brain Natriuretic peptide; MI – myocardial infarction; NSTEMI - non ST Elevation Myocardial Infarction; PCIpercutaneous intervention; STEMI - ST elevation Myocardial Infarction

Epidemiology and Demographics

Study Site/

Location

Sample size (n) Age (years) Pre-existing cardiac disease Definition of myocardial injury used in study Percent with myocardial injury
Huang et al [31] Wuhan, China 41 Median 49.0 15% cardiovascular disease

15% hypertension

Cardiac injury=troponin I above 99th percentile upper reference limit or new abnormalities on electrocardiography or echocardiography 12
Shi et al[32] Wuhan, China 416 Median 64.0 (range 21.0–95.0) 4% chronic heart failure

11% coronary heart disease 31% hypertension

Cardiac injury=troponin I above 99th percentile upper reference limit, regardless of new abnormalities on electrocardiography or echocardiography 19.7
Zhou et al [33] Wuhan, China 191 Median 56.0 8% coronary heart disease

30% hypertension

Cardiac injury=high-sensitivity troponin I above 99th percentile upper reference limit or new abnormalities on electrocardiography or echocardiography 17
Guo et al[34] Wuhan, China 187 Mean 58.5±14.7 4% cardiomyopathy

11% coronary heart disease 33% hypertension

Myocardial injury=troponin T above 99th percentile upper reference limit 27.8
Wang et al [35] Wuhan, China 138 Median 56.0 15% cardiovascular disease

31% hypertension

Cardiac injury=troponin I above 99th percentile upper reference limit or new abnormalities on electrocardiography or echocardiography 7.2


Incidence

Prevalence

  • The prevalence of myocardial injury (as reflected by elevation in cardiac troponin levels) is variable among hospitalized patients with COVID-19 and is known to be approximately 5,000-38,000 per 100,000 hospitalized individuals worldwide.[36]
  • Reported frequencies range from 5% to 38%[37] [38] [39]
  • In a series of 416 patients with COVID-19 who were hospitalized in Wuhan, China, 19.7 percent had high-sensitivity troponin I (hs-TnI) above the 99th percentile upper reference limit on admission.[40]

Case-fatality rate/Mortality rate

Age

Race

Gender

Risk Factors

Predictors of elevated troponin level in hospitalized COVID-19 were:[42]

Screening

Natural History, Complications, and Prognosis


Complications

Prognosis

  • A retrospective analysis of the cause of death in Chinese patients infected with COVID-19 revealed that 40% of patients died at least in part because of myocardial injury and circulatory collapse.[45]
  • In another study, patients hospitalized for COVID-19 infection developed cardiac injury in roughly 20% of cases; thus leading to greater than 50% mortality.[46]
  • Older patients with preexisting cardiovascular comorbidities and diabetes are prone to develop a higher acuity of illness after contracting SARS-CoV-2 associated with higher risk of myocardial injury and a markedly higher short-term mortality rate.[47]

Diagnosis

Initial Evaluation of Suspected Acute Myocardial Injury in COVID-19
History [49]
Physical exam
  • No specific findings in ACS
EKG changes
Laboratory evaluation
Imaging studies
[49]



Diagnostic approach to chest pain in COVID-19 [50]

For chest pain diagnostics click here

History and Symptoms

Physical Examination

Laboratory Findings

  • Cardiac Biomarkers:
    • The upper reference limit for the high-sensitivity troponin I (hs-TnI) test (0.04ng/mL), is based on the 99th percentile of measurements reported in healthy population without the occlusion of coronary arteries.[53][54]
    • In the recently published retrospective study of 191 COVID-19 patients from two separate hospitals in China, the incidence of elevation in high-sensitivity cardiac troponin I (cTnI) (>28 pg/ml) was 17%, and it was significantly higher among non-survivors (46% versus 1%, p<0.001).
    • Furthermore, elevation of this biomarker was noted to be a predictor of in-hospital death (univariable OR 80.07, 95% CI [10.34–620.36], p<0.0001). The most abrupt increase in cTnI in non-survivors was noted beyond day 16 after the onset of disease. In the same study, the incidence of acute cardiac injury was 17% among all-comers, but significantly higher among non-survivors (59% versus 1%, p<0.0001).[55]
    • CK-MB >2.2 ng/mL
    • Guo et al11 provide additional novel insights that TnT levels are significantly associated with levels of C-reactive protein and N-terminal pro-B-type natriuretic peptide (NT-proBNP), thus linking myocardial injury to severity of inflammation and ventricular dysfunction[56]
Inflammatory biomarkers:

Electrocardiogram

X-ray

  • There are no specific X-ray findings in COVID-19 associated myocardial injury.
  • To view the x-ray findings on COVID-19, click here.

Ultrasound/Echocardiography

CT Scan

  • There are no specific CT scan findings related to COVID-19-associated acute myocardial injury.
  • To view the CT scan findings on COVID-19, click here.

MRI

Other Imaging Findings

  • There are no other imaging findings related to COVID-19-associated acute myocardial injury.
  • To view other imaging findings on COVID-19, click here.

Other Diagnostic Findings

  • There are no other diagnostic studies related to COVID-19-associated acute myocardial injury.
  • To view other diagnostic studies for COVID-19, click here.

Treatment

Medical Therapy

The mainstay of therapy in myocardial injury is:[59]

Surgery

  • There is no established surgical intervention for the treatment of COVID-19-associated acute myocardial injury.

Primary Prevention

Secondary Prevention

References

  1. Khan AA (March 1980). "Preliminary in vitro study of diazepam and droperidol on oestrus rat uterus". Br J Anaesth. 52 (3): 349–54. doi:10.1093/bja/52.3.349. PMID 7189403.
  2. Khan AA (March 1980). "Preliminary in vitro study of diazepam and droperidol on oestrus rat uterus". Br J Anaesth. 52 (3): 349–54. doi:10.1093/bja/52.3.349. PMID 7189403.
  3. "www.cdc.gov" (PDF).
  4. Huang, Chaolin; Wang, Yeming; Li, Xingwang; Ren, Lili; Zhao, Jianping; Hu, Yi; Zhang, Li; Fan, Guohui; Xu, Jiuyang; Gu, Xiaoying; Cheng, Zhenshun; Yu, Ting; Xia, Jiaan; Wei, Yuan; Wu, Wenjuan; Xie, Xuelei; Yin, Wen; Li, Hui; Liu, Min; Xiao, Yan; Gao, Hong; Guo, Li; Xie, Jungang; Wang, Guangfa; Jiang, Rongmeng; Gao, Zhancheng; Jin, Qi; Wang, Jianwei; Cao, Bin (2020). "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China". The Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. ISSN 0140-6736.
  5. "Key Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology".
  6. "Key Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology".
  7. "Key Points About Myocardial Injury and Cardiac Troponin in COVID-19 - American College of Cardiology".
  8. "Fourth Universal Definition of Myocardial Infarction - American College of Cardiology".
  9. Wei, Haiming; Xu, Xiaoling; Tian, Zhigang; Sun, Rui; Qi, Yingjie; Zhao, Changcheng; Wang, Dongsheng; Zheng, Xiaohu; Fu, Binqing; Zhou, Yonggang (2020). "Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients". National Science Review. 7 (6): 998–1002. doi:10.1093/nsr/nwaa041. ISSN 2095-5138.
  10. Kubasiak, L. A.; Hernandez, O. M.; Bishopric, N. H.; Webster, K. A. (2002). "Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3". Proceedings of the National Academy of Sciences. 99 (20): 12825–12830. doi:10.1073/pnas.202474099. ISSN 0027-8424.
  11. Han, Huan; Yang, Lan; Liu, Rui; Liu, Fang; Wu, Kai-lang; Li, Jie; Liu, Xing-hui; Zhu, Cheng-liang (2020). "Prominent changes in blood coagulation of patients with SARS-CoV-2 infection". Clinical Chemistry and Laboratory Medicine (CCLM). 58 (7): 1116–1120. doi:10.1515/cclm-2020-0188. ISSN 1437-4331.
  12. Tavazzi, Guido; Pellegrini, Carlo; Maurelli, Marco; Belliato, Mirko; Sciutti, Fabio; Bottazzi, Andrea; Sepe, Paola Alessandra; Resasco, Tullia; Camporotondo, Rita; Bruno, Raffaele; Baldanti, Fausto; Paolucci, Stefania; Pelenghi, Stefano; Iotti, Giorgio Antonio; Mojoli, Francesco; Arbustini, Eloisa (2020). "Myocardial localization of coronavirus in COVID‐19 cardiogenic shock". European Journal of Heart Failure. 22 (5): 911–915. doi:10.1002/ejhf.1828. ISSN 1388-9842.
  13. Zhou, Fei; Yu, Ting; Du, Ronghui; Fan, Guohui; Liu, Ying; Liu, Zhibo; Xiang, Jie; Wang, Yeming; Song, Bin; Gu, Xiaoying; Guan, Lulu; Wei, Yuan; Li, Hui; Wu, Xudong; Xu, Jiuyang; Tu, Shengjin; Zhang, Yi; Chen, Hua; Cao, Bin (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". The Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. ISSN 0140-6736.
  14. Tavazzi, Guido; Pellegrini, Carlo; Maurelli, Marco; Belliato, Mirko; Sciutti, Fabio; Bottazzi, Andrea; Sepe, Paola Alessandra; Resasco, Tullia; Camporotondo, Rita; Bruno, Raffaele; Baldanti, Fausto; Paolucci, Stefania; Pelenghi, Stefano; Iotti, Giorgio Antonio; Mojoli, Francesco; Arbustini, Eloisa (2020). "Myocardial localization of coronavirus in COVID‐19 cardiogenic shock". European Journal of Heart Failure. 22 (5): 911–915. doi:10.1002/ejhf.1828. ISSN 1388-9842.
  15. Meng, Xiao; Yang, Jianmin; Dong, Mei; Zhang, Kai; Tu, Eric; Gao, Qi; Chen, Wanjun; Zhang, Cheng; Zhang, Yun (2015). "Regulatory T cells in cardiovascular diseases". Nature Reviews Cardiology. 13 (3): 167–179. doi:10.1038/nrcardio.2015.169. ISSN 1759-5002.
  16. Komarowska, Izabela; Coe, David; Wang, Guosu; Haas, Robert; Mauro, Claudio; Kishore, Madhav; Cooper, Dianne; Nadkarni, Suchita; Fu, Hongmei; Steinbruchel, Daniel A.; Pitzalis, Costantino; Anderson, Graham; Bucy, Pat; Lombardi, Giovanna; Breckenridge, Ross; Marelli-Berg, Federica M. (2015). "Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release". Immunity. 42 (6): 1087–1099. doi:10.1016/j.immuni.2015.05.014. ISSN 1074-7613.
  17. Komarowska, Izabela; Coe, David; Wang, Guosu; Haas, Robert; Mauro, Claudio; Kishore, Madhav; Cooper, Dianne; Nadkarni, Suchita; Fu, Hongmei; Steinbruchel, Daniel A.; Pitzalis, Costantino; Anderson, Graham; Bucy, Pat; Lombardi, Giovanna; Breckenridge, Ross; Marelli-Berg, Federica M. (2015). "Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release". Immunity. 42 (6): 1087–1099. doi:10.1016/j.immuni.2015.05.014. ISSN 1074-7613.
  18. Zhou, Fei; Yu, Ting; Du, Ronghui; Fan, Guohui; Liu, Ying; Liu, Zhibo; Xiang, Jie; Wang, Yeming; Song, Bin; Gu, Xiaoying; Guan, Lulu; Wei, Yuan; Li, Hui; Wu, Xudong; Xu, Jiuyang; Tu, Shengjin; Zhang, Yi; Chen, Hua; Cao, Bin (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". The Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. ISSN 0140-6736.
  19. Han, Seongwook; Kim, Hyun Ah; Kim, Jin Young; Kim, In-Cheol (2020). "COVID-19-related myocarditis in a 21-year-old female patient". European Heart Journal. 41 (19): 1859–1859. doi:10.1093/eurheartj/ehaa288. ISSN 0195-668X.
  20. Mehta, Puja; McAuley, Daniel F; Brown, Michael; Sanchez, Emilie; Tattersall, Rachel S; Manson, Jessica J (2020). "COVID-19: consider cytokine storm syndromes and immunosuppression". The Lancet. 395 (10229): 1033–1034. doi:10.1016/S0140-6736(20)30628-0. ISSN 0140-6736.
  21. Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; Li, Bei; Huang, Chao-Lin; Chen, Hui-Dong; Chen, Jing; Luo, Yun; Guo, Hua; Jiang, Ren-Di; Liu, Mei-Qin; Chen, Ying; Shen, Xu-Rui; Wang, Xi; Zheng, Xiao-Shuang; Zhao, Kai; Chen, Quan-Jiao; Deng, Fei; Liu, Lin-Lin; Yan, Bing; Zhan, Fa-Xian; Wang, Yan-Yi; Xiao, Geng-Fu; Shi, Zheng-Li (2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836.
  22. Wan, Yushun; Shang, Jian; Graham, Rachel; Baric, Ralph S.; Li, Fang; Gallagher, Tom (2020). "Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus". Journal of Virology. 94 (7). doi:10.1128/JVI.00127-20. ISSN 0022-538X.
  23. Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; Li, Bei; Huang, Chao-Lin; Chen, Hui-Dong; Chen, Jing; Luo, Yun; Guo, Hua; Jiang, Ren-Di; Liu, Mei-Qin; Chen, Ying; Shen, Xu-Rui; Wang, Xi; Zheng, Xiao-Shuang; Zhao, Kai; Chen, Quan-Jiao; Deng, Fei; Liu, Lin-Lin; Yan, Bing; Zhan, Fa-Xian; Wang, Yan-Yi; Xiao, Geng-Fu; Shi, Zheng-Li (2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836.
  24. Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; Li, Bei; Huang, Chao-Lin; Chen, Hui-Dong; Chen, Jing; Luo, Yun; Guo, Hua; Jiang, Ren-Di; Liu, Mei-Qin; Chen, Ying; Shen, Xu-Rui; Wang, Xi; Zheng, Xiao-Shuang; Zhao, Kai; Chen, Quan-Jiao; Deng, Fei; Liu, Lin-Lin; Yan, Bing; Zhan, Fa-Xian; Wang, Yan-Yi; Xiao, Geng-Fu; Shi, Zheng-Li (2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. doi:10.1038/s41586-020-2012-7. ISSN 0028-0836.
  25. 25.0 25.1 25.2 25.3 25.4 Metkus TS, Sokoll LJ, Barth AS, Czarny MJ, Hays AG, Lowenstein CJ, Michos ED, Nolley EP, Post WS, Resar JR, Thiemann DR, Trost JC, Hasan RK (February 2021). "Myocardial Injury in Severe COVID-19 Compared With Non-COVID-19 Acute Respiratory Distress Syndrome". Circulation. 143 (6): 553–565. doi:10.1161/CIRCULATIONAHA.120.050543. PMC 7864609 Check |pmc= value (help). PMID 33186055 Check |pmid= value (help).
  26. Levi M, Opal SM (2006). "Coagulation abnormalities in critically ill patients". Crit Care. 10 (4): 222. doi:10.1186/cc4975. PMC 1750988. PMID 16879728.
  27. "Fourth Universal Definition of Myocardial Infarction - American College of Cardiology".
  28. Guan, Wei-jie; Ni, Zheng-yi; Hu, Yu; Liang, Wen-hua; Ou, Chun-quan; He, Jian-xing; Liu, Lei; Shan, Hong; Lei, Chun-liang; Hui, David S.C.; Du, Bin; Li, Lan-juan; Zeng, Guang; Yuen, Kwok-Yung; Chen, Ru-chong; Tang, Chun-li; Wang, Tao; Chen, Ping-yan; Xiang, Jie; Li, Shi-yue; Wang, Jin-lin; Liang, Zi-jing; Peng, Yi-xiang; Wei, Li; Liu, Yong; Hu, Ya-hua; Peng, Peng; Wang, Jian-ming; Liu, Ji-yang; Chen, Zhong; Li, Gang; Zheng, Zhi-jian; Qiu, Shao-qin; Luo, Jie; Ye, Chang-jiang; Zhu, Shao-yong; Zhong, Nan-shan (2020). "Clinical Characteristics of Coronavirus Disease 2019 in China". New England Journal of Medicine. 382 (18): 1708–1720. doi:10.1056/NEJMoa2002032. ISSN 0028-4793.
  29. Kurmani S, Squire I (October 2017). "Acute Heart Failure: Definition, Classification and Epidemiology". Curr Heart Fail Rep. 14 (5): 385–392. doi:10.1007/s11897-017-0351-y. PMC 5597697. PMID 28785969.
  30. Fung, Gabriel; Luo, Honglin; Qiu, Ye; Yang, Decheng; McManus, Bruce (2016). "Myocarditis". Circulation Research. 118 (3): 496–514. doi:10.1161/CIRCRESAHA.115.306573. ISSN 0009-7330.
  31. Huang, Chaolin; Wang, Yeming; Li, Xingwang; Ren, Lili; Zhao, Jianping; Hu, Yi; Zhang, Li; Fan, Guohui; Xu, Jiuyang; Gu, Xiaoying; Cheng, Zhenshun; Yu, Ting; Xia, Jiaan; Wei, Yuan; Wu, Wenjuan; Xie, Xuelei; Yin, Wen; Li, Hui; Liu, Min; Xiao, Yan; Gao, Hong; Guo, Li; Xie, Jungang; Wang, Guangfa; Jiang, Rongmeng; Gao, Zhancheng; Jin, Qi; Wang, Jianwei; Cao, Bin (2020). "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China". The Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. ISSN 0140-6736.
  32. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C (March 2020). "Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China". JAMA Cardiol. doi:10.1001/jamacardio.2020.0950. PMC 7097841 Check |pmc= value (help). PMID 32211816 Check |pmid= value (help).
  33. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (March 2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. PMC 7270627 Check |pmc= value (help). PMID 32171076 Check |pmid= value (help).
  34. Guo, Tao; Fan, Yongzhen; Chen, Ming; Wu, Xiaoyan; Zhang, Lin; He, Tao; Wang, Hairong; Wan, Jing; Wang, Xinghuan; Lu, Zhibing (2020). "Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)". JAMA Cardiology. doi:10.1001/jamacardio.2020.1017. ISSN 2380-6583.
  35. Wang, Dawei; Hu, Bo; Hu, Chang; Zhu, Fangfang; Liu, Xing; Zhang, Jing; Wang, Binbin; Xiang, Hui; Cheng, Zhenshun; Xiong, Yong; Zhao, Yan; Li, Yirong; Wang, Xinghuan; Peng, Zhiyong (2020). "Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China". JAMA. 323 (11): 1061. doi:10.1001/jama.2020.1585. ISSN 0098-7484.
  36. Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL (June 2020). "Acute myocardial injury in patients hospitalized with COVID-19 infection: A review". Prog Cardiovasc Dis. doi:10.1016/j.pcad.2020.05.013. PMC 7274977 Check |pmc= value (help). PMID 32512122 Check |pmid= value (help).
  37. Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL (June 2020). "Acute myocardial injury in patients hospitalized with COVID-19 infection: A review". Prog Cardiovasc Dis. doi:10.1016/j.pcad.2020.05.013. PMC 7274977 Check |pmc= value (help). PMID 32512122 Check |pmid= value (help).
  38. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C (March 2020). "Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China". JAMA Cardiol. doi:10.1001/jamacardio.2020.0950. PMC 7097841 Check |pmc= value (help). PMID 32211816 Check |pmid= value (help).
  39. Lippi G, Lavie CJ, Sanchis-Gomar F (March 2020). "Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis". Prog Cardiovasc Dis. doi:10.1016/j.pcad.2020.03.001. PMC 7127395 Check |pmc= value (help). PMID 32169400 Check |pmid= value (help).
  40. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C (March 2020). "Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China". JAMA Cardiol. doi:10.1001/jamacardio.2020.0950. PMC 7097841 Check |pmc= value (help). PMID 32211816 Check |pmid= value (help).
  41. 41.0 41.1 Bodini G, Demarzo MG, Casagrande E, De Maria C, Kayali S, Ziola S, Giannini EG (May 2020). "Concerns related to COVID-19 pandemic among patients with inflammatory bowel disease and its influence on patient management". Eur. J. Clin. Invest. 50 (5): e13233. doi:10.1111/eci.13233. PMC 7235524 Check |pmc= value (help). PMID 32294238 Check |pmid= value (help).
  42. 42.0 42.1 Efros O, Barda N, Meisel E, Leibowitz A, Fardman A, Rahav G, Klempfner R, Grossman E (2021). "Myocardial injury in hospitalized patients with COVID-19 infection-Risk factors and outcomes". PLoS One. 16 (2): e0247800. doi:10.1371/journal.pone.0247800. PMC 7909655 Check |pmc= value (help). PMID 33635914 Check |pmid= value (help).
  43. Long B, Brady WJ, Koyfman A, Gottlieb M (July 2020). "Cardiovascular complications in COVID-19". Am J Emerg Med. 38 (7): 1504–1507. doi:10.1016/j.ajem.2020.04.048. PMC 7165109 Check |pmc= value (help). PMID 32317203 Check |pmid= value (help).
  44. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P, D'Acquisto F, Nicklin SA, Marian AJ, Nosalski R, Murray EC, Guzik B, Berry C, Touyz RM, Kreutz R, Wang DW, Bhella D, Sagliocco O, Crea F, Thomson EC, McInnes IB (April 2020). "COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options". Cardiovasc. Res. doi:10.1093/cvr/cvaa106. PMC 7197627 Check |pmc= value (help). PMID 32352535 Check |pmid= value (help).
  45. Guo, Tao; Fan, Yongzhen; Chen, Ming; Wu, Xiaoyan; Zhang, Lin; He, Tao; Wang, Hairong; Wan, Jing; Wang, Xinghuan; Lu, Zhibing (2020). "Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)". JAMA Cardiology. 5 (7): 811. doi:10.1001/jamacardio.2020.1017. ISSN 2380-6583.
  46. Bonow, Robert O.; Fonarow, Gregg C.; O’Gara, Patrick T.; Yancy, Clyde W. (2020). "Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality". JAMA Cardiology. 5 (7): 751. doi:10.1001/jamacardio.2020.1105. ISSN 2380-6583.
  47. Guo, Tao; Fan, Yongzhen; Chen, Ming; Wu, Xiaoyan; Zhang, Lin; He, Tao; Wang, Hairong; Wan, Jing; Wang, Xinghuan; Lu, Zhibing (2020). "Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)". JAMA Cardiology. doi:10.1001/jamacardio.2020.1017. ISSN 2380-6583.
  48. Manolis AS, Manolis AA, Manolis TA, Melita H (September 2021). "COVID-19 and Acute Myocardial Injury and Infarction: Related Mechanisms and Emerging Challenges". J Cardiovasc Pharmacol Ther. 26 (5): 399–414. doi:10.1177/10742484211011026. PMID 33949887 Check |pmid= value (help).
  49. 49.0 49.1 Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL (June 2020). "Acute myocardial injury in patients hospitalized with COVID-19 infection: A review". Prog Cardiovasc Dis. doi:10.1016/j.pcad.2020.05.013. PMC 7274977 Check |pmc= value (help). PMID 32512122 Check |pmid= value (help).
  50. Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL (June 2020). "Acute myocardial injury in patients hospitalized with COVID-19 infection: A review". Prog Cardiovasc Dis. doi:10.1016/j.pcad.2020.05.013. PMC 7274977 Check |pmc= value (help). PMID 32512122 Check |pmid= value (help).
  51. Wu, Zunyou; McGoogan, Jennifer M. (2020). "Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China". JAMA. 323 (13): 1239. doi:10.1001/jama.2020.2648. ISSN 0098-7484.
  52. Ruan, Qiurong; Yang, Kun; Wang, Wenxia; Jiang, Lingyu; Song, Jianxin (2020). "Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China". Intensive Care Medicine. 46 (5): 846–848. doi:10.1007/s00134-020-05991-x. ISSN 0342-4642.
  53. Driggin, Elissa; Madhavan, Mahesh V.; Bikdeli, Behnood; Chuich, Taylor; Laracy, Justin; Biondi-Zoccai, Giuseppe; Brown, Tyler S.; Der Nigoghossian, Caroline; Zidar, David A.; Haythe, Jennifer; Brodie, Daniel; Beckman, Joshua A.; Kirtane, Ajay J.; Stone, Gregg W.; Krumholz, Harlan M.; Parikh, Sahil A. (2020). "Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic". Journal of the American College of Cardiology. 75 (18): 2352–2371. doi:10.1016/j.jacc.2020.03.031. ISSN 0735-1097.
  54. Li, Dongze; Chen, You; Jia, Yu; Tong, Le; Tong, Jiale; Wang, Wei; Liu, Yanmei; Wan, Zhi; Cao, Yu; Zeng, Rui (2020). "SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study". Circulation Research. doi:10.1161/CIRCRESAHA.120.317070. ISSN 0009-7330.
  55. Zhou, Fei; Yu, Ting; Du, Ronghui; Fan, Guohui; Liu, Ying; Liu, Zhibo; Xiang, Jie; Wang, Yeming; Song, Bin; Gu, Xiaoying; Guan, Lulu; Wei, Yuan; Li, Hui; Wu, Xudong; Xu, Jiuyang; Tu, Shengjin; Zhang, Yi; Chen, Hua; Cao, Bin (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". The Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. ISSN 0140-6736.
  56. Guo, Tao; Fan, Yongzhen; Chen, Ming; Wu, Xiaoyan; Zhang, Lin; He, Tao; Wang, Hairong; Wan, Jing; Wang, Xinghuan; Lu, Zhibing (2020). "Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19)". JAMA Cardiology. doi:10.1001/jamacardio.2020.1017. ISSN 2380-6583.
  57. Bavishi C, Bonow RO, Trivedi V, Abbott JD, Messerli FH, Bhatt DL (June 2020). "Acute myocardial injury in patients hospitalized with COVID-19 infection: A review". Prog Cardiovasc Dis. doi:10.1016/j.pcad.2020.05.013. PMC 7274977 Check |pmc= value (help). PMID 32512122 Check |pmid= value (help).
  58. Huang L, Zhao P, Tang D, Zhu T, Han R, Zhan C, Liu W, Zeng H, Tao Q, Xia L (November 2020). "Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging". JACC Cardiovasc Imaging. 13 (11): 2330–2339. doi:10.1016/j.jcmg.2020.05.004. PMC 7214335 Check |pmc= value (help). PMID 32763118 Check |pmid= value (help).
  59. Peng W, Wu H, Tan Y, Li M, Yang D, Li S (December 2020). "Mechanisms and treatments of myocardial injury in patients with corona virus disease 2019". Life Sci. 262: 118496. doi:10.1016/j.lfs.2020.118496. PMC 7518803 Check |pmc= value (help). PMID 32987060 Check |pmid= value (help).
  60. Montone, Rocco A; Iannaccone, Giulia; Meucci, Maria Chiara; Gurgoglione, Filippo; Niccoli, Giampaolo (2020). "Myocardial and Microvascular Injury Due to Coronavirus Disease 2019". European Cardiology Review. 15. doi:10.15420/ecr.2020.22. ISSN 1758-3764.

COVID 19