Pressure gradient (atmospheric): Difference between revisions

Jump to navigation Jump to search
Elord (talk | contribs)
New page: __NOTOC__ In atmospheric sciences (meteorology, climatology and related fields), the '''pressure gradient''' (typically of air, more generally of any [[flui...
 
Lakshmi Gopalakrishnan (talk | contribs)
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{SI}}
{{CMG}}


==Overview==
In atmospheric sciences ([[meteorology]], [[climatology]] and related fields), the '''pressure gradient''' (typically of [[Earth's atmosphere|air]], more generally of any [[fluid]]) is a physical quantity that describes in which direction and at what rate the [[pressure]] changes the most rapidly around a particular location. The pressure gradient is a dimensional quantity expressed in [[Units of measurement|units]] of pressure per unit length. The [[International System of Units|SI]] unit is [[pascal (unit)|pascal]] per [[metre]] (Pa/m).
In atmospheric sciences ([[meteorology]], [[climatology]] and related fields), the '''pressure gradient''' (typically of [[Earth's atmosphere|air]], more generally of any [[fluid]]) is a physical quantity that describes in which direction and at what rate the [[pressure]] changes the most rapidly around a particular location. The pressure gradient is a dimensional quantity expressed in [[Units of measurement|units]] of pressure per unit length. The [[International System of Units|SI]] unit is [[pascal (unit)|pascal]] per [[metre]] (Pa/m).


Line 34: Line 37:
[[Sound]] waves and [[shock wave]]s are events that can induce very large pressure gradients, but these are often transitory disturbances.
[[Sound]] waves and [[shock wave]]s are events that can induce very large pressure gradients, but these are often transitory disturbances.


==See also==
==Related Chapters==
 
* [[Gradient]]
* [[Gradient]]
* [[Isobar]]
* [[Isobar]]
Line 51: Line 53:
* John M. Wallace and Peter V. Hobbs (2006) ''Atmospheric Science: An Introductory Survey'', Second Edition, Academic Press, International Geophysics Series, ISBN 0-12-732951-X.
* John M. Wallace and Peter V. Hobbs (2006) ''Atmospheric Science: An Introductory Survey'', Second Edition, Academic Press, International Geophysics Series, ISBN 0-12-732951-X.


==External links==
==Resources==


* [http://www.grida.no/climate/ipcc_tar/wg1/index.htm IPCC Third Assessment Report]
* [http://www.grida.no/climate/ipcc_tar/wg1/index.htm IPCC Third Assessment Report]


[[Category:Atmospheric dynamics]]
[[Category:Atmospheric dynamics]]
[[Category:Cardiology]]
[[Category:Valvular heart disease]]


[[es:Gradiente barométrico]]
[[es:Gradiente barométrico]]

Latest revision as of 14:24, 12 April 2012

WikiDoc Resources for Pressure gradient (atmospheric)

Articles

Most recent articles on Pressure gradient (atmospheric)

Most cited articles on Pressure gradient (atmospheric)

Review articles on Pressure gradient (atmospheric)

Articles on Pressure gradient (atmospheric) in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Pressure gradient (atmospheric)

Images of Pressure gradient (atmospheric)

Photos of Pressure gradient (atmospheric)

Podcasts & MP3s on Pressure gradient (atmospheric)

Videos on Pressure gradient (atmospheric)

Evidence Based Medicine

Cochrane Collaboration on Pressure gradient (atmospheric)

Bandolier on Pressure gradient (atmospheric)

TRIP on Pressure gradient (atmospheric)

Clinical Trials

Ongoing Trials on Pressure gradient (atmospheric) at Clinical Trials.gov

Trial results on Pressure gradient (atmospheric)

Clinical Trials on Pressure gradient (atmospheric) at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Pressure gradient (atmospheric)

NICE Guidance on Pressure gradient (atmospheric)

NHS PRODIGY Guidance

FDA on Pressure gradient (atmospheric)

CDC on Pressure gradient (atmospheric)

Books

Books on Pressure gradient (atmospheric)

News

Pressure gradient (atmospheric) in the news

Be alerted to news on Pressure gradient (atmospheric)

News trends on Pressure gradient (atmospheric)

Commentary

Blogs on Pressure gradient (atmospheric)

Definitions

Definitions of Pressure gradient (atmospheric)

Patient Resources / Community

Patient resources on Pressure gradient (atmospheric)

Discussion groups on Pressure gradient (atmospheric)

Patient Handouts on Pressure gradient (atmospheric)

Directions to Hospitals Treating Pressure gradient (atmospheric)

Risk calculators and risk factors for Pressure gradient (atmospheric)

Healthcare Provider Resources

Symptoms of Pressure gradient (atmospheric)

Causes & Risk Factors for Pressure gradient (atmospheric)

Diagnostic studies for Pressure gradient (atmospheric)

Treatment of Pressure gradient (atmospheric)

Continuing Medical Education (CME)

CME Programs on Pressure gradient (atmospheric)

International

Pressure gradient (atmospheric) en Espanol

Pressure gradient (atmospheric) en Francais

Business

Pressure gradient (atmospheric) in the Marketplace

Patents on Pressure gradient (atmospheric)

Experimental / Informatics

List of terms related to Pressure gradient (atmospheric)

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

In atmospheric sciences (meteorology, climatology and related fields), the pressure gradient (typically of air, more generally of any fluid) is a physical quantity that describes in which direction and at what rate the pressure changes the most rapidly around a particular location. The pressure gradient is a dimensional quantity expressed in units of pressure per unit length. The SI unit is pascal per metre (Pa/m).

Mathematical description

Assuming that the pressure p is an intensive quantity, i.e., a single-valued, continuous and differentiable function of three-dimensional space (often called a scalar field), i.e., that

<math>p=p(x,y,z)</math>

where x, y and z are the coordinates of the location of interest, then the pressure gradient is the vector quantity defined as

<math>

\nabla p = \begin{pmatrix} {\frac{\partial p}{\partial x}}, {\frac{\partial p}{\partial y}}, {\frac{\partial p}{\partial z}} \end{pmatrix}</math>

Physical interpretation

Strictly speaking, the concept of pressure gradient is a local characterization of the air (more generally of the fluid under investigation). The pressure gradient is defined only at those spatial scales at which pressure (more generally fluid dynamics) itself is defined.

Within planetary atmospheres (including the Earth's), the pressure gradient is a vector pointing roughly downwards, because the pressure changes most rapidly vertically, increasing downwards. The value of the strength (or norm) of the pressure gradient in the troposphere is typically of the order 9 Pa/m (or 90 hPa/km).

The pressure gradient often has a small but critical horizontal component, which is largely responsible for the wind circulation. The horizontal pressure gradient is a 2-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane.

Near the Earth's surface, this horizontal pressure gradient is typically pointing towards high pressure air masses (anticyclones), its particular orientation at any one time and place depends strongly on the weather situation. At mid-latitudes, the typical horizontal pressure gradient may take on values of the order of 10-2 Pa/m (or 10 Pa/km), although rather higher values occur within meteorological fronts.

Weather and climate relevance

Differences in air pressure between different locations are critical in weather forecasting and climate. As indicated above, the pressure gradient constitutes one of the main forces acting on the air to make it move as wind. Note that the pressure gradient force points from high towards low pressure zones, it is thus oriented in the opposite direction from the pressure gradient itself.

Sound waves and shock waves are events that can induce very large pressure gradients, but these are often transitory disturbances.

Related Chapters

References

  • Edward N. Lorenz (1967) The nature and theory of the general circulation of atmosphere, World Meteorological Organization, Publication No. 218, Geneva, Switzerland.
  • Robert G. Fleagle and Joost A. Businger (1980) An Introduction to Atmospheric Physics, Second Edition, Academic Press, International Geophysics Series, Volume 25, ISBN 0-12-260355-9.
  • John M. Wallace and Peter V. Hobbs (2006) Atmospheric Science: An Introductory Survey, Second Edition, Academic Press, International Geophysics Series, ISBN 0-12-732951-X.

Resources

nl:Drukgradiënt simple:Pressure gradient