Intracoronary pharmacotherapy: Difference between revisions

Jump to navigation Jump to search
New page: {{SI}} {{WikiDoc Cardiology Network Infobox}} {{CMG}} '''Associate Editor-In-Chief:''' Priyantha Ranaweera [mailto:pranawee@bidmc.harvard.edu]; Phone:617-632-7783 {{Editor Help}} == Pa...
 
Kristin Feeney (talk | contribs)
No edit summary
 
(39 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SI}}
{{SI}}
{{WikiDoc Cardiology Network Infobox}}
{{CMG}}


'''Associate Editor-In-Chief:''' Priyantha Ranaweera [mailto:pranawee@bidmc.harvard.edu];  Phone:617-632-7783
{{CMG}}; and Al Deibele, M.D. [mailto:wdeibele@charter.net]


{{Editor Help}}
'''Associate Editors-In-Chief:''' Priyantha Ranaweera, M.D. [mailto:pranawee@bidmc.harvard.edu];  Vijay Kunadian, M.D.


== Pathophysiology==
'''Assistant Editor-In-Chief:''' Scott P. Williams, [mailto:swilliams@wikidoc.org]


The process of coronary thrombosis starts at a ruptured or fissured plaque creating an in-situ platelet and fibrin aggregate which progresses to an occlusive thrombus.


There is also dissemination of platelet rich thrombi down stream which cause micro vascular obstruction and tissue level myocardial ischemia.


This leads to coronary microvascular dysfunction, ( ie: disordered function of the smaller coronary resistance vessels (< 100-200 µm) which are not seen on coronary angiography.
==Overview==


There are also multiple humoral factors which play a role in setting up the cascade of reversible and irreversible damage at cellular and ultra-structural level.
Coupled with the understanding of the importance of preservation of [[microvascular bed]] and the inability to progress further on the available systemic [[pharmacotherapy]], there is renewed interest in local drug delivery to achieve higher than usual local [[drug concentration]]s.  


This leads to
The most common IC pharmacotherapies are [[vasodilators]], with the most popular being [[nitroglycerine]]. There is somewhat frequent use of [[adenosine]] and [[nicardipine]], though, most of the experience is mainly on adenosine. Use of [[verapamil]] and [[diltiazem]] are declining due to the availability of nicardipine.


====At Macrovascular Level====
Despite the lack of randomized trials, the use of IC pharmacotherapies in niche situations, such as [[prevention]] and treatment of [[no-reflow]], may prove to be life saving.


# Spasm
The evidence on the use of intracoronary [[glycoprotein inhibitors]] is sparse. Until more robust data becomes available, regular use of this class of medications is not recommended.
# Thromboembolism and distal ischemia


===At Cellular/Tissue Level===
There has been several studies looking at intracoronary [[thrombolytics]]. However there is no evidence to suggest that they are superior to current therapy.  
 
# Neutrophil plugging
# Swelling and edema of endothelial and myocardial cells
# Capillary leak
# dead cells develop contraction bands (hypercontraction of myocytes)
# In the setting of reperfusion – hemorrhage in the interstitium
# Myocytolysis (large vacuoles in cells)  and cell death and removal of dead cells by macrophages, with the beginning of vascular granulation tissue formation  followed by repair-granulation tissue, becoming more fibrous and less vascular over time
 
=====REVERSIBLE AND IRREVERSIBLE COMPONENTS OF THE MICROVASCULAR DYSFUNCTION=====
 
Clinically TIMI flow rate, CTFC, TMPG, ECG, LVEF all complement each other in their reflection of the state of the affected myocardium.
 
In the acute setting, apart from the ECG, there are no indicators to differentiate myocardial reversibility from irreversibility.
 
=====PATHOPHYSIOLOGY OF REVERSIBLE FLOW DYNAMICS OF THE MICROVASCULATURE=====
 
1. Heightened downstream microvascular obstruction
 
1.1 alpha adrenergic neural reflexes,
 
1.2 spasm due to other causes
 
1.3 thrombotic occlusion of microvessels.
 
=====PATHOPHYSIOLOGY OF IRREVERSIBLE FLOW DYNAMICS OF THE MICROVASCULATURE=====
 
1. ? capillary leak – advanced stages
 
2. ? interstitial hemorrhage
 
3. Cell death
 
4. Fibrosis
 
==TIMI CLASSIFICATION AND OPEN MUSCLE HYPOTHESIS – AN OVERVIEW==
 
===THE OPEN ARTERY CONCEPT AND THE TIMI FLOW RATE===
 
Patients with a patent infarct related artery 90 minutes after the start of thrombolytic therapy, there was a lower 6 month (5.6% vs. 12.5%) and 1 year mortality (8.1% vs. 14.8%). (4)
 
 
For patients with both early and sustained patency through hospital discharge, the subsequent mortality was 3.8% at 1 year. (4)
 
More studies confirmed that early reperfusion decreased infarct size, improved left ventricular function and survival. (5,6)
 
====TIMI FLOW GRADE ====
 
In order to evaluate the coronary reperfusion more accurately and in a reproducible manner, a grading system of was developed initially for use in the TIMI 1 trial. This has subsequently been adopted universally. 
 
TIMI grade 0 - complete occlusion of the coronary artery
 
TIMI grade 1 -  some penetration of the obstruction by contrast material, but no perfusion of the distal coronary bed. 
 
TIMI grade 2 - perfusion of the entire coronary artery, but with delayed flow compared to a normal artery
 
TIMI grade 3 - flow denotes full perfusion with normal flow.
 
====TIMI FLOW IN ACUTE STE MI====
 
In the TIMI 1 trail, patients with TIMI grade 3 flow at 90 minutes of thrombolytic therapy had the lowest mortality, 4.7%, compared to 7.0% and nearly11% for patients with TIMI grade 2 flow and TIMI grade 0 - 1 flow respectively. (8)
 
 
====TIMI FLOW IN UNSTABLE ANGINA====
 
Faster flow was shown to be associated with improved clinical outcomes both in the acute MI setting and in the setting of unstable angina following percutaneous coronary intervention. (9,10,11)
 
 
===CORRECTED TIMI FRAME COUNT – CTFC===
 
limitations with TIMI grading of coronary blood flow is the relative lack of reproducibility between angiographers with one study, showing an agreement of TIMI grade 3 flow of 71%. (12)
 
This was addressed with the development of a quantitative assessment – the TIMI frame count – which was based on the number of angiographic frames needed for dye to traverse the artery. (13)
 
This is a measure of time and it does not account for vessel length or volume, and is only an index of coronary velocity and flow.  
 
CTFC has been shown to be reproducible, with a coefficient of correlation of .0.95 between observers and differences between observers of 2 frames . French et al. reported mean differences between observers of 0.75 frames. (14,15,16,17)
 
====TIMI 4 FLOW====
 
Within the group with TIMI III  flow, there is a group of patients with even faster (a TIMI frame count < 14) than normal flow (hyperemic flow)
 
Patients with this flow have even better outcomes than those patients with slower TIMI grade 3 flow. In order to have hyperemic flow, the integrity of the microvasculature must be better preserved when compared to the rest of the patient cohort. (18)(Figure 2).
 
(Figure 3 – Even faster epicardial flow is related to better outcomes)
 
=== BLOOD FLOW IN NON CULPRIT ARTERIES DURING ACS===
 
both in acute MI and in the setting of unstable angina epicardical coronary flow was abnormal also in the non culprit arteries (by 40% in the setting of acute MI). (normally 21 frames for dye to traverse an epicardial artery in the absence of acute MI, flow in uninvolved arteries is slowed to over 30 frames)
 
In a quarter of cases, flow in the uninvolved artery was actually slower than the culprit artery. (19, 20)
 
(Figure 4 Acute MI slows blood flow globally)
 
===FLOW FOLLOWING PCI – ACUTE MI===
 
The flow following PCI for acute MI was often the same as that in non-culprit arteries: over 30 frames13
 
PCI improved culprit TIMI frame count by 6 frames – 9 frames short of being normal – a consequence of a disturbed milieu at tissue level.
 
Slower global flow in all three arteries was also associated with a higher risk of adverse outcomes including mortality compared to those who had normal flow in non culprit arteries.
 
In one study, flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with.
 
After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values  which was re-restored after administration of α-blockers. - In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (21,22)
 
===STENTING AND CTFC===
 
In the PAMI stent trial, compared with conventional primary angioplasty, stenting reduced restenosis. How ever one month and six-month mortality were higher among stented patients, (specially  with a closed vessel preceding PCI). Suggesting the possibility that stenting may have irreversibly disturbed the distal vascular bed, probably by increasing downstream embolization of atheroembolic particles. Also the stenting process may have generated more humoral factors –some of which may have been reversible - producing undesirable effects. (23,24)
 
 
===RESIDUAL STENOSIS AND MORTALTY===
 
Even though the residual stenosis was only 16% following adjunctive stent placement, normal flow was still not restored in up to one-third of patients – a group with significantly higher mortality. This is highly unlikely to be due to the minimal residual stenosis. (25)
 
IV nitrates following thrombolytic administration was shown to slow the CTFC (increase transit time down the artery). How ever overall flow in was preserved. (26)
 
 
==== IS BIGGER THE BETTER WITH STENTING?====
 
It has also been shown that larger stent sizes were associated with a higher risk of slower flow. (27 ref pending)
 
===CTFC AND LONG TERM SURVIVAL====
 
French et al, reported CTFC after myocardial infarction was an independent predictor of 5-year survival, but was not superior to TIMI flow grading. Neither factor independently influenced 10-year survival. (28)
 
===CTFC COMPARED TO OTHER PROGNOSTICATORS ===
 
==CFR==
 
Maginas et al, showed that the CTFC, could be used reliably in the catheterization laboratory to estimate CFR. (29)
 
CTFC used in the context of a ratio with minimal luminal diameter, before and after adenosine was shown to be highly correlated with coronary flow reserve (CFR) as assessed using a Doppler velocity wire (r=0.88). (30)
 
 
====TIMI FRAME COUNT IN ESTIMATING CORONARY BLOOD FLOW====
 
The combination of quantitative coronary angiography and the TIMI frame count could be used to integrate velocity and volume measurements to estimate coronary blood flow.
 
Potentially these methods could be automated to provide estimates of absolute coronary blood flow in the cardiac catheterization laboratory. (31)
 
 
===BEYOND THE EPICARDIAL VESSEL – REACHING FOR THE MICROVASCULATURE MILIEU===
 
===MICROEMBOLISATION IN TO THE DISTAL VASCULAR BED===
 
Small areas of myocardial necrosis due to emboli likely from a ruptured plaque were first demonstrated on post mortem analysis Falk in a post mortem analysis, which was subsequently confirmed in-vivo by Gibson et al. (32)
 
 
====MYOCARDIAL CONTRAST ECHOCARDIOGRPHY====
 
With no reflow, microbubbles do not enter the myocardium where there is a higher risk of arrhythmia, congestive heart failure, or death.
 
This technique is limited for routine clinical application due to the need of additional equipment, personnel, time and expense. (33)
 
 
===TIMI MYOCARDIAL PERFUSION GRADE / BLUSH GRADE (TMPG)====
 
A simple semi-quantitative technique that could be conveniently and reliably applied in the cardiac catheterization laboratory, enabling the angiographer to assess tissue level perfusion from the angiogram alone. (34)
 
Figure 4 : video demonstration can be seen at 
 
http://www.perfuse.org     
 
http://www.timi.org.
 
 
===CORRELATION OF TMPG TO OTHER MODALITIES IN ASSESSING MICROVASCULATURE ====
 
TMPG was strongly related to i.v. myocardial contrast echocardiography (MCE) and CFR using iv adenosine.
 
Patients with normal myocardial blush also have improved wall motion on echocardiography. (35)
 
 
====TIMI MYOCARDIAL PERFUSION GRADES====
 
=====NORMAL MYOCARDIUM – GRADE 3====
 
Normal ground glass appearance of myocardial blush diffusely, and at the end of the washout phase, dye is only mildly persistent or is gone.
 
====MILDLY IMPAIRED TISSUE LEVEL PERFUSION – GRADE 2=====
 
Dye enters the myocardium, but accumulates and exits more slowly. At the end of the washout phase, dye in the myocardium is strongly persistent.
 
====MODERATELY IMPAIRED TISSUE LEVEL PERFUSION - GRADE 1====
 
The dye does not leave the myocardium and there is a stain on the next injection.
 
====SEVERELY IMPAIRED TISSUE LEVEL PERFUSION – GRADE 0=====
 
Dye does not enter the myocardium and there is minimal or no blush apparent during the injection and washout phases.
 
 
===TMPG - SHORT TERM OUTCOMES===
 
In patients treated with thrombolysis, normal TIMI myocardial perfusion grade 3 flow was associated with improved mortality. (36) (Figure)
 
(Figure 5 TMP grades)
 
 
===DOES TMPG GRADING ADD INFORMATION BEYOND TIMI FLOW GRADING ?===
 
Patients with TIMI grade 3 flow in the epicardial artery who had a closed microvasculature (TMPG 0/1 flow) had a higher mortality (5.4%) than those with TMPG 2 (2.9%) or TMPG 3 flow (0.7%)(p=0.007)(Figure).
 
Even among patients with TIMI grade 3 flow, there was a 7-fold increase in mortality dictated independently by the extent of the TMP grading. TIMI myocardial perfusion grade was a predictor of 30-day mortality, independent of gender, age, admission pulse, anterior MI location, the TIMI frame count, and the TIMI flow grade. (37)
 
 
===TMPG - LONG TERM OUTCOMS ===
 
For patients who had thrombolytic therapy for STEMI, at 2 years following thrombolytic therapy, the TMPG was a multivariate predictor of mortality, independent of flow in the epicardial artery. (36)
 
 
(Figure 6 TMPG and mortality)
 
===TMPG IN THE SETTING OF EMERGENCT PCI===
 
TMPG was a more potent and accurate predictor of survival than was TIMI flow alone after acute infarct PTCA 
 
Interventions which normalize myocardial blush may in fact reduce mortality.
 
Interestingly only ~30% of pts undergoing PTCA had normal myocardial blush restored (38) 
 
 
===TMPG IN THE SETTING OF OTHER KNOWN PROGNOSTICATORS===
 
====ECG====
 
Among patients with epicardial TIMI grade 3 flow, improved flow in the microvasculature by the TMPG method is also associated with improved EKG resolution by the Schroeder criteria. (39)
 
In acute STE MI, restoration of flow associated with TMPG 3 was shown to be associated with higher rates of complete ST resolution on the static ECG. It was also a predictor of rapidity of achieving the time to stable ST-segment resolution by a factor of two. (40)
 
Though the ECG and the TMBG are associated, they provide independent and complimentary prognostic information about infarct size (41)
 
 
====LEUKOCYTOSIS DURING ACUTE MI====
 
Leukocytosis may not only be an association but also portends a poorer prognosis.
 
Leucocytosis was associated with reduced epicardial blood flow, myocardial perfusion thromboresistance (arteries open later and have a greater thrombus burden),and a higher incidence of new congestive heart failure and death, the development of which was independent of coronary blood flow and other covariates. (42)
 
 
===TMPG USING DSA===
 
By using digital subtraction angiography (DSA) further refinement of the interpretation of TMPG is possible.
 
 
=====METHOD=====
 
A background image is created by saving an image before dye fills the myocardium which contains an image of the ribs, spine, lung and the artery itself. An image is then stored from several heart beats later, at a time when dye has filled the myocardium - the “blush image.” The  background image is then subtracted from the “blush image” to remove the unwanted obtrusive structures isolating a picture of the dye in the heart muscle. The brightness of the blush, the size of the blush and the time it took for the blush to attain that size and brightness is measured. ECG gating is used to minimize motion artefacts.
 
This technique showed glycoprotein IIb/IIIa inhibition with eptifibatide to be associated with more rapid filling of the myocardium with a larger blush with improved coronary flow reserve, in the setting of unstable angina and stenting. It was also shown that TMPG grades 0-2 were associated with increased CK release and higher clinical event rates. (43)


Future studies are expected to address some of the issues in this arena.


======The five laws as suggested by Gibson, governing the time-dependent open vasculature hypothesis ======
==Pathophysiology==


1 Not all TIMI grade 3 flow is created equally
The process of [[coronary thrombosis]] starts at a ruptured or fissured plaque creating an in-situ [[platelet]] and [[fibrin]] aggregate which progresses to an occlusive [[thrombus]]. There is in turn distal embolization of platelet rich thrombi downstream which causes microvascular obstruction and tissue level [[myocardial ischemia]].  There are also multiple [[humoral]] factors which play a role in setting up the cascade of reversible and irreversible damage at cellular and ultra-structural level.  There are multiple pathophysiologic abnormalities that lead to impaired microvascular perfusion including:


2. TIMI grade 3 flow is necessary but not sufficient
# Epicardial and microvascular spasm
# [[Thromboembolism]] and distal [[ischemia]]
# [[Neutrophil]] plugging
# [[Swelling]] and [[edema]] of [[endothelial]] and [[myocardial]] cells
# [[Capillary]] leak
# Dead cells develop contraction bands (hypercontraction of [[myocytes]])
# In the setting of [[reperfusion]] – [[hemorrhage]] in the [[interstitium]]
# [[Myocytolysis]] (large [[vacuoles]] in cells)  and cell death and removal of dead cells by [[macrophage]]s, with the beginning of vascular granulation tissue formation  followed by repair-granulation tissue, becoming more fibrous and less vascular over time
# Heightened [[alpha adrenergic]] tone and abnormal neural reflexes
# [[Capillary]] leak – advanced stages
# Interstitial [[hemorrhage]]


3. It is the restoration of normal tissue level reperfusion that optimized outcomes
==Methods to Assess Microvascular / Myocardial Perfusion==


4. Time is myocardium: faster restoration of flow is related to improved clinical outcomes (44)
===The TIMI Frame Count===


5. Sustained flow and the absence of re-occlusion is related to improved outcomes(45)
In this method, the number of cineframes required for dye to reach a distal landmark is counted. This method is a surrogate for velocity of dye traversing the vessel. Slower flow in the culprit artery and in all three arteries has been associated with a higher risk of adverse outcomes including mortality compared to those who had normal flow in non culprit arteries.  This simple method has been used in a large number of studies to compare the efficacy of agents targeted to treat the microvasculature. [http://scholar.google.com/scholar?q=timi+frame+count&hl=en&lr=&btnG=Search See Google Scholar references here].


=METHODS USED TO IMPROVE MYOCARDIAL TISSUE LEVEL PERFUSION=
===TIMI Myocardial Perfusion Grade / Blush Grade (TMPG)===


This is a simple semi-quantitative technique that could be conveniently and reliably applied in the cardiac catheterization laboratory, enabling the angiographer to assess tissue level perfusion from the angiogram alone. (34)


==MANAGEMENT OF CRITICAL MYOCARDIAL ISCHEMIA – SYSTEMIC PHARMACOLOGY AND CATHETER BASED INTERVENTIONS ==
TMPG is assessed on a scale of 0-3, according to the following definitions:
*Normal myocardium (TMPG 3)- Normal ground glass appearance of myocardial blush diffusely, and at the end of the washout phase, dye is only mildly persistent or is gone.
*Mildly impaired tissue level perfusion (TMPG 2)- Dye enters the myocardium, but accumulates and exits more slowly. At the end of the washout phase, dye in the myocardium is strongly persistent.
*Moderately impaired tissue level perfusion (TMPG 1)- The dye does not leave the myocardium and there is a stain on the next injection.
*Severely impaired tissue level perfusion (TMPG 0)- Dye does not enter the myocardium and there is minimal or no blush apparent during the injection and washout phases.


Discussed elsewhere (Hyperlink)
In patients treated with thrombolysis, normal TIMI myocardial perfusion grade 3 flow was associated with improved mortality in the short term. (36)  For patients who had thrombolytic therapy for STEMI, at 2 years following thrombolytic therapy, the TMPG was a multivariate predictor of mortality, independent of flow in the epicardial artery. (36)


Patients with TIMI grade 3 flow in the epicardial artery who had a closed microvasculature (TMPG 0/1 flow) had a higher mortality (5.4%) than those with TMPG 2 (2.9%) or TMPG 3 flow (0.7%)(p=0.007). Even among patients with TIMI grade 3 flow, there was a 7-fold increase in mortality dictated independently by the extent of the TMP grading. TIMI myocardial perfusion grade was a predictor of 30-day mortality, independent of gender, age, admission pulse, anterior MI location, the TIMI frame count, and the TIMI flow grade. (37)


==MECHANICAL DEVICES DESIGNED TO PREVENT THROMBO-EMBOLIZATION==
In the setting of emergency PCI TMPG was a more potent and accurate predictor of survival than was TIMI flow alone after acute infarct PTCA.  Interventions which normalize myocardial blush may in fact reduce mortality, though, only ~30% of pts undergoing PTCA had normal myocardial blush restored. (38)


Discussed elsewhere (Hyperlink)
===Myocardial Contrast Echocardiography (MCE)===


With no reflow, microbubbles do not enter the myocardium where there is a higher risk of arrhythmia, congestive heart failure, or death. This technique is limited for routine clinical application due to the need of additional equipment, personnel, time and expense. (33)


==INTRACORANRY PHARMACOTHERAPY==
==Intracoronary Pharmacotherapy==


The main aim is to improve and re-establish effective tissue level perfusion, prior to irreversible changes are triggered.  
The main aim of IC pharmacotherapy is to improve and re-establish effective tissue level perfusion, prior to irreversible changes are triggered.  Emphasis is to deliver the drug in the highest possible concentration to the affected area thus potentially minimizing systemic effects and ensuring drug delivery to the affected area in coronary slow-flow or no-reflow states.  Administration via the guiding catheter may not achieve adequate dosing because of reflux of drug into the aorta. Ideally they should be administered to the distal vascular bed through a catheter such as a balloon catheter or an ultrafuse catheter.


Emphasis is to deliver the drug in the highest possible concentration to the affected area thus potentially minimizing systemic effects and ensuring drug delivery to the affected area in coronary slow-flow or no-reflow states.
==Vasodilators==
 
Administration via the guiding catheter may not achieve adequate dosing because of reflux of drug into the aorta. Ideally they should be administered to the distal vascular bed through a catheter such as a balloon catheter or an ultrafuse catheter.
 
Glycoprotein 2b3a Inhibitors
[[Eptifibatide]]
 
===VASODILATORS===
 
====NON-ENDOTHELIUM DEPENDENT VASODILATORS====


===Non-Endothelium Dependent Vasodilators===
Do not require an intact endothelium for vasodilation
Do not require an intact endothelium for vasodilation


=====NITRO-VASODILATORS=====
====Nitro-Vasodilators====
 
======MECHANISM OF ACTION======


=====Mechanism of Action=====
These compounds contribute active NO (nitric oxide) a vasodilator.
These compounds contribute active NO (nitric oxide) a vasodilator.
----
=====Nitroglycerin=====
*'''Overview'''- Nitorglycerin dilates veins, larger arteries and arterioles, and has an antiplatelet action in-vitro.  When it is administered systemically Venodilation > arterial dilation.  The exact mechanism of the action of IC nitroglycerin not fully understood. Also, the anti anginal response may be mediated systemically rather than locally. This effect should be differentiated from direct coronary vasodilatory properties.(46)


Figure 8 Source:  http://www.mayoclinicproceedings.com/
*'''Duration of action'''- The duration of action is a few minutes.
 
 
=====NITROGLYCERIN=====
 
Dilates veins, larger arteries and arterioles.
 
Has an antiplatelet action in-vitro
 
When administered systemically Venodilation > arterial dilation
 
Exact mechanism of the action of ic nitroglycerin not fully understood.  


Anti anginal response may be mediated systemically rather than locally. This effect should be differentiated from direct coronary vasodilatory properties.(46)
*'''Clinical effects of IC nitroglycerin'''- Nitroglycerin dilates arteries > 100 mcg, including the areas of stenosis. In higher doses it dilates larger arteries as well. Nitroglycerin, as opposed to dipyridamole, does not cause “steal” phenomenon. (47, 48)  In one study, IC nitroglycerin increased normal luminal area of coronary arteries increased by an average of 28% and luminal area in significantly stenotic segments by 29 %. (49)  Smaller coronary arteries (< 1mm diameter) were shown to have a larger percentage dilation compared to larger arteries when given iv or ic. (50,51)  Pretreatment with intracoronary nitroglycerin prevented exercise-induced vasoconstriction of stenotic coronary arteries. (52) Intra coronary nitroglycerin has also been shown to relieve resistant coronary artery spasm not responding to sub lingual nitroglycerin (53)


*'''Clinical use'''- Nitroglycerin is the most commonly used IC vasodilator. Its uses include: suspected or obvious spasm, no-reflow, prophylaxis prior to stenting, prophylaxis in lesions prone to distal embolization, and post PCI angina.  Additionally, nitroglycerin is used in conjunction with distal emboli-protection.


=====DURATION OF ACTION=====
*'''IC bolus'''- Nitroglycerin is delivered in 50 – 1000 mcg in boluses.


Few minutes
*'''IC infusion'''-


=====CLINICAL EFFECTS OF IC NITROGLYCERIN =====
*'''Preparation'''-


Dilates arteries > 100 mcg, including the areas of stenosis,
*'''Side effects'''- Side effects of nitroglycerin include: hypotension and headache.
In higher doses dilates larger arteries as well.


Does not cause “steal” phenomenon (As opposed to dipyridamole) (47, 48)
*'''Reversing the effects'''- Hypotension can be relieved with iv fluids and, occasionally, inotropes (eg dopamine).


In one study, increased normal luminal area of coronary arteries increased by an average of 28% and luminal area in significantly stenotic segments by 29 %. (49)
*'''Coronary spasm resistant to nitroglycerine'''- There have been reports of spasm unresponsive to ic nitroglycerine (200 mcg – 2000 mcg over 10 mts) being successfully treated with ic verapamil (1000 mcg to 1500 mcg given over 10 mts) (54,55)
----
=====Sodium nitroprusside=====
*'''Overview''': Compared with adenosine, intracoronary nitroprusside produces an equivalent but more prolonged coronary hyperemic response in normal coronary arteries (57)


Smaller coronary arteries (< 1mm diameter) were shown to have a larger percentage dilation compared to larger arteries when given iv or ic. (50,51)
*'''Duration of action''': The duration of action is a few minutes, with a drug half life = 2 minutes.


*'''Clinical effects of IC nitroprusside''': In one study, 50 mcg delivered IC was shown to be effective in alleviating impaired blood flow and no-reflow associated with PCI. (58) Similarly, 200 mcg produced improved CTFCs among patients with no-reflow and was also associated with a lower incidence of hypotension and bradycardia. (59)


Pretreatment with intracoronary nitroglycerin prevented exercise-induced vasoconstriction of stenotic coronary arteries. (52)
*'''Clinical use''': Sodium nitroprusside's uses include: suspected or obvious spasm, no-reflow, prophylaxis prior to stenting, prophylaxis in lesions prone to distal embolization.  It is also used in conjunction with distal emboli-protection and to treat post PCI angina.


Intra coronary nitroglycerin has been shown to relieve resistant coronary artery spasm not responding to sub lingual nitroglycerin (53)
*'''IC bolus''': 100 mcg IC as a single dose to a total dose of 1000 mcg (1 mg).


*'''IC infusion''':


=====CLINICAL USE=====
*'''Preperation''':


Most commonly used ic vasodilator.  
*'''Side effects''': Side effects include bradycardia and hypotension, but at a lower rate than observed with nitroglycerin.
For suspected or obvious spasm
For no-reflow
As prophylaxis prior to stenting
As prophylaxis in lesions prone to distal embolization.
In conjunction with distal emboli-protection
Post PCI angina


=====IC BOLUS=====
*'''Reversing the effects''':
----
====Adenosine====


50 – 1000 mcg in boluses
*'''Overview''': Adenosine is synthesized in the myocardium in vivo. Intravenous or intracoronary adenosine can reliably increase coronary hyperemia to maximal levels to or even exceeding what is produced by transient ischemia.


=====IC INFUSION=====
*'''Mechanism of action''': Adenosine increases arterial endothelial cell nitric oxide (NO) through adenosine A2a receptors on the myocytes of resistance vessels.  The administration of adenosine is associated with a reduction in both endothelial injury and neutrophil activation. (61)


*'''Duration of action''': Very brief (5-30 seconds).


=====PREPARATION=====
*'''Clinical Effects''': Intra coronary adenosine was shown to improve TIMI frame count measurements in patients with microvascular angina. (64)  High-dose intracoronary adenosine in the setting of AMI, was shown to be associated with improved echocardiographic parameters and clinical outcomes. (65)  Several small studies demonstrated an improved microvascular function and reduction in infarct size in the setting of AMI (66,67) In the setting of ACS IC adenosine, compared to saline, was shown to significantly improve left ventricular wall motion and coronary flow.(68)  In a canine model, submaximal dosing did not affect the endocardial to-epicardial blood flow ratio, whereas submaximal doses demonstrated a marked preferential endocardial perfusion. (69)


*'''AMISTAD Trials''': Largest randomized trials with Adenosine, however the drug was given intravenously.
**'''AMISTAD I''':  Patients with STEMI were treated with thrombolysis and given an infusion of iv 70 mcg/kg/min adenosine infusion, demonstrated a significant reduction in infarct size. (62)
**'''AMISTAD II''': Largest trial (n=2118). (63)  Patients with anterior ST elevation myocardial infarctions were treated with either thrombolysis (60%) or primary PCI (40%) and received IV adenosine 50 mcg/kg/min, 70 mcg/kg/min or placebo.  Patients treated with adenosine demonstrated no reduction in the composite primary end point of death, new congestive heart failure or the first re-hospitalisation for congestive heart failure.  A secondary endpoint of infarct size demonstrated a trend toward a reduction but did not reach statistical significance. The dose used in these two trials was low compared the conventional dose of 140 mcg/kg/min for coronary hyperemia. Also the drug was delivered systemically.


=====SIDE EFFECTS=====
*'''IC dosing''':  The dose needed to induce maximum hyperemia was 16 mcg IC for the left coronary artery and 12 mcg IC for the right coronary artery in a subjects with no CAD. (70) However in patients with known CAD, the dose varied from 50 mcg to 800 mcg. With increasing dose > 200 mcg, heart block was increasingly encountered. The IC dose of 80 mcg/kg/min produced maximum hyperemia.  With higher doses up to 240 mcg/kg/min there was minimal drop in blood pressure but there was no tachycardia. (71) In a study comparing various doses of IC adenosine, IV adenosine, ATP and papavarine, it was shown that the IC doses and the IV doses produced comparable vasodilation. How ever IV dosing was associated with more episodes of hypotension and tachycardia and the IC dosing was more less likely to cause tachycardia. Additionally the IC dosing had a propensity to cause bradycardia. (Bernard De Bruyne, MD, PhD; Nico H.J. Pijls, et al, Intracoronary and Intravenous Adenosine 5'-Triphosphate, Adenosine, Papaverine, and Contrast Medium to AssessFractional Flow Reserve in HumansCirculation. 2003;107:1877-1883.)
Hypotension
Headache
 
=====REVERSING THE EFFECTS=====
 
Hypotension – iv fluids, occasionally inotropes (Eg dopamine)
 
=====CORONARY SPASM RESISTANT TO NITROGLYCEINE=====
 
There have been reports of spasm unresponsive to ic nitroglycerine (200 mcg – 2000 mcg over 10 mts) being successfully treated with ic verapamil (1000 mcg to 1500 mcg given over 10 mts) (54,55)
 
=====SODIUM NITROPRUSSIDE======
 
Compared with adenosine, intracoronary nitroprusside produces an equivalent but more prolonged coronary hyperemic response in normal coronary arteries (57)
 
=====DURATIN OF ACTION ======
 
Minutes (half life = 2 mts)
 
=====CLINICAL EFFECTS OF IC NITROPRUSSIDE=====
 
50 mcg ic was shown to be effective in alleviating impaired blood flow and no-reflow associated with PCI. (58)
 
200 mcg produced improved CTFCs among patients with no-reflow and was also associated with a lower incidence of hypotension and bradycardia. (59)
 
 
=====CLINICAL USE=====
 
For suspected or obvious spasm
For no-reflow
As prophylaxis prior to stenting
As prophylaxis in lesions prone to distal embolization.
In conjunction with distal emboli-protection
Post PCI angina
 
=====IC BOLUS=====
 
100 mcg IC as a single dose to a total dose of 1000 mcg (1 mg)
 
=====IC INFUSION=====
 
 
=====PREPARATION=====
 
 
=====SIDE EFFECTS=====
 
Compared to nitroglycerin, lower incidence of bradycardia, hypotension
 
 
=====REVERSING THE EFFECTS=====
 
 
====ADENOSINE====
 
Synthesized in the myocardium in vivo.  
 
Intravenous or intracoronary adenosine can reliably increase coronary hyperemia to  
 
maximal levels to or even exceeding what is produced by transient ischemia.  
 
 
=====MECHANISM OF ACTION=====
 
Increases arterial endothelial cell nitric oxide (NO) through adenosine A2a receptors on the myocytes of resistance vessels.  vasodilatation.


Low doses  ---> effects are confined to subendocardial vessels.  
Low doses  ---> effects are confined to subendocardial vessels.  
High doses ---> transmural vasodilation (60)
High doses ---> transmural vasodilation (60)
Reduces endothelial injury
Reduces neutrophil activation  (61)
=====DURATION OF ACTION=====
Very brief (5-30 seconds).
=====CLINICAL EFFECTS=====
=====AMISTAD TRIALS=====
=======AMISTAD I=======
Largest randomized trials with Adenosine. How ever the drug was given intravenously.
Patients with STE MI treated with thrombolysis given an infusion of iv 70 mcg/kg/min adenosine infusion, was associated with a significant reduction in infarct size. (62)
=======AMISTAD II=======
Largest trial (n=2118) (63)
Patients with anterior ST elevation myocardial infarctions treated with either thrombolysis (60%) or primary PCI (40%) received intra venous adenosine 50 mcg/kg/min, 70 mcg/kg/min or placebo
composite primary end point (death, new congestive heart failure or the first re-hospitalisation for congestive heart failure) -  no reduction  secondary point (infarct size) - trend toward a reduction - did not reach statistical significance
The dose used in these two trials was low compared the conventional dose of 140 mcg/kg/min for coronary hyperemia. Also the drug was delivered systemically.
=====IC ADENSOSINE AND CLINICAL EFFECTS=====
Intra coronary adenosine was shown to improve TIMI frame count measurements in patients with microvascular angina. (64)
high-dose intracoronary adenosine in the setting of AMI, has shown to be associated with improved echocardiographic parameters and clinical outcomes. (65)
Several small studies showed an improved microvascular function and reduction in infarct size in the setting of AMI (66,67)
In the setting of ACS ic adenosine compared to saline was shown to significantly improve left ventricular wall motion and coronary flow.(68)
In a canine model, submaximal dosing did not affect the endocardial to-epicardial blood flow ratio, whereas submaximal doses  showed a marked preferential endocardial perfusion. (69)
=====IC DOSING=====
The dose needed to induce maximum hyperemia was  16 mcg IC for the left coronary artery and 12 mcg IC for the right coronary artery in a subjects with no CAD. (70)
How ever in patients with known CAD, the dose varied from 50 mcg to 800 mcg. With increasing dose > 200 mcg, heart block was increasingly encountered. The ic does of 80 mcg/kg/min produced maximum hyperemia.  With higher doses up to 240 mcg/kg/min there was minimal drop in blood pressure but there was no tachycardia. (71)
In a study comparing various doses of IC adenosine, IV adenosine, ATP and papavarine, it was shown that the IC dose and the iv doses produced comparable vasodilation. How ever IV dosing was associated with more episodes of hypotensions and tachycardia and the IC dosing was more less likely to cause tachycardia. Additionally the ic dosing had a propensity to cause bradycardia.
(Bernard De Bruyne, MD, PhD; Nico H.J. Pijls, et al, Intracoronary and Intravenous Adenosine 5'-Triphosphate, Adenosine, Papaverine, and Contrast Medium to AssessFractional Flow Reserve in HumansCirculation. 2003;107:1877-1883.)
=====IC BOLUS=====
In healthy persons 16 mcg boluses induced maximal hypermeia. How ever it may be necessary administer larger doses in patients with microvascular dysfunction. (72)
Range used in studies 16 mcg -  4 mg boluses
Usually used : 100 mcg boluses to a total dose of 4000 mcg, (73)
=====IC INFUSION=====
10-70 mcg/kg/min with some suggestion that the higher infusion rate may be better
Adenosine has a half-life is 6 seconds. Therefore it can be repeatedly administered when ECG, pulse and blood pressure normalize. (74, 75)
=====PREPARATION=====
Add 6 mg of Adenosine to 9 cc of 0.9% NNrmal saline making 600 mcg/ml of the drug. Take 1 cc of this solution and dilute it with 9 cc of normal saline making 60 mcg/ml. Take 1 cc and add 0.9% N saline up to 10 cc yielding 6 mcg ml. Administer paying close attention to the ECG.
Immediately before and during administration electrocardiogram can be recorded at a faster speed (100 mm/sec) to assess changes in the PR, QRS, and QT intervals.
Because transient bradycardia can occur, consideration should be given to the prophylactic placement of a temporary pacemaker.
=====SIDE EFFECTS=====
Bradycardia  seen with higher doses. By increasing the refractory period of the sinoatrial and atrioventricular nodes produces heart block.
Difficulty in breathing – Uncommon unlike with iv use
Hypotension – Uncommon unlike with iv use
Tachycardia – Uncommon unlike with iv use
Chest pressure – Uncommon unlike with iv use (76, 77)
=====REVERSING THE EFFECTS=====
This is not an issue due to short duration of action
====DIPYRIDAMOLE====
=====MECHANISM OF ACTION=====
Increase interstitial adenosine  vasodilation
Thought to divert blood to smaller vessels causing “steeling” from the ischemic areas ( as opposed to nitrates)
=====DURATION OF ACTION=====
30 mts


*'''IC BOLUS''':  In healthy persons 16 mcg boluses induced maximal hypermeia, but it may be necessary administer larger doses in patients with microvascular dysfunction. (72) Dosages used in studies raged from 16 mcg to 4 mg boluses.  The usual dosages used were 100 mcg boluses to a total dose of 4000 mcg, (73)


===== CLINICAL EFFECTS OF IC DIPYRIDAMOLE=====
*'''IC infusion''': 10-70 mcg/kg/min with some suggestion that the higher infusion rate may produce better results. Adenosine has a half-life of 6 seconds. Therefore, it can be repeatedly administered when ECG, pulse and blood pressure normalize. (74, 75)


*'''Preparation''':  Add 6 mg of Adenosine to 9 cc of 0.9% NNrmal saline making 600 mcg/ml of the drug. Take 1 cc of this solution and dilute it with 9 cc of normal saline making 60 mcg/ml. Take 1 cc and add 0.9% N saline up to 10 cc yielding 6 mcg ml. Administer paying close attention to the ECG. Immediately before and during administration electrocardiogram can be recorded at a faster speed (100 mm/sec) to assess changes in the PR, QRS, and QT intervals. Because transient bradycardia can occur, consideration should be given to the prophylactic placement of a temporary pacemaker.


=====CLINICAL USE=====
*'''Side effects''': Bradycardia is often seen with the administration of high doses. By increasing the refractory period of the sinoatrial and atrioventricular nodes produces heart block.  Unlike with iv use, difficulty in breathing, hypotension, tachycarida, and chest pressure are all uncommon. (76, 77)


Not used due to the availability of its active form, adenosine. How ever if needed the clinical usage could be similar to Adenosine.
*'''Reversing the effects''': This is not an issue due to short duration of action
----
====Dipyridamole====
*'''Mechanism of action''': Dipyridamole increases interstitial adenosine, resulting in vasodilation. It is thought to divert blood to smaller vessels causing “steeling” from the ischemic areas (as opposed to nitrates).


*'''Duration of action''':  Dipyridamole's duration of action is approximately 30 minutes.


=====IC BOLUS=====
*'''Clinical effects''':


*'''Clinical use''': Not used due to the availability of its active form, adenosine. However if needed the clinical usage could be similar to Adenosine.


=====IC INFUSION=====
*'''IC bolus''':


*'''IC infusion''':


=====PREPARATION=====
*'''Preparation''':


*'''Side effects''':


=====SIDE EFFECTS=====
*'''Reversing the effects''':  Methyl xanthines reverse the effects of dipyridamole.


==Calcium channel blockers (CCB)==


=====REVERSING THE EFFECTS=====
===Dihydropyridine CCBs===
----
====Nicardipine====
*'''Mechanism of action''': Compared to nifedipine, diltiazem, and verapamil, nicardipine was the most vascular smooth muscle selective. Nicardipine was also shown to be more specific for coronary arteries than peripheral arteries.  (78)


Methyl xanthines
*'''Duration of action''': Nicardipine's duration of action is 5-6 minutes.


===CALCIUM CHANNEL BLOKCERS (CCB)===
*'''Clinical effects''': After IV administration of nicardipine, coronary blood flow increased significantly and the mean aortic pressure decreased by 10%. (79)  IC nicardipine 200 µg, 10,000 µg diltiazem and verapamil 200 µg were studied on coronary arteries. The effect on epicardial coronary artery diameter was similar among the 3 calcium channel blockers. Two patients who received diltiazem had a transient episode of type 1 second-degree atrioventricular block. Compared to the other two, nicardipine was shown to significantly increase icoronary blood flow velocity and also had a longer duration of effect (5–6 minutes). (80)  Nicardpine 200 mcg IC not only prevented exercise induced vasoconstriction in the atherosclerotic arteries, but also caused vasodilation, in similar proportions to iv administration.  The combination of nitroglycerin and nicardipine has an additive dilatory effect on coronary arteries that is more pronounced in stenotic than nonstenotic vessels (81, 82)  In patients undergoing PTCA, ic infusion of nicardipine protected the myocardium from regional ischemia, allowing a faster recovery of aerobic metabolism after reperfusion. This mechanism appeared unrelated to direct hemodynamic effects of nicardipine. (83)  In contrast to other calcium antagonists such as nifedipine, which depresses myocardial contractility, nicardipine 200 mcg ic, had negligible effects on myocardial contractility. (84)


*'''Clinical use''': Nicardipine is used: for suspected or obvious spasm, for no-reflow, as prophylaxis prior to stenting, as prophylaxis prior to PCI in lesions prone to distal embolization, as prophylaxis with rotational atherectomy, as part of the flush irrigation of rotational atherectomy. Nicardipine is also used inn conjunction with distal emboli-protection and to treate post PCI angina.


====DIHYDROPYRIDINE CCB====
*'''IC bolus''': 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)


====NICARDIPINE====
*'''IC infusion''':


=====MECHANISM OF ACTION=====
*'''Preparation''':


Compared to nifedipine, diltiazem and verapamil, nicardipine was the most vascular smooth muscle selective.  
*'''Side effects''': IC nicardipine has minimal systemic or direct myocardial depressant effects (85).  It is also associated with a low incidence of bradycardia and hypotension – therefore it may be preferable in patients with low blood pressure.


*'''Reversing the effects''': Not usually an issue.


Nicardipine was also shown to be more specific for coronary arteries than peripheral arteries. (78)
===Non-Dihydropyridine CCBs===
*'''Mechanism of action''': Non-Dihydropyridine CCBs block L-type calcium channels (vascular smooth muscle, cardiac myocytes, and cardiac sinoatrial and atrioventricular nodes). They also block influx of calcium into muscle cells,  smooth muscle, cardiac myocyte relaxation and a-v slowing.
----
====Diltiazem====
*'''Clinical effects''': IC administration of diltiazem was shown to prevent exercise induced vasoconstriction of stenotic coronary arteries. (86)


*'''Clinical use''': Given the ready availability of Nicardipine, the use of Diltiazem is waning. If needed the clinical usage could be similar to Nicardpine.


=====DURATIN OF ACTION=====
*'''IC bolus''': Diltiazem 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)


5-6 minutes
*'''IC infusion''':


===== CLINICAL EFFECTS OF IC NICARDIPINE =====
*'''Duration of action''':


After intra venous administration of nicardipine, coronary blood flow increased significantly and the mean aortic pressure decreased by 10% (79)
*'''Preparation''': Take 5 mg of Diltiazem in to 9 cc of Normal saline making 500 mcg/ml. Half a ml makes 250 mcg.


ic nicardipine 200 µg, 10,000 µg diltiazem and verapamil 200 µg were studied on coronary arteries. The effect on epicardial coronary artery diameter was similar among the 3 calcium channel blockers. Two patients who received diltiazem had a transient episode of type 1 second-degree atrioventricular block. Compared to the other two, nicardipine was shown to significantly increase icoronary blood flow velocity and also had a longer duration of effect (5–6 minutes). (80)
*'''Side effects''': Side effects of diltiazem include: bradycardia, hypotension, and myocardial depression.


Nicardpine 200 mcg ic not only prevented exercise induced vasoconstriction in the atherosclerotic arteries, but also caused vasodilation, in similar proportions to iv administration.  
*'''Reversing the effects''':
----
====Verapamil====
*'''Clinical effects''':  IC verapamil was shown to improve TIMI flow rates and TIMI frame counts in patients with CAD and improve angiographic outcomes in no reflow states. (87)  Additionally, it has been shown to augment postinterventional coronary blood flow. (88, 89) In patients undergoing PCI < 12 hrs of AMI, early administration of intracoronary verapamil 50-100  mcg prior and the same dose during PCI improved postprocedural myocardial perfusion as evaluated by TMPG (90)  In the VAPOR trial, intragraft administration of 200 mcg verapamil prior to saphenous vein graft PCI reduced no-reflow and was associated with a trend toward improved myocardial perfusion. (91)  Compared to those treated with PTCA alone, verapamil 500 mcg ic after primary PTCA improved microvascular function, leading to better LV functional outcome in patients with AMI (92)  Vasospasm distal to a PTCA site may be resistant to nitroglycerine and was shown respond to Verapamil 100 mcg. (93)  In the setting of ACS, 500 mcg of IC verapamil compared to saline was shown to significantly improve wall motion and coronary flow.(68) IC verapamil was shown to safely terminate reperfusion-induced ventricular tachyarrhythmias  in a rapid manner. However, this effect was not seen for reperfusion-induced VF. (94)


The combination of nitroglycerin and nicardipine has an additive dilatory effect on coronary arteries that is more pronounced in stenotic than nonstenotic vessels (81, 82)
*'''Duration of action''':


In patients undergoing PTCA, ic infusion of nicardipine protected the myocardium from regional ischemia, allowing a faster recovery of aerobic metabolism after reperfusion. This mechanism appeared unrelated to direct hemodynamic effects of nicardipine. (83)
*'''Clinical use''': Due to ready availability of Nicardipine, this drug is less commonly used. However if needed the clinical usage could be similar to Nicardpine.


in contrast to other calcium antagonists such as nifedipine, which depresses myocardial contractility, nicardipine 200 mcg ic, had negligible effects on myocardial contractility. (84)
*'''IC bolus''': 200 mcg as a single dose to a total of 1000 mcg (1 mg)


*'''IC infusion''':


*'''Preparation''':


=====CLINICAL USE=====
*'''Side effects''':  Side effects of IC verapamil include: bradycardia, hypotension, and decline in contractility of the myocardium.  In one study, 500 mcg IC bolus produced a significantly high incidence of hear block and hypotension, with the heart block lasting 3 hours. (68)


For suspected or obvious spasm
*'''Reversing the effects''':
For no-reflow
----
As prophylaxis prior to stenting
====Papavarine====
As prophylaxis prior to PCI in lesions prone to distal embolization.
*'''Mechanism of action''':
As prophylaxis with rotational atherectomy
As part of the flush irrigation of rotational atherectomy
In conjunction with distal emboli-protection
Post PCI angina


*'''Duration of action''': Peak effect after 30 sec and a total duration of action of less than 2 to 3 min. Maximal coronary hyperemia for up to 30 seconds.


=====IC BOLUS=====
*'''Clinical use''': Due to its long duration of action and potential for polymorphic VT, it is not commonly used in the coronary circulation.


200 mcg as a single dose to a total dose of 1000 mcg (1 mg)
*'''IC dosing''':


=====IC INFUSION=====
*'''IC bolus''': Total dose that can be given is limited by its relatively slow systemic elimination (half-life, 3-6 hours. 6-12 mg (2mg/ml 0.9% saline). Maximum dosing 30 mg.


*'''IC infusion''':


=====PREPARATION=====
*'''Preparation''':


*'''Side effects''': Side effects of papavarine include polymorphic VT (0.5% incidence) and hypotension, which may be prolonged due to its longer half life (limiting papavarine's use).


=====SIDE EFFECTS=====
*'''Reversing the effects''':


Lower incidence of bradycardia and hypotension – therefore may be preferable in patients with low blood pressure.
==Alpha blockers==


ic nicardipine has minimal systemic or direct myocardial depressant effects (85)
====Phentolamine====
*'''Mechanism of action''':


*'''Duration of action''':


=====REVERSING THE EFFECTS=====
*'''Clinical effects:''' 72 hrs following thrombolysis for AMI, alpha-adrenergic blockade IC, using phentolanine attenuated vasoconstriction and postischemic LV dysfunction after PCI. Flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with. After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values which was re-restored after administration of α-blockers. In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (95)


Not usually and issue
*'''Clinical use''': Not commonly used clinically.


====NON DIHYDROPYRIDINE CCB====
==Endothelium dependent vasodilators==
*'''Overview''': Endothelium dependent vasodilators require and intact endothelium. If the endothelium is diseased or absent then paradoxical vasoconstriction occurs.
----
====Acetyl choline====
*'''Mechanism of action''':


*'''Clinical use''':
----
====Serotonin====
*'''Mechanism of action''':


=====MECHANISM OF ACTION=====
*'''Clinical effects''':


Blocks L-type calcium channels (vascular smooth muscle, cardiac myocytes, and cardiac sinoatrial and atrioventricular nodes).  block influx of calcium into muscle cells,  smooth muscle, cardiac myocyte relaxation and a-v slowing.
*'''Clinical use''':


====DILTIAZEM=====
==IC anti-platelet agents==


==IC thrombolytics==


=====CLINICAL EFFECTS OF IC DILTIAZEM=====
==Other IC medications==
 
Ic administration was shown to prevent exercise induced vasoconstriction of stenotic coronary arteries. (86)
 
=====CLINICAL USE=====
 
Given the ready availability of Nicardipine, the use of Diltiazem is waning. If needed the clinical usage could be similar to Nicardpine.
 
 
=====IC BOLUS=====
 
Diltiazem 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)
 
=====IC INFUSION=====
 
 
=====DURATIN OF ACTION=====
 
 
=====PREPARATION=====
 
Take 5 mg of Diltiazem in to 9 cc of Normal saline making 500 mcg/ml. Half a ml makes 250 mcg.
 
=====SIDE EFFECTS=====
 
Bradycardia, hypotension, Myocardial depression
 
=====REVERSING THE EFFECTS=====
 
 
 
====VERAPAMIL====
 
 
=====CLINICAL EFFECTS OF IC VERAPAMIL=====
 
Was shown to improve TIMI flow rates and TIMI frame counts in patients with CAD
Improves angiographic out comes in no reflow states.(87)
 
Has been shown to augment postinterventional coronary blood flow. (88, 89)
 
In patients undergoing PCI < 12 hrs of AMI, early administration of intracoronary verapamil 50-100  mcg prior and the same dose during PCI improved postprocedural myocardial perfusion as evaluated by TMPG (90)
 
In the VAPOR trial, intragraft administration of 200 mcg verapamil prior to saphenous vein graft PCI reduced no-reflow and was associated with a trend toward improved myocardial perfusion. (91)
 
Compared to those treated with PTCA alone, verapamil 500 mcg ic after primary PTCA improved microvascular function, leading to better LV functional outcome in patients with AMI (92)
 
Vasospasm distal to a PTCA site may be resistant to nitroglycerine and was shown respond to Verapamil 100 mcg. (93)
 
In the setting of ACS, 500 mcg of ic verapamil compared to saline was shown to significantly improve wall motion and coronary flow.(68)
 
Was shown to safely terminate reperfusion-induced ventricular tachyarrhythmias  in a rapid manner. However, this effect was not seen for reperfusion-induced VF. (94)
 
=====DURATIN OF ACTION=====
 
 
=====CLINICAL USE=====
 
Due to ready availability of Nicardipine, this drug is less commonly used. How ever if needed the clinical usage could be similar to Nicardpine.
 
=====IC BOLUS=====
 
200 mcg as a single dose to a total of 1000 mcg (1 mg)
 
=====IC INFUSION=====
 
 
=====PREPARATION=====
 
 
=====SIDE EFFECTS=====
 
Bradycardia,
Hypotension,
Decline in contractility of the myocardium
 
In one study, 500 mcg ic bolus produced a significantly high incidence of hear block and hypotension. The heart block lasted 3 hours. (68)
 
 
=====REVERSING THE EFFECTS=====
 
====PAPAVARINE====
 
 
=====MECHANISM OF ACTION=====
 
 
=====DURATIN OF ACTION=====
 
Peak effect after 30 sec and a total duration of action of less than 2 to 3 min
Maximal coronary hyperemia for up to 30 seconds.
 
 
=====CLINICAL USE=====
 
Due to its long duration of action and potential for polymorphic VT, it is not commonly used in the coronary circulation
 
 
=====IC DOSING=====
 
infusion Vs boluses
 
 
=====IC BOLUS=====
 
Total dose that can be given is limited by its relatively slow systemic elimination (half-life, 3-6 hours.
6-12 mg (2mg/ml 0.9% saline) Maximum dosing 30 mg
 
 
=====IC INFUSION=====
 
 
=====PREPARATION=====
 
 
=====SIDE EFFECTS=====
 
Polymorphic VT  -  0.5% incidence
Hypotension, may be prolonged due to its longer half life- limiting its use
 
 
=====REVERSING THE EFFECTS=====
 
 
====ALFA BLOCKERS====
 
 
=======PHENTOLAMINE=======
 
 
========MECHANISM OF ACTION========
 
 
========DURATIN OF ACTION========
 
========CLINICAL EFFECTS OF IC PHENTOLAMINE========
 
72 hrs following thrombolysis for AMI, alfa-adrenergic blockade ic, using phentolanine attenuated vasoconstriction and postischemic LV dysfunction after PCI.
 
Flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with. After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values which was re-restored after administration of α-blockers.
 
In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (95)
 
========CLINICAL USE========
 
Not commonly used clinically
 
 
 
====ENDOTHELIUM DEPENDENT VASODILATORS====
 
Require and intact endothelium.
If the endothelium is diseased or absent the paradoxical vasoconstriction occurs.
 
 
=======ACETYL CHOLINE=======
 
 
========MECHANISM OF ACTION========
 
 
========CLINICAL USE========
 
 
 
=======SEROTONIN =======
 
========MECHANISM OF ACTION========
 
========CLINICAL EFFECTS OF IC SEROTONIN========
 
========CLINICAL USE========
 
===INTRACORONARY ANTI PLATELET AGENTS===
 
 
===INTRACORONARY THROMBOLYTICS===
 
 
===OTHER INTRA CORONARY MEDICATIONS===
 
==FUTURE==
 
==SUMMARY OF INTRACORONARY PHARMACOTHERAPY==
 
Coupled with the understanding of the importance of preservation of microvascular bed and the inability to progress further on the available systemic pharmacotherapy, there is renewed interest in local drug delivery to achieve higher than usual local drug concentrations.
 
Commonest of them are vasodilators, out of which the commonest being nitroglycerine. There is some what frequent use of adenosine, and nicardipine though the most of the experience is mainly on adenosine. Use of verapamil and diltiazem are declining due to the availability of nicardipine.
 
Despite the lack of randomized trials, their use in niche situations such as prevention and treatment of no-reflow is how ever may prove to be life saving.
 
The evidence on the use of intracoronary glycoprotein inhibitors is sparse. Until more robust data becomes available, regular use of this class of medications is not recommended.
 
There has been several studies looking at intracoronary thrombolytics. How ever there is no evidence to suggest that they are superior to current therapy.
 
Future studies are expected to address some of the issues in this arena.
 


==Future==


==REFERENCES==
==REFERENCES==
Line 1,055: Line 477:
96. Wilson RF, Laxson DD, Lesser JR, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;i:807–11.
96. Wilson RF, Laxson DD, Lesser JR, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;i:807–11.


{{SIB}}
 


[[Category:Drug]]
[[Category:Drug]]

Latest revision as of 13:45, 1 November 2012

WikiDoc Resources for Intracoronary pharmacotherapy

Articles

Most recent articles on Intracoronary pharmacotherapy

Most cited articles on Intracoronary pharmacotherapy

Review articles on Intracoronary pharmacotherapy

Articles on Intracoronary pharmacotherapy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Intracoronary pharmacotherapy

Images of Intracoronary pharmacotherapy

Photos of Intracoronary pharmacotherapy

Podcasts & MP3s on Intracoronary pharmacotherapy

Videos on Intracoronary pharmacotherapy

Evidence Based Medicine

Cochrane Collaboration on Intracoronary pharmacotherapy

Bandolier on Intracoronary pharmacotherapy

TRIP on Intracoronary pharmacotherapy

Clinical Trials

Ongoing Trials on Intracoronary pharmacotherapy at Clinical Trials.gov

Trial results on Intracoronary pharmacotherapy

Clinical Trials on Intracoronary pharmacotherapy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Intracoronary pharmacotherapy

NICE Guidance on Intracoronary pharmacotherapy

NHS PRODIGY Guidance

FDA on Intracoronary pharmacotherapy

CDC on Intracoronary pharmacotherapy

Books

Books on Intracoronary pharmacotherapy

News

Intracoronary pharmacotherapy in the news

Be alerted to news on Intracoronary pharmacotherapy

News trends on Intracoronary pharmacotherapy

Commentary

Blogs on Intracoronary pharmacotherapy

Definitions

Definitions of Intracoronary pharmacotherapy

Patient Resources / Community

Patient resources on Intracoronary pharmacotherapy

Discussion groups on Intracoronary pharmacotherapy

Patient Handouts on Intracoronary pharmacotherapy

Directions to Hospitals Treating Intracoronary pharmacotherapy

Risk calculators and risk factors for Intracoronary pharmacotherapy

Healthcare Provider Resources

Symptoms of Intracoronary pharmacotherapy

Causes & Risk Factors for Intracoronary pharmacotherapy

Diagnostic studies for Intracoronary pharmacotherapy

Treatment of Intracoronary pharmacotherapy

Continuing Medical Education (CME)

CME Programs on Intracoronary pharmacotherapy

International

Intracoronary pharmacotherapy en Espanol

Intracoronary pharmacotherapy en Francais

Business

Intracoronary pharmacotherapy in the Marketplace

Patents on Intracoronary pharmacotherapy

Experimental / Informatics

List of terms related to Intracoronary pharmacotherapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; and Al Deibele, M.D. [2]

Associate Editors-In-Chief: Priyantha Ranaweera, M.D. [3]; Vijay Kunadian, M.D.

Assistant Editor-In-Chief: Scott P. Williams, [4]


Overview

Coupled with the understanding of the importance of preservation of microvascular bed and the inability to progress further on the available systemic pharmacotherapy, there is renewed interest in local drug delivery to achieve higher than usual local drug concentrations.

The most common IC pharmacotherapies are vasodilators, with the most popular being nitroglycerine. There is somewhat frequent use of adenosine and nicardipine, though, most of the experience is mainly on adenosine. Use of verapamil and diltiazem are declining due to the availability of nicardipine.

Despite the lack of randomized trials, the use of IC pharmacotherapies in niche situations, such as prevention and treatment of no-reflow, may prove to be life saving.

The evidence on the use of intracoronary glycoprotein inhibitors is sparse. Until more robust data becomes available, regular use of this class of medications is not recommended.

There has been several studies looking at intracoronary thrombolytics. However there is no evidence to suggest that they are superior to current therapy.

Future studies are expected to address some of the issues in this arena.

Pathophysiology

The process of coronary thrombosis starts at a ruptured or fissured plaque creating an in-situ platelet and fibrin aggregate which progresses to an occlusive thrombus. There is in turn distal embolization of platelet rich thrombi downstream which causes microvascular obstruction and tissue level myocardial ischemia. There are also multiple humoral factors which play a role in setting up the cascade of reversible and irreversible damage at cellular and ultra-structural level. There are multiple pathophysiologic abnormalities that lead to impaired microvascular perfusion including:

  1. Epicardial and microvascular spasm
  2. Thromboembolism and distal ischemia
  3. Neutrophil plugging
  4. Swelling and edema of endothelial and myocardial cells
  5. Capillary leak
  6. Dead cells develop contraction bands (hypercontraction of myocytes)
  7. In the setting of reperfusionhemorrhage in the interstitium
  8. Myocytolysis (large vacuoles in cells) and cell death and removal of dead cells by macrophages, with the beginning of vascular granulation tissue formation followed by repair-granulation tissue, becoming more fibrous and less vascular over time
  9. Heightened alpha adrenergic tone and abnormal neural reflexes
  10. Capillary leak – advanced stages
  11. Interstitial hemorrhage

Methods to Assess Microvascular / Myocardial Perfusion

The TIMI Frame Count

In this method, the number of cineframes required for dye to reach a distal landmark is counted. This method is a surrogate for velocity of dye traversing the vessel. Slower flow in the culprit artery and in all three arteries has been associated with a higher risk of adverse outcomes including mortality compared to those who had normal flow in non culprit arteries. This simple method has been used in a large number of studies to compare the efficacy of agents targeted to treat the microvasculature. See Google Scholar references here.

TIMI Myocardial Perfusion Grade / Blush Grade (TMPG)

This is a simple semi-quantitative technique that could be conveniently and reliably applied in the cardiac catheterization laboratory, enabling the angiographer to assess tissue level perfusion from the angiogram alone. (34)

TMPG is assessed on a scale of 0-3, according to the following definitions:

  • Normal myocardium (TMPG 3)- Normal ground glass appearance of myocardial blush diffusely, and at the end of the washout phase, dye is only mildly persistent or is gone.
  • Mildly impaired tissue level perfusion (TMPG 2)- Dye enters the myocardium, but accumulates and exits more slowly. At the end of the washout phase, dye in the myocardium is strongly persistent.
  • Moderately impaired tissue level perfusion (TMPG 1)- The dye does not leave the myocardium and there is a stain on the next injection.
  • Severely impaired tissue level perfusion (TMPG 0)- Dye does not enter the myocardium and there is minimal or no blush apparent during the injection and washout phases.

In patients treated with thrombolysis, normal TIMI myocardial perfusion grade 3 flow was associated with improved mortality in the short term. (36) For patients who had thrombolytic therapy for STEMI, at 2 years following thrombolytic therapy, the TMPG was a multivariate predictor of mortality, independent of flow in the epicardial artery. (36)

Patients with TIMI grade 3 flow in the epicardial artery who had a closed microvasculature (TMPG 0/1 flow) had a higher mortality (5.4%) than those with TMPG 2 (2.9%) or TMPG 3 flow (0.7%)(p=0.007). Even among patients with TIMI grade 3 flow, there was a 7-fold increase in mortality dictated independently by the extent of the TMP grading. TIMI myocardial perfusion grade was a predictor of 30-day mortality, independent of gender, age, admission pulse, anterior MI location, the TIMI frame count, and the TIMI flow grade. (37)

In the setting of emergency PCI TMPG was a more potent and accurate predictor of survival than was TIMI flow alone after acute infarct PTCA. Interventions which normalize myocardial blush may in fact reduce mortality, though, only ~30% of pts undergoing PTCA had normal myocardial blush restored. (38)

Myocardial Contrast Echocardiography (MCE)

With no reflow, microbubbles do not enter the myocardium where there is a higher risk of arrhythmia, congestive heart failure, or death. This technique is limited for routine clinical application due to the need of additional equipment, personnel, time and expense. (33)

Intracoronary Pharmacotherapy

The main aim of IC pharmacotherapy is to improve and re-establish effective tissue level perfusion, prior to irreversible changes are triggered. Emphasis is to deliver the drug in the highest possible concentration to the affected area thus potentially minimizing systemic effects and ensuring drug delivery to the affected area in coronary slow-flow or no-reflow states. Administration via the guiding catheter may not achieve adequate dosing because of reflux of drug into the aorta. Ideally they should be administered to the distal vascular bed through a catheter such as a balloon catheter or an ultrafuse catheter.

Vasodilators

Non-Endothelium Dependent Vasodilators

Do not require an intact endothelium for vasodilation

Nitro-Vasodilators

Mechanism of Action

These compounds contribute active NO (nitric oxide) a vasodilator.


Nitroglycerin
  • Overview- Nitorglycerin dilates veins, larger arteries and arterioles, and has an antiplatelet action in-vitro. When it is administered systemically Venodilation > arterial dilation. The exact mechanism of the action of IC nitroglycerin not fully understood. Also, the anti anginal response may be mediated systemically rather than locally. This effect should be differentiated from direct coronary vasodilatory properties.(46)
  • Duration of action- The duration of action is a few minutes.
  • Clinical effects of IC nitroglycerin- Nitroglycerin dilates arteries > 100 mcg, including the areas of stenosis. In higher doses it dilates larger arteries as well. Nitroglycerin, as opposed to dipyridamole, does not cause “steal” phenomenon. (47, 48) In one study, IC nitroglycerin increased normal luminal area of coronary arteries increased by an average of 28% and luminal area in significantly stenotic segments by 29 %. (49) Smaller coronary arteries (< 1mm diameter) were shown to have a larger percentage dilation compared to larger arteries when given iv or ic. (50,51) Pretreatment with intracoronary nitroglycerin prevented exercise-induced vasoconstriction of stenotic coronary arteries. (52) Intra coronary nitroglycerin has also been shown to relieve resistant coronary artery spasm not responding to sub lingual nitroglycerin (53)
  • Clinical use- Nitroglycerin is the most commonly used IC vasodilator. Its uses include: suspected or obvious spasm, no-reflow, prophylaxis prior to stenting, prophylaxis in lesions prone to distal embolization, and post PCI angina. Additionally, nitroglycerin is used in conjunction with distal emboli-protection.
  • IC bolus- Nitroglycerin is delivered in 50 – 1000 mcg in boluses.
  • IC infusion-
  • Preparation-
  • Side effects- Side effects of nitroglycerin include: hypotension and headache.
  • Reversing the effects- Hypotension can be relieved with iv fluids and, occasionally, inotropes (eg dopamine).
  • Coronary spasm resistant to nitroglycerine- There have been reports of spasm unresponsive to ic nitroglycerine (200 mcg – 2000 mcg over 10 mts) being successfully treated with ic verapamil (1000 mcg to 1500 mcg given over 10 mts) (54,55)

Sodium nitroprusside
  • Overview: Compared with adenosine, intracoronary nitroprusside produces an equivalent but more prolonged coronary hyperemic response in normal coronary arteries (57)
  • Duration of action: The duration of action is a few minutes, with a drug half life = 2 minutes.
  • Clinical effects of IC nitroprusside: In one study, 50 mcg delivered IC was shown to be effective in alleviating impaired blood flow and no-reflow associated with PCI. (58) Similarly, 200 mcg produced improved CTFCs among patients with no-reflow and was also associated with a lower incidence of hypotension and bradycardia. (59)
  • Clinical use: Sodium nitroprusside's uses include: suspected or obvious spasm, no-reflow, prophylaxis prior to stenting, prophylaxis in lesions prone to distal embolization. It is also used in conjunction with distal emboli-protection and to treat post PCI angina.
  • IC bolus: 100 mcg IC as a single dose to a total dose of 1000 mcg (1 mg).
  • IC infusion:
  • Preperation:
  • Side effects: Side effects include bradycardia and hypotension, but at a lower rate than observed with nitroglycerin.
  • Reversing the effects:

Adenosine

  • Overview: Adenosine is synthesized in the myocardium in vivo. Intravenous or intracoronary adenosine can reliably increase coronary hyperemia to maximal levels to or even exceeding what is produced by transient ischemia.
  • Mechanism of action: Adenosine increases arterial endothelial cell nitric oxide (NO) through adenosine A2a receptors on the myocytes of resistance vessels. The administration of adenosine is associated with a reduction in both endothelial injury and neutrophil activation. (61)
  • Duration of action: Very brief (5-30 seconds).
  • Clinical Effects: Intra coronary adenosine was shown to improve TIMI frame count measurements in patients with microvascular angina. (64) High-dose intracoronary adenosine in the setting of AMI, was shown to be associated with improved echocardiographic parameters and clinical outcomes. (65) Several small studies demonstrated an improved microvascular function and reduction in infarct size in the setting of AMI (66,67) In the setting of ACS IC adenosine, compared to saline, was shown to significantly improve left ventricular wall motion and coronary flow.(68) In a canine model, submaximal dosing did not affect the endocardial to-epicardial blood flow ratio, whereas submaximal doses demonstrated a marked preferential endocardial perfusion. (69)
  • AMISTAD Trials: Largest randomized trials with Adenosine, however the drug was given intravenously.
    • AMISTAD I: Patients with STEMI were treated with thrombolysis and given an infusion of iv 70 mcg/kg/min adenosine infusion, demonstrated a significant reduction in infarct size. (62)
    • AMISTAD II: Largest trial (n=2118). (63) Patients with anterior ST elevation myocardial infarctions were treated with either thrombolysis (60%) or primary PCI (40%) and received IV adenosine 50 mcg/kg/min, 70 mcg/kg/min or placebo. Patients treated with adenosine demonstrated no reduction in the composite primary end point of death, new congestive heart failure or the first re-hospitalisation for congestive heart failure. A secondary endpoint of infarct size demonstrated a trend toward a reduction but did not reach statistical significance. The dose used in these two trials was low compared the conventional dose of 140 mcg/kg/min for coronary hyperemia. Also the drug was delivered systemically.
  • IC dosing: The dose needed to induce maximum hyperemia was 16 mcg IC for the left coronary artery and 12 mcg IC for the right coronary artery in a subjects with no CAD. (70) However in patients with known CAD, the dose varied from 50 mcg to 800 mcg. With increasing dose > 200 mcg, heart block was increasingly encountered. The IC dose of 80 mcg/kg/min produced maximum hyperemia. With higher doses up to 240 mcg/kg/min there was minimal drop in blood pressure but there was no tachycardia. (71) In a study comparing various doses of IC adenosine, IV adenosine, ATP and papavarine, it was shown that the IC doses and the IV doses produced comparable vasodilation. How ever IV dosing was associated with more episodes of hypotension and tachycardia and the IC dosing was more less likely to cause tachycardia. Additionally the IC dosing had a propensity to cause bradycardia. (Bernard De Bruyne, MD, PhD; Nico H.J. Pijls, et al, Intracoronary and Intravenous Adenosine 5'-Triphosphate, Adenosine, Papaverine, and Contrast Medium to AssessFractional Flow Reserve in HumansCirculation. 2003;107:1877-1883.)

Low doses ---> effects are confined to subendocardial vessels. High doses ---> transmural vasodilation (60)

  • IC BOLUS: In healthy persons 16 mcg boluses induced maximal hypermeia, but it may be necessary administer larger doses in patients with microvascular dysfunction. (72) Dosages used in studies raged from 16 mcg to 4 mg boluses. The usual dosages used were 100 mcg boluses to a total dose of 4000 mcg, (73)
  • IC infusion: 10-70 mcg/kg/min with some suggestion that the higher infusion rate may produce better results. Adenosine has a half-life of 6 seconds. Therefore, it can be repeatedly administered when ECG, pulse and blood pressure normalize. (74, 75)
  • Preparation: Add 6 mg of Adenosine to 9 cc of 0.9% NNrmal saline making 600 mcg/ml of the drug. Take 1 cc of this solution and dilute it with 9 cc of normal saline making 60 mcg/ml. Take 1 cc and add 0.9% N saline up to 10 cc yielding 6 mcg ml. Administer paying close attention to the ECG. Immediately before and during administration electrocardiogram can be recorded at a faster speed (100 mm/sec) to assess changes in the PR, QRS, and QT intervals. Because transient bradycardia can occur, consideration should be given to the prophylactic placement of a temporary pacemaker.
  • Side effects: Bradycardia is often seen with the administration of high doses. By increasing the refractory period of the sinoatrial and atrioventricular nodes produces heart block. Unlike with iv use, difficulty in breathing, hypotension, tachycarida, and chest pressure are all uncommon. (76, 77)
  • Reversing the effects: This is not an issue due to short duration of action

Dipyridamole

  • Mechanism of action: Dipyridamole increases interstitial adenosine, resulting in vasodilation. It is thought to divert blood to smaller vessels causing “steeling” from the ischemic areas (as opposed to nitrates).
  • Duration of action: Dipyridamole's duration of action is approximately 30 minutes.
  • Clinical effects:
  • Clinical use: Not used due to the availability of its active form, adenosine. However if needed the clinical usage could be similar to Adenosine.
  • IC bolus:
  • IC infusion:
  • Preparation:
  • Side effects:
  • Reversing the effects: Methyl xanthines reverse the effects of dipyridamole.

Calcium channel blockers (CCB)

Dihydropyridine CCBs


Nicardipine

  • Mechanism of action: Compared to nifedipine, diltiazem, and verapamil, nicardipine was the most vascular smooth muscle selective. Nicardipine was also shown to be more specific for coronary arteries than peripheral arteries. (78)
  • Duration of action: Nicardipine's duration of action is 5-6 minutes.
  • Clinical effects: After IV administration of nicardipine, coronary blood flow increased significantly and the mean aortic pressure decreased by 10%. (79) IC nicardipine 200 µg, 10,000 µg diltiazem and verapamil 200 µg were studied on coronary arteries. The effect on epicardial coronary artery diameter was similar among the 3 calcium channel blockers. Two patients who received diltiazem had a transient episode of type 1 second-degree atrioventricular block. Compared to the other two, nicardipine was shown to significantly increase icoronary blood flow velocity and also had a longer duration of effect (5–6 minutes). (80) Nicardpine 200 mcg IC not only prevented exercise induced vasoconstriction in the atherosclerotic arteries, but also caused vasodilation, in similar proportions to iv administration. The combination of nitroglycerin and nicardipine has an additive dilatory effect on coronary arteries that is more pronounced in stenotic than nonstenotic vessels (81, 82) In patients undergoing PTCA, ic infusion of nicardipine protected the myocardium from regional ischemia, allowing a faster recovery of aerobic metabolism after reperfusion. This mechanism appeared unrelated to direct hemodynamic effects of nicardipine. (83) In contrast to other calcium antagonists such as nifedipine, which depresses myocardial contractility, nicardipine 200 mcg ic, had negligible effects on myocardial contractility. (84)
  • Clinical use: Nicardipine is used: for suspected or obvious spasm, for no-reflow, as prophylaxis prior to stenting, as prophylaxis prior to PCI in lesions prone to distal embolization, as prophylaxis with rotational atherectomy, as part of the flush irrigation of rotational atherectomy. Nicardipine is also used inn conjunction with distal emboli-protection and to treate post PCI angina.
  • IC bolus: 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)
  • IC infusion:
  • Preparation:
  • Side effects: IC nicardipine has minimal systemic or direct myocardial depressant effects (85). It is also associated with a low incidence of bradycardia and hypotension – therefore it may be preferable in patients with low blood pressure.
  • Reversing the effects: Not usually an issue.

Non-Dihydropyridine CCBs

  • Mechanism of action: Non-Dihydropyridine CCBs block L-type calcium channels (vascular smooth muscle, cardiac myocytes, and cardiac sinoatrial and atrioventricular nodes). They also block influx of calcium into muscle cells, smooth muscle, cardiac myocyte relaxation and a-v slowing.

Diltiazem

  • Clinical effects: IC administration of diltiazem was shown to prevent exercise induced vasoconstriction of stenotic coronary arteries. (86)
  • Clinical use: Given the ready availability of Nicardipine, the use of Diltiazem is waning. If needed the clinical usage could be similar to Nicardpine.
  • IC bolus: Diltiazem 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)
  • IC infusion:
  • Duration of action:
  • Preparation: Take 5 mg of Diltiazem in to 9 cc of Normal saline making 500 mcg/ml. Half a ml makes 250 mcg.
  • Side effects: Side effects of diltiazem include: bradycardia, hypotension, and myocardial depression.
  • Reversing the effects:

Verapamil

  • Clinical effects: IC verapamil was shown to improve TIMI flow rates and TIMI frame counts in patients with CAD and improve angiographic outcomes in no reflow states. (87) Additionally, it has been shown to augment postinterventional coronary blood flow. (88, 89) In patients undergoing PCI < 12 hrs of AMI, early administration of intracoronary verapamil 50-100 mcg prior and the same dose during PCI improved postprocedural myocardial perfusion as evaluated by TMPG (90) In the VAPOR trial, intragraft administration of 200 mcg verapamil prior to saphenous vein graft PCI reduced no-reflow and was associated with a trend toward improved myocardial perfusion. (91) Compared to those treated with PTCA alone, verapamil 500 mcg ic after primary PTCA improved microvascular function, leading to better LV functional outcome in patients with AMI (92) Vasospasm distal to a PTCA site may be resistant to nitroglycerine and was shown respond to Verapamil 100 mcg. (93) In the setting of ACS, 500 mcg of IC verapamil compared to saline was shown to significantly improve wall motion and coronary flow.(68) IC verapamil was shown to safely terminate reperfusion-induced ventricular tachyarrhythmias in a rapid manner. However, this effect was not seen for reperfusion-induced VF. (94)
  • Duration of action:
  • Clinical use: Due to ready availability of Nicardipine, this drug is less commonly used. However if needed the clinical usage could be similar to Nicardpine.
  • IC bolus: 200 mcg as a single dose to a total of 1000 mcg (1 mg)
  • IC infusion:
  • Preparation:
  • Side effects: Side effects of IC verapamil include: bradycardia, hypotension, and decline in contractility of the myocardium. In one study, 500 mcg IC bolus produced a significantly high incidence of hear block and hypotension, with the heart block lasting 3 hours. (68)
  • Reversing the effects:

Papavarine

  • Mechanism of action:
  • Duration of action: Peak effect after 30 sec and a total duration of action of less than 2 to 3 min. Maximal coronary hyperemia for up to 30 seconds.
  • Clinical use: Due to its long duration of action and potential for polymorphic VT, it is not commonly used in the coronary circulation.
  • IC dosing:
  • IC bolus: Total dose that can be given is limited by its relatively slow systemic elimination (half-life, 3-6 hours. 6-12 mg (2mg/ml 0.9% saline). Maximum dosing 30 mg.
  • IC infusion:
  • Preparation:
  • Side effects: Side effects of papavarine include polymorphic VT (0.5% incidence) and hypotension, which may be prolonged due to its longer half life (limiting papavarine's use).
  • Reversing the effects:

Alpha blockers

Phentolamine

  • Mechanism of action:
  • Duration of action:
  • Clinical effects: 72 hrs following thrombolysis for AMI, alpha-adrenergic blockade IC, using phentolanine attenuated vasoconstriction and postischemic LV dysfunction after PCI. Flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with. After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values which was re-restored after administration of α-blockers. In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (95)
  • Clinical use: Not commonly used clinically.

Endothelium dependent vasodilators

  • Overview: Endothelium dependent vasodilators require and intact endothelium. If the endothelium is diseased or absent then paradoxical vasoconstriction occurs.

Acetyl choline

  • Mechanism of action:
  • Clinical use:

Serotonin

  • Mechanism of action:
  • Clinical effects:
  • Clinical use:

IC anti-platelet agents

IC thrombolytics

Other IC medications

Future

REFERENCES

1. Chazov, Bulletin of Experimental Biology and Medicine, Vol 5, No 2, Feb 1962

2. Ganz et al; Circ 1979 Vol 60 Supp II – 845

3. Passamani E, on behalf of the TIMI study group. The Thrombolysis In Myocardial Infarction (TIMI) trial. N Engl J Med. 1985;312:932–936

4. Dalen JE, Gore JM, Braunwald E, Borer J, Goldberg RJ, Passamani ER, Forman S, Knatterud G, and the TIMI Investigators. Six- and twelve-month follow-up of the Phase I Thrombolysis in Myocardial Infarction (TIMI) Trial. Am J Cardiol 1988;62:179-85

5. Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival: Should the paradigm be expanded? Circulation 1989;79:441-4

6. Braunwald E. The open-artery theory is alive and well - again. N Engl J Med 1993;329:1650-2.

7. Cannon CP, Braunwald E. GUSTO, TIMI and the case for rapid reperfusion. Acta Cardiol 1994;49:1-8.

8. Flygenring BP, Sheehan FH, Kennedy JW, Dodge HT, Braunwald E, for the TIMI Investigators. Does arterial patency 90 minutes following thrombolytic therapy predict 42 day survival?(abstract) J Am Coll Cardiol 1991;17 (Suppl. A):275A

9. Anderson JL, Karagounis LA, Becker LC, Sorensen SG, Menlove RL for the TEAM-3 Investigators. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction. Ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-3 study. Circulation 1993;87:1829-1839.

10. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 1993;329:1615-1622

11. Gibson CM, Murphy SA, Rizzo MJ, et al. The relationship between the TIMI Frame Count and clinical outcomes after thrombolytic administration. Circulation 1999;99:1945-1950.

12. Ross AM, Neuhaus KL, Ellis SG. Frequent lack of concordance among core laboratories in assessing TIMI flow grade after reperfusion therapy. Circulation 1995; 92:I-345.

13. Gibson CM, Cannon CP, Daley WL, et al. The TIMI Frame Count: A Quantitative Method of Assessing Coronary Artery Flow. Circulation 1996; 93:879-888.

14. Ivanc TB, Crowe TD, Balazs EM, et al. Reproducibility of the corrected TIMI frame count in angiograms of MI patients receiving thrombolysis (abstr). J Am Coll Cardiol 1998;31:11A.

15. French JK, Ellis CJ, Webber BJ, et al. Abnormal coronary flow in infarct arteries 1 year after myocardial infarction is predicted at 4 weeks by corrected Thrombolysis in Myocardial Infarction (TIMI) frame count and stenosis severity. Am J Cardiol 1998;81:665–71.

16. French JK, Ellis CJ, White HD. The corrected TIMI frame count: the new gold standard? Aust N Z J Med 1998;28:569 -73.

17. French JK, Straznicky IT, Webber BJ, et al., for the HERO 1 Investigators. Angiographic frame counts 90 minutes after streptokinase predict left ventricular function at 48 hours following myocardial infarction. Heart 1999;81:128 –33.

18. Gibson CM, Murphy SA, Rizzo MJ, et al. The relationship between the TIMI Frame Count and clinical outcomes after thrombolytic administration. Circulation 1999;99:1945-1950.

19. Gibson CM, Ryan KA, Murphy SA, et al. Impaired coronary blood flow in non-culprit arteries in the setting of acute myocardial infarction. J Am Coll Cardiol 1999;34: 974-82.

20. Gibson CM, Goel, M, Rizzo M, et al for the RESTORE Investigators. Impaired Coronary Blood Flow in Non-Culprit Arteries in the Setting of Acute Coronary Syndromes:A RESTORE substudy. Am J Cardiol 2000,

21. Gibson CM, Ryan KA, Murphy SA, et al. Impaired coronary blood flow in non-culprit arteries in the setting of acute myocardial infarction. J Am Coll Cardiol 1999;34: 974-82.

22. Gregorini L, Marco J, Kozakova M, et al. Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 1999; 99:482-490.

23. Grines CL, Cox DA, Stone GW, et al. Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1999;341(26):1949-56.

24. Lansky AJ, Stone GW, Mehran R, et al. Impact of baseline TIMI flow on outcomes after primary stenting versus primary PTCA in acute myocardial infarction. Results from PAMI stent. J Am Coll Cardiol. 1999;33 (Suppl A):368A.

25. Gibson CM, Murphy SA, Menown I, et al for the TIMI Study Group. Determinants of Coronary Blood Flow Following Thrombolytic Administration. J Am Coll Cardiol 1999; 34:1403-12.

26. Rebecca Mesley, Martin Aldrich, Jill Swanson, Sabina Murphy, Colin Hynes, Timothy Saunders, Robert Zemble, Susan J. Marble, Carolyn H. McCabe, Christopher P. Cannon, C. Michael Gibson. For the T/Ml Study Group, University of California San Francisco, Brigham & Women’s Hospital, Boston, USA; Impact of Nitrate Administration on the TIMI Frame Count and TIMI Flow Grades in the Setting of Acute Myocardial Infarction.

27.

28. John K. French, Thomas A. Hyde, Ivan T. Straznicky, Jacquelin Andrews, Mayanna Lund, David J. Amos, Andrew Zambanini, Christopher J. Ellis, Bruce J. Webber, Stephanie C. McLaughlin, Ralph M.L. Whitlock, Hitesh Patel, Harvey D. White. Green Lane hospita/, Auckland, New Zealand; The Relationship Between Corrected Timi Frame Counts and Late Survival After Myocardial Infarction

29. Manginas A, Gatzov P, Chasikidis C, Voudris V, Pavlides G, Cokkinos DV. Estimation of coronary flow reserve using the Thrombolysis In Myocardial Infarction (TIMI) frame count method. Am J Cardiol 1999;83(11):1562-5.

30. Stankovic G, Manginas A, Voudris V, et al. Prediction of restenosis after coronary angioplasty by use of a new index: TIMI frame count/minimal luminal diameter ratio. Circulation 2000;101:962-8

31. Quantitative Angiographic Measurement of Absolute Coronary Blood Flow 81 Its Relation to Mortality in Acute Myocardial Infarction G. Michael Gibson, Rebecca Mesley, Timothy Saunders, Colin Hynes, Sabina Murphy, Robert Zemble, Susan J. Marble, Carolyn H. McCabe, Elliott M. Antman, Eugene Braunwald. for the T/M/ Study Group, University of California San Francisco, Brigham & Women’s Hospital Boston, USA

32. Falk, Circulation 71, No. 4, 699-708, 1985

33. Ito H, Tomooka T, Sakai N, et al. Lack of Myocardial Perfusion Immediately After Successful Thrombolysis. A Predictor of Poor Recovery of Left Ventricular Function in Anterior Myocardial Infarction. Circulation 1992; 85:1699-1705.

34. Gibson CM, Cannon CP, Murphy SA, et al for the TIMI Study Group. The Relationship of the TIMI Myocardial Perfusion Grade to Mortality Following Thrombolytic Administration. Circulation 2000;101:125-130

35. Lepper W, Hoffman R, Kamp O, et al. Angiographic myocardial blush grade relates to myocardial contrast echo and coronary flow reserve for assessment of reperfusion after myocardial infarction. J Am Coll Cardiol 2000; 35:397A

36. Gibson CM, Cannon CP, Murphy SA, et al for the TIMI Study Group. The Relationship of the TIMI Myocardial Perfusion Grade to Mortality Following Thrombolytic Administration. Circulation 2000;101:125-130.

37. Stone GW, Lansky AJ, Mehran R, et al. Beyond TIMI 3 Flow: The importance of restored myocardial perfusion for survival in high risk patients undergoing primary or rescue PTCA. J Am Coll Cardiol 2000; 35: 403A.

38. Gregg W. Stone, Alexandra J. Lansky, Roxana Mehran, Michael A. Peterson, Luis Gruberg, George Dangas, Kartik Eesai, Steven T. Slack, Renee Reed, Brian Proctor, Martin 8. Leon. Washington Hospital Center, Washington, DC, USA Myocardial perfusion may be impaired after PTCA in AMI despite restoration of normal epicardial (TIMI-3) blood flow, which may be partly responsible for mortality even after successful PTCA.

39. Barron HV, Cannon CP, Murphy SA, Braunwald E, Gibson CM. The association between white blood cell count, epicardial blood flow, myocardial perfusion and clinical outcomes in the setting of acute MI. A TIMI 10B substudy. Circulation 2000;102(19):2329-34.

40. de Lemos JA, Gibson CM, Antman EM, et al. Correlation between the TIMI myocardial perfusion grade and ST segment resolution among patients with normal epicardial flow after fibrinolysis. Circulation 2000:102: II-775.

41. Gibson CM, Giugliano RP, Roe MT, et al. Impaired TIMI epicardial flow and myocardial perfusion grades are associated with increased time to ST segment recovery in ST segment elevation MI: an INTEGRITI substudy. Circulation. 2002;106(suppl II):II-598.

42. Angeja BG, Gunda M, Murphy SA, et al. TIMI myocardial perfusion grade and ST segment resolution: association with infarct size as assessed by single photon emission computed tomography imaging. Circulation. 2002;105:282–285.

43. Gibson CM, Cohen DJ, Cohen E, et al for the ESPRIT study group. Eptifibatide improves tissue level perfusion: Results of the ESPRIT angiographic substudy. Circulation 2000, 102: II-366 (abstr).

44. Cannon CP, Gibson CM, Lambrew CT, et al for the NRMI-2 Investigators. Relationship of door-to-balloon time to mortality in patients with acute myocardial infarction treated with primary angioplasty. JAMA 2000; 283:2941-7.

45. Gibson CM, Cannon CP, Piana RN, et al. Angiographic predictors of early reocclusion in the TIMI 4 trial. J Am Coll Cardiol 1995; 25:582-589.

46. WILLIAM GANZ M.D.HAROLD S. MARCUS M.D. Failure of Intracoronary Nitroglycerin to Alleviate Pacing-Induced Angina ; Circulation. 1972;46:880;

47. Harrison DG, ET AL. The nitrovasodilators. New ideas about old drugs. Circulation 1993; 87:1461-1467

48. Garvan D Kane, Mayo clinic caridilogy concise text book 3rd ed, pp 1249

49. B. GREG BROWN, MD, PhD Response of Normal and Diseased Epicardial Coronary Arteries to Vasoactive Drugs: Quantitative Arteriographic Studies Am J Cardiol 1985;56:23E-29E

50. RL Feldman, JD Marx, CJ Pepine and CR Conti; Analysis of coronary responses to various doses of intracoronary nitroglycerin; Circulation, Vol 66, 321-32

51. Feldman RL, Pepine CJ, Conti CR: Magnitude of dilatation of large and small coronary arteries bv nitroglycerin. Circulation 64: 324, 1981


52. Hess OM, Bortone AS. Eid K, et al. Coronary vasomotor tone during static and dynamic exercise. Eur Heart J 1089:Ill;IllS-Ill.

53. CJ Pepine, RL Feldman and CR Conti; Action of intracoronary nitroglycerin in refractory coronary artery spasm; Circulation 1982;65;411-414

54. Richard M. Pomerantz, MD, Richard E. Kuntz, MD, Daniel J. Diver, MD, Robert D. Safian, MD, FSCAI, and Donald S. Baim, MD, FSCAl; lntracoronary Verapamil for the Treatment of Distal Microvascular Coronary Artery Spasm Following PTCA lntracoronary Verapamil for the Treatment of Distal Microvascular Coronary Artery Spasm Following PTCA

55. Richard M. Pomerantz, MD, Richard E. Kuntz, MD, Daniel J. Diver, MD, Robert D. Safian, MD, FSCAI, and Donald S. Baim, MD, FSCAl

56. Babbitt D, Perry J, Forman M.: Intracoronary verapamil for revera1 of refractory coronary vasospasm during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 12: 1377-1381, 1988.

57. Walter A. Parham, MD; Andre Bouhasin, MD; Jeffrey P. Ciaramita, MD; Souheil Khoukaz, MD; Steven C. Herrmann, MD; Morton J. Kern, MD; Coronary Hyperemic Dose Responses of Intracoronary Sodium Nitroprusside; Circulation. 2004;109:1236-1243

58. William B. Hillegass, MD, MPH,* Neal A. Dean, BA,† Laurence Liao, MD, Rodney G. Rhinehart, MD,† Paul R. Myers, MD, PHD, FACC, FSCAI; Treatment of No-Reflow and Impaired Flow With the Nitric Oxide Donor Nitroprusside Following Percutaneous Coronary Interventions: Initial Human Clinical Experience; J Am Coll Cardiol 2001;37:1335– 43

59. Hillegass WB, Dean NA, Liao L, et al. Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J Am Coll Cardiol. 2001;37:1335–1343.

60. Jose G. Diez’ , M.J. Lievano, Mihai Croitoru’ , James J. Ferguson’ Hospital Universitario San Rafael, Bogota, Colombia; ‘St. Luke’s Episcopal Hospital/The Texas Heart Institute, Houston, TX, USA

61. Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J 2001;22:729–39.

62. Mahaffey KW, Puma JA, Barbagelata NA, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the acute myocardial infarction study of adenosine (AMISTAD) trial. J Am Coll Cardiol 1999;34:1711–20.

63. Ross AM, Gibbons RJ, Stone GW, et al. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005;45:1775–80.

64. Increment in Coronarv Flow (TIMI Frame Count) in Men With Microvascuiar Angina Jose G. Diez’ , M.J. Lievano, Mihai Croitoru’ , James J. Ferguson’ Hospital Universitario San Rafael, Bogota, Colombia; ‘St. Luke’s Episcopal Hospital/The Texas Heart Institute, Houston, TX, USA, Abs JACC 2000=

65. Marzilli M, Orsini E, Marraccini P, et al. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000; 101:2154–2159.

66. Assali AR, Sdringola S, Ghani M, et al. Intracoronary adenosine administered during percutaneous intervention in acute myocardial infarction and reduction in the incidence of ‘‘no reflow’’ phenomenon. Catheter Cardiovasc Interv 2000;51:27–31.

67. Micari A, Belcik TA, Balcells EA, et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 2005;96:1410–5.

68. K Vijayalakshmi, V J Whittaker, B Kunadian, J Graham, R A Wright, J A Hall, A Sutton, M A de Belder; Prospective, randomised, controlled trial to study the effect of intracoronary injection of verapamil and adenosine on coronary blood flow during percutaneous coronary intervention in patients with acute coronary syndromes, Heart 2006;92:1278–1284. doi: 10.1136/hrt.2005.075077

69. Rembert J, Boyd LM, Watkinson WP, Greenfield JC: Effect of adenosine on transmural myocardial blood flow distribution in the awake dog. Am J Physiol 1980;239(Heart Circ Physiol 8):H7-H13

70. Robert F. Wilson, MD, Keith Wyche, BS, Betsy V. Christensen, BSN,Steven Zimmer, MD, and David D. Laxson, MD;Effects of Adenosine on Human Coronary Arterial Circulation; Circulation 1990;82:1595-1606

71. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JRTC: Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardvasc Diagn 1988;15:76-80

72. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JRTC: Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardvasc Diagn 1988;15:76-80

73. RF Wilson, K Wyche, BV Christensen, S Zimmer and DD Laxson; Effects of adenosine on human coronary arterial circulation, Circulation 1990;82;1595-1606

74. Ross AM, Gibbons RJ, Stone GW, et al. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005;45:1775–80.

75. Micari A, Belcik TA, Balcells EA, et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 2005;96:1410–5.

76. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JRTC: Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardvasc Diagn 1988;15:76-80

77. Steven E. Reis, Richard Holubkov, Joon S. Lee, Barry Sharaf, Nathaniel Reichek, William J. Rogers, Edward G. Walsh, Anthon R. Fuisz, Richard Kerensky, Katherine M. Detre, et al.Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease : Results from the pilot phase of the Women’s Ischemia Syndrome Evaluation (WISE) Study Pages 1469-1475

78. ROGER L. WHITING, PhD Animal Pharmacology of Nicardipine and Its Clinical Relevance; Am J Cardiol 1987;59:3J-8J

79. Roussenu MF, Vincent MF. Van Hoof F. Van den Berghc G. Ch:wlicr AAPouleur H. Effects of nicardipine and nisoldipine on myocordiol metabolism, coronary blood flow and oxygen supply in angina pectoris. Am J Cardiol 1984;54:1189-1194.

80. Fugit MD, Rubal BJ, Donovan DJ. Effects of intracoronary nicardipine, diltiazem and verapamil on coronary blood flow. J Invas Cardiol 2000;12:80–85.

81. PHILIPP KAUFMANN, MD, GIUSEPPE VASSALLI, MD, URS UTZINGER, PHD, OTTO M. HESS, MDJ; Coronary Vasomotion During Dynamic Exercise: Influence Of Intravenous and Intracoronary Nicardipine Am Coil Cardiol 1995;26:624-31)

82. Gage JE. Hess OM. Murakami T. Rittcr M, Grimm J, Krayenbuchl HP. Vasoconstriction of stenotic coronary arteries during exercise in patients with classic angina pectoris: reversibiiity by nitroglycerin. Circulation 1986; 73:865-76.

83. CLAUDE HANET, MD, MICHEL F. ROUSSEAU, MD, MARIE-FRANCOISE VINCENT, MD, EDITH LAVENNE-PARDONGE, MD, and HUBERT POULEUR, MD; Myocardial Protection by lntracoronary Nicardipine Administration During Percutaneous Transluminal Coronary Angioplasty AmJ Cardiol 1987;59:1035-1040

84. CLAUDE HANET, MD, MICHEL F. ROUSSEAU, MD, MARIE-FRANCOISE VINCENT, MD, EDITH LAVENNE-PARDONGE, MD, and HUBERT POULEUR, MD; Myocardial Protection by lntracoronary Nicardipine Administration During Percutaneous Transluminal Coronary Angioplasty AmJ Cardiol 1987;59:1035-1040

85. Rousseau MF, Vincent MF, Cheron P, Van Den Berghe G, Charlier AA, Pouleur H. Effects of nicordipine on coronary blood flow, left ventricular inotropic state and myocurdial metabolism in patients with onginu pectoris. Br J Clin Phormocol 1985;20:147S-157s.

86. Nonogi H, Hess OM, Ritter M, et al. Prevention of coronary vasoconstriction by diltiazem during dynamic exercise in patients with coronary artery disease. J Am Coil Cardiol 1988;12:892-9.

87. Piana R, Paik G, Moscucci M, et al. Incidence and treatment of ‘no-reflow’ after percutaneous coronary intervention. Circulation 1994;89:2514–8.

88. Piana RN, Paik GY, Mosucci M, et al. Incidence and treatment of “no reflow” after percutaneous coronary intervention. Circulation 1994;89: 2514–8.

89. Werner GS, Lang K, Kuehnert H, et al. Intracoronary verapamil for reversal of no-reflow during coronary angioplasty for acute myocardial infarction. Catheter Cardiovasc Interv 2002;57:444–51.

90. Chi-Ling Hang, MD; Cha-Ping Wang, MD; Hon-Kan Yip, MD; Cheng-Hsu Yang, MD; G. Bih-Fang Guo, MD, PhD; Chiung-Jen Wu, MD; and Shyh-Ming Chen, MD; Early Administration of Intracoronary Verapamil Improves Myocardial Perfusion During Percutaneous Coronary Interventions for Acute Myocardial Infarction; CHEST 2005; 128:2593–2598

91. Michaels AM, Appleby M, Dauterman K, et al. Pretreatment with intragraft verapamil prior to percutaneous coronary intervention of saphenous vein graft lesions: results of the randomized, controlled vasodilator prevention of no-reflow (VAPOR) trial. J Invasive Cardiol. 2002;14:299–302.

92. YOSHIAKI TANIYAMA, MD, HIROSHI ITO, MD, KATSUOMI IWAKURA, MD, TOHRU MASUYAMA, MD,* MASATSUGU HORI, MD,* SHIN TAKIUCHI, MD, NAGAHIRO NISHIKAWA, MD, YORIHIKO HIGASHINO, MD, KENSHI FUJII, MD, TAKAZO MINAMINO, MD Beneficial Effect of Intracoronary Verapamil on Microvascular and Myocardial Salvage in Patients With Acute Myocardial Infarction JACC Vol. 30, No. 5 November 1, 1997:1193-9

93. Pomerantz R, Kuntz RE, Diver DJ, Safian RD, Baim DS. Intracoronary verapamil for the treatment of distal microvascular coronary artery spasm following PTCA. Cathet Cardiovasc Diagn 1991;24:283–5.

94. Intracoronary Verapamil Rapidly Terminates Reperfusion Tachyarrhythmias in Acute Myocardial Infarction; Masaya Kato, MD, PhD; Keigo Dote, MD, PhD; Shota Sasaki, MD, PhD; Hiroaki Takemoto, MD; Seiji Habara, MD; and Daiji Hasegawa, MD; CHEST 2004; 126:702–708

95. Gregorini L, Marco J, Farah B, et al. Effects of selective alpha1- and alpha2-adrenergic blockade on coronary flow reserve after coronary stenting. Circulation. 2002 3;106: 2901–2907.

96. Wilson RF, Laxson DD, Lesser JR, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;i:807–11.


Template:WikiDoc Sources