Implantation: Difference between revisions
No edit summary |
m Robot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +) |
||
Line 227: | Line 227: | ||
[[pl:Implantacja]] | [[pl:Implantacja]] | ||
{{WikiDoc Help Menu}} | {{WikiDoc Help Menu}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} |
Latest revision as of 16:20, 9 August 2012
WikiDoc Resources for Implantation |
Articles |
---|
Most recent articles on Implantation Most cited articles on Implantation |
Media |
Powerpoint slides on Implantation |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Implantation at Clinical Trials.gov Clinical Trials on Implantation at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Implantation
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Implantation Discussion groups on Implantation Patient Handouts on Implantation Directions to Hospitals Treating Implantation Risk calculators and risk factors for Implantation
|
Healthcare Provider Resources |
Causes & Risk Factors for Implantation |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Implantation is a phenomenon in prenatal development, i.e. early in pregnancy. It is the event where the embryo, at this stage a blastocyst, adheres to the wall of uterus. It is by this adhesion the fetus receives the oxygen and the nutrients from the mother to be able to grow.
The implantation window
There are many parameters that have to be in order for a successful implantation to take place. Actually, it is only in a specific period of time that implantation is possible[1], creating an "implantation window". A reason for these limits in time to enable implantation is, that if a process occurs not in the right time, then it is an omen of that something is wrong. And when there is a risk that something is wrong, the body rather performs miscarriage than wasting energy on a malformed fetus.
The implantation window is started by preparations in the endometrium of the uterus, both structurally and in the composition of its secretions.
Adaption of uterus
To enable implantation, the uterus goes through changes in order to be able to receive the embryo.
Predecidualization
Predecidualization is a preparation of the endometrium of the uterus, prior to implantation, to facilitate it.
The endometrium increases in thickness, becomes more vascularized and its glands grow to be tortuous and boosted in their secretions. These changes reach their maximum about 7 days after ovulation.
Furthermore, the surface of the endometrium produces a kind of rounded cells, which cover the whole area toward the uterine cavity. This happens about 9 to 10 days after ovulation [1]. These cells are called decidual cells, which emphasises that the whole layer of them is shed off in every menstruation if no pregnancy occurs, just as leaves of deciduous trees. The uterine glands, on the other hand, decrease in activity and degenerate already 8 to 9 days[1] after ovulation in absence of pregnancy.
The stromal cells originate from the stromal cells that are always present in the endometrium. However, the decidual cells make up a new layer, the decidua. The rest of the endometrium, in addition, expresses differences between the luminal and the basal sides. The luminal cells form the zona compacta of the endometrium, in contrast to the basalolateral zona spongiosa, which consists of the rather spongy stromal cells[1].
Decidualization
Decidualization succeeds predecidualization if pregnancy occurs. This is an expansion of it, further developing the uterine glands, the zona compacta and the epithelium of decidual cells lining it. The decidual cells become filled with lipids and glycogen and take the polyhedral shape characteristic for decidual cells.
Trigger
It is likely that the blastocyst itself makes the main contribution to this additional growing and sustaining of the decidua. An indication of this is that decidualization occurs at a higher degree in conception cycles than in nonconception cycles[1]. Furthermore, similar changes are observed when giving stimuli mimicing the natural invasion of the embryo[1].
Parts of decidua
The decidua can be organised into separate sections, although they have the same composition;
Decidua basalis
This is the part of the decidua which is located basalolateral to the embryo ofter implantation.
Decidua capsularis
Decidua capsularis grows over the embryo on the luminal side, enclosing it into the endometrium. It surrounds the embryo together with decidua basalis.
Decidua parietalis
All other decidua on the uterine surface belongs to decidua parietalis.
Decidua throughout pregnancy
After implantation the decidua remains, at least the first trimester[1]. However, its most prominent time is during the early stages of pregnancy, meanwhile as implantation. Its function as a surrounding tissue is replaced by the definitive placenta. However, some elements of the decidualization remain throughout pregnancy[1].
The compacta and spongiosa layers are still observable beneath the decidua in pregnancy. The glands of the spongiosa layer continue to secrete during the first trimester, when they degenerate. However, before that disappearance, some glands secrete unequally much. This phenomenon of hypersecretion is called the Arias-Stella phenomenon[1], after the pathologist Javier Arias-Stella.
Pinopodes
Pinopodes are small, finger-like protrusions from the endometrium. They appear between day 19 and day 21[1] of gestational age. This corresponds to a fertilization age of approximately 5 to 7 days, which corresponds well with the time of implantation. They only persist for 2 to 3 days[1]. The development of them is enhanced by progesterone but inhibited by estrogens.
Function in implantation
Pinopodes endocytose uterine fluid and macromolecules in it. By doing so, the volume of the uterus decreases, taking the walls closer to the embryoblast floating in it. Thus, the period of active pinocytes might also limit the implantation window[1].
Function during implantation
Pinopodes continue to absorb fluid, and removes most of ut during the early stages of implantation.
Adaption of secretions
proteins, glycoproteins and peptides
secreted by the endometrial glands [1] |
Matrix (biology)|Matrix]]-associated: |
Fibronectin |
Laminin |
Entactin |
Type-IV collagen |
heparan sulfate |
Proteoglycan |
Integrins |
- |
Others: |
Mucins |
Prolactin |
IGFBP-1 |
Placental protein 14 (PP14) or glycodelin |
Pregnancy-associated endometrial
alpha-2-globulin (alpha-2-PEG) |
endometrial protein 15 |
Albumin |
Beta-Lipoprotein |
Relaxin |
Fibroblast growth factor 1 |
Fibroblast growth factor 2 |
Pregnancy-associated plasma protein A
(PAPP-A) |
Stress response protein 27 (SRP-27) |
CA-125 |
Beta-endorphin |
Leu-enkephalin |
Diamine oxidase |
Tissue plasminogen activator |
Renin |
Progesterone-dependent [[carbonic
anhydrase]] |
Lactoferrin |
Not only the lining of the uterus transforms. In addition, the secretion from its epithelial glands changes. This change is induced by increased levels of progesterone from the corpus luteum. The target of the secretions is the embryoblast, and has several functions on it.
Nourishment
The embryoblast spends approximately 72[1] hours in the uterine cavity before implanting. In that time, it cannot receive nourishment directly from the blood of the mother, and must rely on secreted nutrients into the uterine cavity, e.g. iron[1] and fat-soluble vitamins[1].
Growth and implantation
In addition to nourishment, the endometrium secretes several steroid-dependent proteins[1], important for growth and implantation. Cholesterol[1] and steroids[1] are also secreted. Implantation is further facilitated by synthesis of matrix substances, adhesion molecues and surface receptors for the matrix substances.
Mechanism
Implantation occurs approximately 7 days after fertilisation, and is initiated when the blastocyst comes into contact with the uterine wall.
Zona hatching
To be able to perform implantation, the blastocyst first needs to get rid of its zona pellucida. This process can be called "hatching".
Factors
Lytic factors in the uterine cavity, as well as factors from the blastocyst itself are essential for this process. Mechanisms in the latter are indicated by that the zona pellucida remains intact if an unfertilized egg is placed in the uterus under the same conditions[1]. A substance probably involved is plasmin. Plasminogen, the plasmin precursor, is found in the uterine cavity, and blastocyst factors contribute to its conversion to active plasmin. This hypothesis is supported by lytic effects in vitro by plasmin[1]. Furthermore, plasmin inhibitors also inhibit the entire zona hatching in rat experiments[1].
Apposition
The very first, albeit loose, connection between the blastocyst and the endometrium is called the apposition[1].
Location
On the endometrium, the apposition is usually made where there is a small crypt in it, perhaps because it increases the area of contact with the rather spherical blastocyst.
On the blastocyst, on the other hand, it occurs at a location where there has been enough lysis of the zona pellucida to have created a rupture to enable direct contact between the underlying trophoblast and the decidua of the endometrium[1]. However, ultimately, the inner cell mass, inside the trophoblast layer, is aligned closest to the decidua. Nevertheless, the apposition on the blastocyst is not dependent on if it is on the same side of the blastocyst as the inner cell mass. Rather, the inner cell mass rotates inside the trophoblast to align to the apposition[1]. In short, the entire surface of the blastocyst has a potential to form the apposition to the decidua.
Adhesion
Adhesion is a much stronger attachment to the endometrium than the loose apposition.
The trophoblasts adhere by penetrating the endometrium, with protrusions of trophoblast cells.
Communication
There is massive communication between the blastocyst and the endometrium at this stage. The blastocyst signals to the endometrium to adapt further to its precense, e.g. by changes in the cytoskeleton of decidual cells. This, in turn, dislodges the decidual cells from their connection to the underlying basal lamina, which enables the blastocyst to perform the succeeding invasion[1].
This communication is conveyed by receptor-ligand-interactions, both integrin-matrix and proteoglycan ones.
Integrin-matrix
Integrins are cell-membrane-spanning receptors with the ability to react with extracellular matrix-proteins, e.g. collagen, laminin, fibronectin and vitronectin.
In this case, integrins are found on the surface of the trophoblast-cells of the blastocyst, as well as on the decidual cells on the uterine wall. The integrins on the trophoblast reacts with collagen, laminin and fibronectin surrounding decidual cells. It is probably fibronectin that guides the blastocyst inbetween the decidual cells down to the basal lamina[1].
On the other hand, integrins are also found on the decidual cells, reacting with matrix proteins around decidual cells, also in this case fibronectin for instance. Experimentally, implantation is blocked when small peptides with sequences similar to fibronectin is present, because they occupy the integrins of the decidua, making them unable to attach to blastocyst fibronectins[1].
However, the integrins are only present on the decidua for a limited period of time, more specifically between day 20 to 24 of gestational age, contributing to the implantation window-phenomenon.
proteoglycan receptors
Another ligand-receptor system involved in adhesion is proteoglycan receptors, found on the surface of the decidua of the uterus. Their counterparts, the proteoglycans, are found around the trophoblast cells of the blastocyst. This ligand-receptor system also is present just at the implantation window[1].
Invasion
Invasion is an even further establishment of the blastocyst in the endometrium.
Syncytiotrophoblasts
The protrusions of trophoblast cells that adhere into the endometrium continue to proliferate and penetrate into the endometrium. These penetrating cells differentiate to become a new type of cells, syncytiotrophoblast. The prefix syn- refers to that the boundaries between these cells disappears, forming a single mass of a multitude of cell nuclei. The rest of the trophoblasts, surrounding the inner cell mass, are hereafter called cytotrophoblasts.
Invasion continues with the syncytiotrophoblasts reaching the basal membrane beneath the decidual cells, penetrating it and further invading into the uterine stroma. Finally, the whole embryo is embedded in the endometrium. Eventually, the syncytiotrophoblasts come into contact with maternal blood and form chorionic villi. This is the initiation of forming the placenta.
Secretions
The blastocyst secretes factors for a multitude of purposes during invasion. It secretes several autocrine factors, targeting itself and stimulating it to further invade the endometrium[1]. Furthermore, secretions loosen decidual cells from each other, prevent the embryo from being rejected by the mother, trigger the final decidualization and prevent menstruation.
Autocrine
Human chorionic gonadotropin is an autocrine growth factor for the blastocyst[1]. Insulin-like growth factor type 2[1], on the other hand, stimulates the invasiveness of it.
Dislodging
The syncytiotrophoblasts dislodges decidual cells in their way, both by degradation of cell adhesion molecules linking the decidual cells together as well as degradation of the extracellular matrix between them.
Cell adhesion molecules are degraded by syncytiotrophoblast secretion of Tumor necrosis factor-alpha. This inhibits the expression of cadherins and beta-catenin[1]. Cadherins is a cell adhesion molecule and beta-catenin helps anchoring it to the cell membrane. Inhibited expression of these molecules thus loosens the connection between decidual cells, permitting the syncytotrophoblasts and the whole embryo with them to invade into the endometrium.
The extracellular matrix is degraded by serine endopeptidases and metalloproteinases. Examples of such metalloproteinases are collagenases, gelatinases and stromelysins[1]. These collagenases digest Type-I collagen, Type-II collagen, Type-III collagen, Type-VII collagen and Type-X collagen[1]. The gelatinases exist in two forms; one digesting Type-IV collagen and one digesting gelatin[1].
Immunosuppressive
The embryo differs from the cells of the mother, and would be rejected as a parasite by the immune system of the mother if it didn't secrete immunosuppresive agents. Such agents are Platelet-activating factor, human chorionic gonadotropin, early pregnancy factor, immunosuppressive factor, Prostaglandin E2, Interleukin 1-alpha, Interleukin 6, interferon-alpha, leukemia inhibitory factor and Colony-Stimulating Factor.
Decidualization
Factors from the blastocyst also trigger the final formation of decidual cells into their proper form. In contrast, some decidual cells in the proximity of the blastocyst degenerate, providing nutrients for it[1].
Prevention of menstruation
Human chorionic gonadotropin (hCG) not only acts as an immunosuppressive[1], but also "notifies" the mother's body that she is pregnant, preventing menstruation by sustaining the function of the corpus luteum.
Other factors
Other factors secreted by the blastocyst are;
- ovum factor
- Embryo-derived histamine-releasing factor
- Tissue plasminogen activator as well as its inhibitors
- Estradiol
- β1-integrins
- Fibroblast growth factor
- Transforming growth factor alpha
- inhibin
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 Medical Physiology, Boron & Boulpaep, ISBN 1-4160-2328-3, Elsevier Saunders 2005. Updated edition. 1300 pages.