Monosaccharide: Difference between revisions
Brian Blank (talk | contribs) No edit summary |
m Robot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{SI}} | |||
==Overview== | ==Overview== | ||
Line 91: | Line 89: | ||
{{WH}} | {{WH}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} | ||
Latest revision as of 17:30, 9 August 2012
WikiDoc Resources for Monosaccharide |
Articles |
---|
Most recent articles on Monosaccharide Most cited articles on Monosaccharide |
Media |
Powerpoint slides on Monosaccharide |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Monosaccharide at Clinical Trials.gov Trial results on Monosaccharide Clinical Trials on Monosaccharide at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Monosaccharide NICE Guidance on Monosaccharide
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Monosaccharide Discussion groups on Monosaccharide Patient Handouts on Monosaccharide Directions to Hospitals Treating Monosaccharide Risk calculators and risk factors for Monosaccharide
|
Healthcare Provider Resources |
Causes & Risk Factors for Monosaccharide |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Overview
Monosaccharides (from Greek monos: single, sacchar: sugar) are the simplest carbohydrates. They cannot be hydrolyzed into simpler sugars. They consist of one sugar and are usually colorless, water-soluble, crystalline solids. Some monosaccharides have a sweet taste. Examples of monosaccharides include glucose (dextrose), fructose, galactose, xylose and ribose. Monosaccharides are the building blocks of disaccharides like sucrose (common sugar) and polysaccharides (such as cellulose and starch). Further, each carbon atom that supports a hydroxyl group (except for the first and last) is chiral, giving rise to a number of isomeric forms all with the same chemical formula. For instance, galactose and glucose are both aldohexoses, but they have different chemical and physical properties.
Structure
File:Alpha-D-Fructofuranose.svg With few exceptions (e.g., deoxyribose), monosaccharides have the chemical formula (CH2O)n + m with the chemical structure H(CHOH)nC=O(CHOH)mH. If n or m is zero, it is an aldehyde and is termed an aldose, otherwise it is a ketone and is termed a ketose. Monosaccharides contain either a ketone or aldehyde functional group, and hydroxyl groups on most or all of the non-carbonyl carbon atoms.
Cyclic structure
Most monosaccharides form cyclic structures, which predominate in aqueous solution, by forming hemiacetals or hemiketals (depending on whether they are aldoses or ketoses) between an alcohol and the carbonyl group of the same sugar. Glucose, for example, readily forms a hemiacetal linkage between its carbon-1 and the hydroxyl group of its carbon-5. Since such a reaction introduces an additional stereogenic center, two anomers are formed (α-isomer and β-isomer) from each distinct straight-chain monosaccharide. The interconversion between these two forms is called mutarotation.[1]
A common way of representing the cyclic structure of monosaccharides is the Haworth projection.
In Haworth projection, the α-isomer has the OH- of the anomeric carbon under the ring structure, and the β-isomer, has the OH- of the anomeric carbon on top of the ring structure. In chair conformation, the α-isomer has the OH- of the anomeric carbon in an axial position, whereas the β-isomer has the OH- of the anomeric carbon in equatorial position.
Isomerism
The total number of possible stereoisomers of one compound (n) is dependent on the number of stereogenic centers (c) in the molecule. The upper limit for the number of possible stereoisomers is n = 2c. The only carbohydrate without an isomer is dihydroxyacetone or DHA.
Monosaccharide nomenclature
Monosaccharides are classified by the number of carbon atoms they contain:
- Triose, 3 carbon atoms
- Tetrose, 4 carbon atoms
- Pentose, 5 carbon atoms
- Hexose, 6 carbon atoms
- Heptose, 7 carbon atoms
- Octose, 8 carbon atoms
- Nonose, 9 carbon atoms
- Decose, 10 carbon atoms
Monosaccharides are classified the type of keto group they contain:
Monosaccharides are classified according to their molecular configuration at carbon 2:
- D, configuration as in D-glyceraldehyde
- L, configuration as in L-glyceraldehyde
All these classifications can be combined, resulting in names like D-aldohexose or ketotriose.
List of monosaccharides
This is a list of some common monosaccharides, not all are found in nature—some have been synthesized:
- Trioses:
- Aldotriose: glyceraldehyde
- Ketotriose: dihydroxyacetone
- Tetroses:
- Aldotetrose: erythrose and threose
- Ketotetrose: erythrulose
- Pentoses:
- Hexoses:
- Heptoses:
- Keto-heptoses: mannoheptulose, sedoheptulose
- Octoses: octolose, 2-keto-3-deoxy-manno-octonate
- Nonoses: sialose
Reactions
- Formation of acetals.
- Formation of hemiacetals and hemiketals.
- Formation of ketals.