21-Hydroxylase Deficiency pathophysiology: Difference between revisions

Jump to navigation Jump to search
Vishnu Vardhan Serla (talk | contribs)
Created page with "__NOTOC__ {{21-Hydroxylase Deficiency}} {{CMG}} ==Overview== ==Pathophysiology== The defective enzyme P450c21, commonly referred to as 21-hydroxylase (21-OH), is embedded in t..."
 
Vishnu Vardhan Serla (talk | contribs)
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
==Overview==
==Overview==
==Pathophysiology==
==Pathophysiology==
The defective enzyme P450c21, commonly referred to as 21-hydroxylase (21-OH), is embedded in the smooth [[endoplasmic reticulum]] of the cells of the [[adrenal gland|adrenal cortex]]. It catalyzes [[hydroxylation]] of [[17-hydroxyprogesterone]] to 11-deoxycortisol in the [[glucocorticoid]] pathway from [[pregnenolone]] to [[cortisol]]. It also catalyzes hydroxylation of [[progesterone]] to 11-deoxycorticosterone (DOC) in the [[mineralocorticoid]] pathway from pregnenolone to [[aldosterone]].
The defective enzyme P450c21, commonly referred to as 21-hydroxylase (21-OH), is embedded in the smooth [[endoplasmic reticulum]] of the cells of the [[adrenal gland|adrenal cortex]]. It catalyzes [[hydroxylation]] of [[17-hydroxyprogesterone]] to 11-deoxycortisol in the [[glucocorticoid]] pathway from [[pregnenolone]] to [[cortisol]]. It also catalyzes hydroxylation of [[progesterone]] to 11-deoxycorticosterone (DOC) in the [[mineralocorticoid]] pathway from pregnenolone to [[aldosterone]].


Line 11: Line 12:


Synthesis of [[aldosterone]] is also dependent on 21-hydroxylase activity. Although fetal production is impaired, it causes no prenatal effects, as the [[placenta]]l connection allows maternal blood to "dialyze" the fetus and maintain both [[electrolyte]] balance and blood volume.
Synthesis of [[aldosterone]] is also dependent on 21-hydroxylase activity. Although fetal production is impaired, it causes no prenatal effects, as the [[placenta]]l connection allows maternal blood to "dialyze" the fetus and maintain both [[electrolyte]] balance and blood volume.
==Severe, early onset 21-hydroxylase deficient CAH==
The two most serious neonatal consequences of 21-hydroxylase deficiency occur when there is minimal measurable hydroxylase activity from prenatal life: severe virilization of female infants and life-threatening salt-wasting crises in the first month of life for XX and XY infants alike.
===Virilization of female infants===
Virilization of genetically female (XX) infants usually produces obvious [[ambiguous genitalia|genital ambiguity]]. Inside the pelvis, the [[ovary|ovaries]] are normal and since they have not been exposed to testicular [[antimullerian hormone]], the [[uterus]], [[fallopian tube]]s, upper [[vagina]], and other mullerian structures are normally formed as well. However, the high levels of testosterone in the blood can enlarge the [[phallus]], partially or completely close the vaginal opening, enclose the [[urethra]]l groove so that it opens at the base of the phallus, on the shaft or even at the tip like a boy. Testosterone can cause the [[labia]]l skin to become as thin and rugated as a [[scrotum]], but cannot produce palpable gonads (i.e., testes) in the folds.
Thus, depending on the severity of hyperandrogenism, a female infant can be mildly affected, obviously ambiguous, or so severely virilized as to appear to be a male. Andrea Prader devised the following Prader scale as a way of describing the degree of virilization.
*An infant at stage 1 has a mildly large [[clitoris]] and slightly reduced vaginal opening size. This degree may go unnoticed or may be simply assumed to be within normal variation.
*Stages 2 and 3 represent progressively more severe degrees of virlization. The genitalia are obviously abnormal to the eye, with a phallus intermediate in size and a small vaginal opening.
*Stage 4 looks more male than female, with an empty scrotum and a phallus the size of a normal penis, but not quite free enough of the perineum to be pulled onto the abdomen toward the umbilicus (i.e., what is termed a [[chordee]] in a male). The single small urethral/vaginal opening at the base or on the shaft of the phallus would be considered a [[hypospadias]] in a male. X-rays taken after dye injection into this opening reveal the internal connection with the upper vagina and uterus. This common opening can predispose to [[urinary obstruction]] and [[urinary tract infection|infection]].
*Stage 5 denotes complete male virilization, with a normally formed penis with the urethral opening at or near the tip. The scrotum is normally formed but empty. The internal pelvic organs include normal ovaries and uterus, and the vagina connects internally with the urethra as in Stage 4. These infants are not visibly ambiguous are usually assumed to be ordinary boys with [[cryptorchidism|undescended testes]]. In most cases, the diagnosis of CAH is not suspected until signs of salt-wasting develop a week later.
When the genitalia are "recognized" to be ambiguous at birth, CAH is one of the leading diagnostic possibilities. Evaluation reveals the presence of a uterus, extreme elevation of 17OHP, levels of testosterone approaching or exceeding the male range but low [[antimullerian hormone|AMH]] levels. The karyotype is that of an ordinary female: 46,XX. With this information, the diagnosis of CAH is readily made and female sex confirmed.
Evaluation of ambiguous genitalia is described in detail [[ambiguous genitalia|elsewhere]]. In most cases it is possible to confirm and [[sex assignment|assign]] female sex within 12-36 hours of birth. The exception are the rare, completely virilized genetic females (Prader stage 5), who present the most challenging assignment and surgery dilemmas, discussed below.
When the degree of ambiguity is obvious, corrective surgery is usually offered and performed. As reconstructive surgery on infant genitalia has become a focus of controversy, the issues are described in more detail below.
===Salt-wasting crises in infancy===
The excessive amounts of adrenal testosterone produce little effect on the genitalia of male infants with severe CAH. If a male infant with CAH is not detected by [[newborn screening]], he will appear healthy and normal and be quickly discharged home to his family.
However, the lack of aldosterone results in a high rate of [[sodium]] loss in the urine. Urinary sodium concentrations may exceed 50 mEq/L. With this rate of salt loss, the infant cannot maintain blood volume, and [[hyponatremia|hyponatremic]] [[dehydration]] begins to develop by the end of the first week of life. [[Potassium]] and [[acid]] excretion are also impaired when [[mineralocorticoid]] activity is deficient, and [[hyperkalemia]] and [[metabolic acidosis]] gradually develop. Ability to maintain circulation is further limited by the effect of cortisol deficiency. The early symptoms are spitting and poor weight gain, but most infants with severe CAH develop vomiting, severe dehydration, and circulatory collapse ([[Shock (medical)|shock]]) by the second or third week of life.
When brought to a hospital, the 1-3 week old infant will be both underweight and dehydrated by appearance. Blood pressure may be low. Basic chemistries will reveal [[hyponatremia]], with a serum Na<sup>+</sup> typically between 105 and 125 mEq/L. [[Hyperkalemia]] in these infants can be extreme&mdash;levels of K<sup>+</sup> above 10 mEq/L are not unusual&mdash;as can the degree of [[metabolic acidosis]]. [[Hypoglycemia]] may be present. This is termed a salt-wasting crisis and rapidly causes death if not treated.
As ill as these infants can be, they respond rapidly to treatment with hydrocortisone and intravenous saline and dextrose quickly restores blood volume, blood pressure, and body sodium content, and reverses the hyperkalemia. With appropriate treatment, most infants are out of danger within 24 hours.
==Childhood onset (simple virilizing) CAH==
Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed '''simple virilizing CAH''' (SVCAH). In these children the [[mineralocorticoid]] deficiency is insignificant and salt-wasting does not occur. The [[androgen]] excess is mild enough that [[virilization]] is not apparent or goes unrecognized at birth and in early childhood. However, androgen levels are above normal and slowly rise during childhood, producing noticeable effects between 2 and 9 years of age.
Appearance of [[pubic hair]] in mid-childhood is the most common feature that leads to evaluation and diagnosis. Other accompanying features are likely to be tall stature and accelerated [[bone age]] (often 3-5 years ahead). Often present are increased muscle mass, [[Acne vulgaris|acne]], and adult [[body odor]]. In boys the [[penis]] will be enlarged. Mild [[clitoris|clitoral]] enlargement may occur in girls, and sometimes a degree of prenatal virilization is recognized that may have gone unnoticed in infancy.
The principal goals of treatment of simple virilizing CAH are to preserve as much growth as possible and to prevent central [[precocious puberty]] if it has not already been triggered. These are more difficult challenges than in CAH detected in infancy because moderately levels of [[androgen]]s will have had several years to advance bone maturation and to trigger central [[puberty]] before the disease is detected.
A diagnosis of SVCAH is usually confirmed by discovering extreme elevations of [[17-hydroxyprogesterone]] along with moderately high testosterone levels. A [[ACTH|cosyntropin]] stimulation test may be needed in mild cases, but usually the random levels of 17OHP are high enough to confirm the diagnosis.
The mainstay of treatment is suppression of adrenal testosterone production by a [[glucocorticoid]] such as [[hydrocortisone]]. Mineralocorticoid is only added in cases where the plasma [[renin]] activity is high.
A third key aspect of management is suppression of central precocious puberty if it has begun. The usual clues to central puberty in boys are that the [[testes]] are pubertal in size, or that testosterone remains elevated even when the 17OHP has been reduced toward normal. In girls central puberty is less often a problem, but breast development would be the main clue. Central precocious puberty is suppressed when appropriate by [[leuprolide]].
As outlined above, recent additions to treatment to preserve growth include [[aromatase]] inhibition to slow bone maturation by reducing the amount of testosterone converted to [[estradiol]], and use of blockers of estrogen for the same purpose.
Once adrenal suppression has been achieved, the patient needs stress steroid coverage as described above for significant illness of injury.
==Late onset (nonclassical) CAH==
Other alleles result in even milder degrees of hyperandrogenism that may not even cause problems in males and may not be recognized until adolescence or later in females. Mild androgen effects in young women may include [[hirsutism]], acne, or [[anovulation]] (which in turn can cause [[infertility]]). Testosterone levels in these woman may be mildly elevated, or simply above average. These clinical features, of course, are those of [[polycystic ovary syndrome]], and a small percentage of women with PCOS are found to have late-onset CAH when investigated.
Diagnosis of late-onset CAH may be suspected from a high 17-hydroxyprogesterone level, but some cases are so mild that the elevation is only demonstrable after cosyntropin stimulation. Treatment may involve a combination of very low dose glucocorticoid to reduce adrenal androgen production and any of various agents to block the androgen effects and/or induce ovulation.
==References==
==References==
{{reflist|2}}
{{reflist|2}}
Line 16: Line 62:
{{WS}}
{{WS}}
[[Category:Disease]]
[[Category:Disease]]
[[Category:Endocrinology and Metabolic Disease]]
[[Category:Endocrinology]]
[[Category:Genetic disorders]]
[[Category:Genetic disorders]]

Latest revision as of 20:08, 19 September 2012

Template:21-Hydroxylase Deficiency Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

The defective enzyme P450c21, commonly referred to as 21-hydroxylase (21-OH), is embedded in the smooth endoplasmic reticulum of the cells of the adrenal cortex. It catalyzes hydroxylation of 17-hydroxyprogesterone to 11-deoxycortisol in the glucocorticoid pathway from pregnenolone to cortisol. It also catalyzes hydroxylation of progesterone to 11-deoxycorticosterone (DOC) in the mineralocorticoid pathway from pregnenolone to aldosterone.

Deficient activity of this enzyme reduces the efficiency of cortisol synthesis, with consequent elevation of ACTH levels and hyperplasia of the adrenal cortex. ACTH stimulates uptake of cholesterol and synthesis of pregnenolone. Steroid precursors up to and including progesterone, 17-hydroxypregnenolone, and especially 17-hydroxyprogesterone (17OHP) accumulate in the adrenal cortex and in circulating blood. Blood levels of 17OHP can reach 10-1000 times the normal concentration.

Since 21-hydroxylase activity is not involved in synthesis of androgens, a substantial fraction of the large amounts of 17-hydroxypregnenolone is diverted to synthesis of DHEA, androstenedione, and testosterone beginning in the third month of fetal life in both sexes.

Synthesis of aldosterone is also dependent on 21-hydroxylase activity. Although fetal production is impaired, it causes no prenatal effects, as the placental connection allows maternal blood to "dialyze" the fetus and maintain both electrolyte balance and blood volume.

Severe, early onset 21-hydroxylase deficient CAH

The two most serious neonatal consequences of 21-hydroxylase deficiency occur when there is minimal measurable hydroxylase activity from prenatal life: severe virilization of female infants and life-threatening salt-wasting crises in the first month of life for XX and XY infants alike.

Virilization of female infants

Virilization of genetically female (XX) infants usually produces obvious genital ambiguity. Inside the pelvis, the ovaries are normal and since they have not been exposed to testicular antimullerian hormone, the uterus, fallopian tubes, upper vagina, and other mullerian structures are normally formed as well. However, the high levels of testosterone in the blood can enlarge the phallus, partially or completely close the vaginal opening, enclose the urethral groove so that it opens at the base of the phallus, on the shaft or even at the tip like a boy. Testosterone can cause the labial skin to become as thin and rugated as a scrotum, but cannot produce palpable gonads (i.e., testes) in the folds.

Thus, depending on the severity of hyperandrogenism, a female infant can be mildly affected, obviously ambiguous, or so severely virilized as to appear to be a male. Andrea Prader devised the following Prader scale as a way of describing the degree of virilization.

  • An infant at stage 1 has a mildly large clitoris and slightly reduced vaginal opening size. This degree may go unnoticed or may be simply assumed to be within normal variation.
  • Stages 2 and 3 represent progressively more severe degrees of virlization. The genitalia are obviously abnormal to the eye, with a phallus intermediate in size and a small vaginal opening.
  • Stage 4 looks more male than female, with an empty scrotum and a phallus the size of a normal penis, but not quite free enough of the perineum to be pulled onto the abdomen toward the umbilicus (i.e., what is termed a chordee in a male). The single small urethral/vaginal opening at the base or on the shaft of the phallus would be considered a hypospadias in a male. X-rays taken after dye injection into this opening reveal the internal connection with the upper vagina and uterus. This common opening can predispose to urinary obstruction and infection.
  • Stage 5 denotes complete male virilization, with a normally formed penis with the urethral opening at or near the tip. The scrotum is normally formed but empty. The internal pelvic organs include normal ovaries and uterus, and the vagina connects internally with the urethra as in Stage 4. These infants are not visibly ambiguous are usually assumed to be ordinary boys with undescended testes. In most cases, the diagnosis of CAH is not suspected until signs of salt-wasting develop a week later.

When the genitalia are "recognized" to be ambiguous at birth, CAH is one of the leading diagnostic possibilities. Evaluation reveals the presence of a uterus, extreme elevation of 17OHP, levels of testosterone approaching or exceeding the male range but low AMH levels. The karyotype is that of an ordinary female: 46,XX. With this information, the diagnosis of CAH is readily made and female sex confirmed.

Evaluation of ambiguous genitalia is described in detail elsewhere. In most cases it is possible to confirm and assign female sex within 12-36 hours of birth. The exception are the rare, completely virilized genetic females (Prader stage 5), who present the most challenging assignment and surgery dilemmas, discussed below.

When the degree of ambiguity is obvious, corrective surgery is usually offered and performed. As reconstructive surgery on infant genitalia has become a focus of controversy, the issues are described in more detail below.

Salt-wasting crises in infancy

The excessive amounts of adrenal testosterone produce little effect on the genitalia of male infants with severe CAH. If a male infant with CAH is not detected by newborn screening, he will appear healthy and normal and be quickly discharged home to his family.

However, the lack of aldosterone results in a high rate of sodium loss in the urine. Urinary sodium concentrations may exceed 50 mEq/L. With this rate of salt loss, the infant cannot maintain blood volume, and hyponatremic dehydration begins to develop by the end of the first week of life. Potassium and acid excretion are also impaired when mineralocorticoid activity is deficient, and hyperkalemia and metabolic acidosis gradually develop. Ability to maintain circulation is further limited by the effect of cortisol deficiency. The early symptoms are spitting and poor weight gain, but most infants with severe CAH develop vomiting, severe dehydration, and circulatory collapse (shock) by the second or third week of life.

When brought to a hospital, the 1-3 week old infant will be both underweight and dehydrated by appearance. Blood pressure may be low. Basic chemistries will reveal hyponatremia, with a serum Na+ typically between 105 and 125 mEq/L. Hyperkalemia in these infants can be extreme—levels of K+ above 10 mEq/L are not unusual—as can the degree of metabolic acidosis. Hypoglycemia may be present. This is termed a salt-wasting crisis and rapidly causes death if not treated.

As ill as these infants can be, they respond rapidly to treatment with hydrocortisone and intravenous saline and dextrose quickly restores blood volume, blood pressure, and body sodium content, and reverses the hyperkalemia. With appropriate treatment, most infants are out of danger within 24 hours.

Childhood onset (simple virilizing) CAH

Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed simple virilizing CAH (SVCAH). In these children the mineralocorticoid deficiency is insignificant and salt-wasting does not occur. The androgen excess is mild enough that virilization is not apparent or goes unrecognized at birth and in early childhood. However, androgen levels are above normal and slowly rise during childhood, producing noticeable effects between 2 and 9 years of age.

Appearance of pubic hair in mid-childhood is the most common feature that leads to evaluation and diagnosis. Other accompanying features are likely to be tall stature and accelerated bone age (often 3-5 years ahead). Often present are increased muscle mass, acne, and adult body odor. In boys the penis will be enlarged. Mild clitoral enlargement may occur in girls, and sometimes a degree of prenatal virilization is recognized that may have gone unnoticed in infancy.

The principal goals of treatment of simple virilizing CAH are to preserve as much growth as possible and to prevent central precocious puberty if it has not already been triggered. These are more difficult challenges than in CAH detected in infancy because moderately levels of androgens will have had several years to advance bone maturation and to trigger central puberty before the disease is detected.

A diagnosis of SVCAH is usually confirmed by discovering extreme elevations of 17-hydroxyprogesterone along with moderately high testosterone levels. A cosyntropin stimulation test may be needed in mild cases, but usually the random levels of 17OHP are high enough to confirm the diagnosis.

The mainstay of treatment is suppression of adrenal testosterone production by a glucocorticoid such as hydrocortisone. Mineralocorticoid is only added in cases where the plasma renin activity is high.

A third key aspect of management is suppression of central precocious puberty if it has begun. The usual clues to central puberty in boys are that the testes are pubertal in size, or that testosterone remains elevated even when the 17OHP has been reduced toward normal. In girls central puberty is less often a problem, but breast development would be the main clue. Central precocious puberty is suppressed when appropriate by leuprolide.

As outlined above, recent additions to treatment to preserve growth include aromatase inhibition to slow bone maturation by reducing the amount of testosterone converted to estradiol, and use of blockers of estrogen for the same purpose.

Once adrenal suppression has been achieved, the patient needs stress steroid coverage as described above for significant illness of injury.

Late onset (nonclassical) CAH

Other alleles result in even milder degrees of hyperandrogenism that may not even cause problems in males and may not be recognized until adolescence or later in females. Mild androgen effects in young women may include hirsutism, acne, or anovulation (which in turn can cause infertility). Testosterone levels in these woman may be mildly elevated, or simply above average. These clinical features, of course, are those of polycystic ovary syndrome, and a small percentage of women with PCOS are found to have late-onset CAH when investigated.

Diagnosis of late-onset CAH may be suspected from a high 17-hydroxyprogesterone level, but some cases are so mild that the elevation is only demonstrable after cosyntropin stimulation. Treatment may involve a combination of very low dose glucocorticoid to reduce adrenal androgen production and any of various agents to block the androgen effects and/or induce ovulation.

References

Template:WH Template:WS