Intracoronary pharmacotherapy: Difference between revisions

Jump to navigation Jump to search
Kristin Feeney (talk | contribs)
No edit summary
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{SI}}
{{SI}}
{{WikiDoc Cardiology Network Infobox}}
 
{{CMG}}
{{CMG}}; and Al Deibele, M.D. [mailto:wdeibele@charter.net]


'''Associate Editors-In-Chief:''' Priyantha Ranaweera, M.D. [mailto:pranawee@bidmc.harvard.edu];  Vijay Kunadian, M.D.
'''Associate Editors-In-Chief:''' Priyantha Ranaweera, M.D. [mailto:pranawee@bidmc.harvard.edu];  Vijay Kunadian, M.D.


{{Editor Join}}
'''Assistant Editor-In-Chief:''' Scott P. Williams, [mailto:swilliams@wikidoc.org]
 
 
 
==Overview==
 
Coupled with the understanding of the importance of preservation of [[microvascular bed]] and the inability to progress further on the available systemic [[pharmacotherapy]], there is renewed interest in local drug delivery to achieve higher than usual local [[drug concentration]]s.
 
The most common IC pharmacotherapies are [[vasodilators]], with the most popular being [[nitroglycerine]]. There is somewhat frequent use of [[adenosine]] and [[nicardipine]], though, most of the experience is mainly on adenosine. Use of [[verapamil]] and [[diltiazem]] are declining due to the availability of nicardipine.
 
Despite the lack of randomized trials, the use of IC pharmacotherapies in niche situations, such as [[prevention]] and treatment of [[no-reflow]], may prove to be life saving.
 
The evidence on the use of intracoronary [[glycoprotein inhibitors]] is sparse. Until more robust data becomes available, regular use of this class of medications is not recommended.
 
There has been several studies looking at intracoronary [[thrombolytics]]. However there is no evidence to suggest that they are superior to current therapy.
 
Future studies are expected to address some of the issues in this arena.


==Pathophysiology==
==Pathophysiology==
Line 62: Line 78:
=====Mechanism of Action=====
=====Mechanism of Action=====
These compounds contribute active NO (nitric oxide) a vasodilator.
These compounds contribute active NO (nitric oxide) a vasodilator.
 
----
=====Nitroglycerin=====
=====Nitroglycerin=====
*'''Overview'''- Nitorglycerin dilates veins, larger arteries and arterioles, and has an antiplatelet action in-vitro.  When it is administered systemically Venodilation > arterial dilation.  The exact mechanism of the action of IC nitroglycerin not fully understood. Also, the anti anginal response may be mediated systemically rather than locally. This effect should be differentiated from direct coronary vasodilatory properties.(46)
*'''Overview'''- Nitorglycerin dilates veins, larger arteries and arterioles, and has an antiplatelet action in-vitro.  When it is administered systemically Venodilation > arterial dilation.  The exact mechanism of the action of IC nitroglycerin not fully understood. Also, the anti anginal response may be mediated systemically rather than locally. This effect should be differentiated from direct coronary vasodilatory properties.(46)
Line 83: Line 99:


*'''Coronary spasm resistant to nitroglycerine'''- There have been reports of spasm unresponsive to ic nitroglycerine (200 mcg – 2000 mcg over 10 mts) being successfully treated with ic verapamil (1000 mcg to 1500 mcg given over 10 mts) (54,55)
*'''Coronary spasm resistant to nitroglycerine'''- There have been reports of spasm unresponsive to ic nitroglycerine (200 mcg – 2000 mcg over 10 mts) being successfully treated with ic verapamil (1000 mcg to 1500 mcg given over 10 mts) (54,55)
 
----
=====Sodium nitroprusside=====
=====Sodium nitroprusside=====
*'''Overview''': Compared with adenosine, intracoronary nitroprusside produces an equivalent but more prolonged coronary hyperemic response in normal coronary arteries (57)
*'''Overview''': Compared with adenosine, intracoronary nitroprusside produces an equivalent but more prolonged coronary hyperemic response in normal coronary arteries (57)
Line 102: Line 118:


*'''Reversing the effects''':
*'''Reversing the effects''':
 
----
====Adenosine====
====Adenosine====


Line 131: Line 147:


*'''Reversing the effects''': This is not an issue due to short duration of action
*'''Reversing the effects''': This is not an issue due to short duration of action
 
----
====Dipyridamole====
====Dipyridamole====
*'''Mechanism of action''': Dipyridamole increases interstitial adenosine, resulting in vasodilation. It is thought to divert blood to smaller vessels causing “steeling” from the ischemic areas (as opposed to nitrates).
*'''Mechanism of action''': Dipyridamole increases interstitial adenosine, resulting in vasodilation. It is thought to divert blood to smaller vessels causing “steeling” from the ischemic areas (as opposed to nitrates).
Line 154: Line 170:


===Dihydropyridine CCBs===
===Dihydropyridine CCBs===
 
----
====Nicardipine====
====Nicardipine====
*'''Mechanism of action''': Compared to nifedipine, diltiazem, and verapamil, nicardipine was the most vascular smooth muscle selective. Nicardipine was also shown to be more specific for coronary arteries than peripheral arteries.  (78)
*'''Mechanism of action''': Compared to nifedipine, diltiazem, and verapamil, nicardipine was the most vascular smooth muscle selective. Nicardipine was also shown to be more specific for coronary arteries than peripheral arteries.  (78)
Line 176: Line 192:
===Non-Dihydropyridine CCBs===
===Non-Dihydropyridine CCBs===
*'''Mechanism of action''': Non-Dihydropyridine CCBs block L-type calcium channels (vascular smooth muscle, cardiac myocytes, and cardiac sinoatrial and atrioventricular nodes). They also block influx of calcium into muscle cells,  smooth muscle, cardiac myocyte relaxation and a-v slowing.
*'''Mechanism of action''': Non-Dihydropyridine CCBs block L-type calcium channels (vascular smooth muscle, cardiac myocytes, and cardiac sinoatrial and atrioventricular nodes). They also block influx of calcium into muscle cells,  smooth muscle, cardiac myocyte relaxation and a-v slowing.
 
----
====Diltiazem====
====Diltiazem====
*'''Clinical effects''': IC administration of diltiazem was shown to prevent exercise induced vasoconstriction of stenotic coronary arteries. (86)
*'''Clinical effects''': IC administration of diltiazem was shown to prevent exercise induced vasoconstriction of stenotic coronary arteries. (86)
Line 193: Line 209:


*'''Reversing the effects''':
*'''Reversing the effects''':
 
----
====Verapamil====
====Verapamil====
*'''Clinical effects''':  IC verapamil was shown to improve TIMI flow rates and TIMI frame counts in patients with CAD and improve angiographic outcomes in no reflow states. (87)  Additionally, it has been shown to augment postinterventional coronary blood flow. (88, 89) In patients undergoing PCI < 12 hrs of AMI, early administration of intracoronary verapamil 50-100  mcg prior and the same dose during PCI improved postprocedural myocardial perfusion as evaluated by TMPG (90)  In the VAPOR trial, intragraft administration of 200 mcg verapamil prior to saphenous vein graft PCI reduced no-reflow and was associated with a trend toward improved myocardial perfusion. (91)  Compared to those treated with PTCA alone, verapamil 500 mcg ic after primary PTCA improved microvascular function, leading to better LV functional outcome in patients with AMI (92)  Vasospasm distal to a PTCA site may be resistant to nitroglycerine and was shown respond to Verapamil 100 mcg. (93)  In the setting of ACS, 500 mcg of IC verapamil compared to saline was shown to significantly improve wall motion and coronary flow.(68) IC verapamil was shown to safely terminate reperfusion-induced ventricular tachyarrhythmias  in a rapid manner. However, this effect was not seen for reperfusion-induced VF. (94)
*'''Clinical effects''':  IC verapamil was shown to improve TIMI flow rates and TIMI frame counts in patients with CAD and improve angiographic outcomes in no reflow states. (87)  Additionally, it has been shown to augment postinterventional coronary blood flow. (88, 89) In patients undergoing PCI < 12 hrs of AMI, early administration of intracoronary verapamil 50-100  mcg prior and the same dose during PCI improved postprocedural myocardial perfusion as evaluated by TMPG (90)  In the VAPOR trial, intragraft administration of 200 mcg verapamil prior to saphenous vein graft PCI reduced no-reflow and was associated with a trend toward improved myocardial perfusion. (91)  Compared to those treated with PTCA alone, verapamil 500 mcg ic after primary PTCA improved microvascular function, leading to better LV functional outcome in patients with AMI (92)  Vasospasm distal to a PTCA site may be resistant to nitroglycerine and was shown respond to Verapamil 100 mcg. (93)  In the setting of ACS, 500 mcg of IC verapamil compared to saline was shown to significantly improve wall motion and coronary flow.(68) IC verapamil was shown to safely terminate reperfusion-induced ventricular tachyarrhythmias  in a rapid manner. However, this effect was not seen for reperfusion-induced VF. (94)
Line 210: Line 226:


*'''Reversing the effects''':
*'''Reversing the effects''':
 
----
====Papavarine====
====Papavarine====
*'''Mechanism of action''':
*'''Mechanism of action''':
Line 230: Line 246:
*'''Reversing the effects''':
*'''Reversing the effects''':


====ALFA BLOCKERS====
==Alpha blockers==


====Phentolamine====
*'''Mechanism of action''':


=======PHENTOLAMINE=======
*'''Duration of action''':


*'''Clinical effects:''' 72 hrs following thrombolysis for AMI, alpha-adrenergic blockade IC, using phentolanine attenuated vasoconstriction and postischemic LV dysfunction after PCI. Flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with. After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values which was re-restored after administration of α-blockers. In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (95)


========MECHANISM OF ACTION========
*'''Clinical use''': Not commonly used clinically.


==Endothelium dependent vasodilators==
*'''Overview''': Endothelium dependent vasodilators require and intact endothelium. If the endothelium is diseased or absent then paradoxical vasoconstriction occurs.
----
====Acetyl choline====
*'''Mechanism of action''':


========DURATIN OF ACTION========
*'''Clinical use''':
----
====Serotonin====
*'''Mechanism of action''':


========CLINICAL EFFECTS OF IC PHENTOLAMINE========
*'''Clinical effects''':
 
72 hrs following thrombolysis for AMI, alfa-adrenergic blockade ic, using phentolanine attenuated vasoconstriction and postischemic LV dysfunction after PCI.


Flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with. After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values which was re-restored after administration of α-blockers.
*'''Clinical use''':


In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (95)
==IC anti-platelet agents==


========CLINICAL USE========
==IC thrombolytics==
 
Not commonly used clinically
 
 
 
====ENDOTHELIUM DEPENDENT VASODILATORS====
 
Require and intact endothelium.
If the endothelium is diseased or absent the paradoxical vasoconstriction occurs.
 
 
=======ACETYL CHOLINE=======
 
 
========MECHANISM OF ACTION========
 
 
========CLINICAL USE========
 
 
 
=======SEROTONIN =======
 
========MECHANISM OF ACTION========
 
========CLINICAL EFFECTS OF IC SEROTONIN========
 
========CLINICAL USE========
 
===INTRACORONARY ANTI PLATELET AGENTS===
 
 
===INTRACORONARY THROMBOLYTICS===
 
 
===OTHER INTRA CORONARY MEDICATIONS===
 
==FUTURE==
 
==SUMMARY OF INTRACORONARY PHARMACOTHERAPY==
 
Coupled with the understanding of the importance of preservation of microvascular bed and the inability to progress further on the available systemic pharmacotherapy, there is renewed interest in local drug delivery to achieve higher than usual local drug concentrations.
 
Commonest of them are vasodilators, out of which the commonest being nitroglycerine. There is some what frequent use of adenosine, and nicardipine though the most of the experience is mainly on adenosine. Use of verapamil and diltiazem are declining due to the availability of nicardipine.
 
Despite the lack of randomized trials, their use in niche situations such as prevention and treatment of no-reflow is how ever may prove to be life saving.
 
The evidence on the use of intracoronary glycoprotein inhibitors is sparse. Until more robust data becomes available, regular use of this class of medications is not recommended.
 
There has been several studies looking at intracoronary thrombolytics. How ever there is no evidence to suggest that they are superior to current therapy.
 
Future studies are expected to address some of the issues in this arena.


==Other IC medications==


==Future==


==REFERENCES==
==REFERENCES==
Line 502: Line 477:
96. Wilson RF, Laxson DD, Lesser JR, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;i:807–11.
96. Wilson RF, Laxson DD, Lesser JR, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;i:807–11.


{{SIB}}
 


[[Category:Drug]]
[[Category:Drug]]

Latest revision as of 13:45, 1 November 2012

WikiDoc Resources for Intracoronary pharmacotherapy

Articles

Most recent articles on Intracoronary pharmacotherapy

Most cited articles on Intracoronary pharmacotherapy

Review articles on Intracoronary pharmacotherapy

Articles on Intracoronary pharmacotherapy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Intracoronary pharmacotherapy

Images of Intracoronary pharmacotherapy

Photos of Intracoronary pharmacotherapy

Podcasts & MP3s on Intracoronary pharmacotherapy

Videos on Intracoronary pharmacotherapy

Evidence Based Medicine

Cochrane Collaboration on Intracoronary pharmacotherapy

Bandolier on Intracoronary pharmacotherapy

TRIP on Intracoronary pharmacotherapy

Clinical Trials

Ongoing Trials on Intracoronary pharmacotherapy at Clinical Trials.gov

Trial results on Intracoronary pharmacotherapy

Clinical Trials on Intracoronary pharmacotherapy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Intracoronary pharmacotherapy

NICE Guidance on Intracoronary pharmacotherapy

NHS PRODIGY Guidance

FDA on Intracoronary pharmacotherapy

CDC on Intracoronary pharmacotherapy

Books

Books on Intracoronary pharmacotherapy

News

Intracoronary pharmacotherapy in the news

Be alerted to news on Intracoronary pharmacotherapy

News trends on Intracoronary pharmacotherapy

Commentary

Blogs on Intracoronary pharmacotherapy

Definitions

Definitions of Intracoronary pharmacotherapy

Patient Resources / Community

Patient resources on Intracoronary pharmacotherapy

Discussion groups on Intracoronary pharmacotherapy

Patient Handouts on Intracoronary pharmacotherapy

Directions to Hospitals Treating Intracoronary pharmacotherapy

Risk calculators and risk factors for Intracoronary pharmacotherapy

Healthcare Provider Resources

Symptoms of Intracoronary pharmacotherapy

Causes & Risk Factors for Intracoronary pharmacotherapy

Diagnostic studies for Intracoronary pharmacotherapy

Treatment of Intracoronary pharmacotherapy

Continuing Medical Education (CME)

CME Programs on Intracoronary pharmacotherapy

International

Intracoronary pharmacotherapy en Espanol

Intracoronary pharmacotherapy en Francais

Business

Intracoronary pharmacotherapy in the Marketplace

Patents on Intracoronary pharmacotherapy

Experimental / Informatics

List of terms related to Intracoronary pharmacotherapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; and Al Deibele, M.D. [2]

Associate Editors-In-Chief: Priyantha Ranaweera, M.D. [3]; Vijay Kunadian, M.D.

Assistant Editor-In-Chief: Scott P. Williams, [4]


Overview

Coupled with the understanding of the importance of preservation of microvascular bed and the inability to progress further on the available systemic pharmacotherapy, there is renewed interest in local drug delivery to achieve higher than usual local drug concentrations.

The most common IC pharmacotherapies are vasodilators, with the most popular being nitroglycerine. There is somewhat frequent use of adenosine and nicardipine, though, most of the experience is mainly on adenosine. Use of verapamil and diltiazem are declining due to the availability of nicardipine.

Despite the lack of randomized trials, the use of IC pharmacotherapies in niche situations, such as prevention and treatment of no-reflow, may prove to be life saving.

The evidence on the use of intracoronary glycoprotein inhibitors is sparse. Until more robust data becomes available, regular use of this class of medications is not recommended.

There has been several studies looking at intracoronary thrombolytics. However there is no evidence to suggest that they are superior to current therapy.

Future studies are expected to address some of the issues in this arena.

Pathophysiology

The process of coronary thrombosis starts at a ruptured or fissured plaque creating an in-situ platelet and fibrin aggregate which progresses to an occlusive thrombus. There is in turn distal embolization of platelet rich thrombi downstream which causes microvascular obstruction and tissue level myocardial ischemia. There are also multiple humoral factors which play a role in setting up the cascade of reversible and irreversible damage at cellular and ultra-structural level. There are multiple pathophysiologic abnormalities that lead to impaired microvascular perfusion including:

  1. Epicardial and microvascular spasm
  2. Thromboembolism and distal ischemia
  3. Neutrophil plugging
  4. Swelling and edema of endothelial and myocardial cells
  5. Capillary leak
  6. Dead cells develop contraction bands (hypercontraction of myocytes)
  7. In the setting of reperfusionhemorrhage in the interstitium
  8. Myocytolysis (large vacuoles in cells) and cell death and removal of dead cells by macrophages, with the beginning of vascular granulation tissue formation followed by repair-granulation tissue, becoming more fibrous and less vascular over time
  9. Heightened alpha adrenergic tone and abnormal neural reflexes
  10. Capillary leak – advanced stages
  11. Interstitial hemorrhage

Methods to Assess Microvascular / Myocardial Perfusion

The TIMI Frame Count

In this method, the number of cineframes required for dye to reach a distal landmark is counted. This method is a surrogate for velocity of dye traversing the vessel. Slower flow in the culprit artery and in all three arteries has been associated with a higher risk of adverse outcomes including mortality compared to those who had normal flow in non culprit arteries. This simple method has been used in a large number of studies to compare the efficacy of agents targeted to treat the microvasculature. See Google Scholar references here.

TIMI Myocardial Perfusion Grade / Blush Grade (TMPG)

This is a simple semi-quantitative technique that could be conveniently and reliably applied in the cardiac catheterization laboratory, enabling the angiographer to assess tissue level perfusion from the angiogram alone. (34)

TMPG is assessed on a scale of 0-3, according to the following definitions:

  • Normal myocardium (TMPG 3)- Normal ground glass appearance of myocardial blush diffusely, and at the end of the washout phase, dye is only mildly persistent or is gone.
  • Mildly impaired tissue level perfusion (TMPG 2)- Dye enters the myocardium, but accumulates and exits more slowly. At the end of the washout phase, dye in the myocardium is strongly persistent.
  • Moderately impaired tissue level perfusion (TMPG 1)- The dye does not leave the myocardium and there is a stain on the next injection.
  • Severely impaired tissue level perfusion (TMPG 0)- Dye does not enter the myocardium and there is minimal or no blush apparent during the injection and washout phases.

In patients treated with thrombolysis, normal TIMI myocardial perfusion grade 3 flow was associated with improved mortality in the short term. (36) For patients who had thrombolytic therapy for STEMI, at 2 years following thrombolytic therapy, the TMPG was a multivariate predictor of mortality, independent of flow in the epicardial artery. (36)

Patients with TIMI grade 3 flow in the epicardial artery who had a closed microvasculature (TMPG 0/1 flow) had a higher mortality (5.4%) than those with TMPG 2 (2.9%) or TMPG 3 flow (0.7%)(p=0.007). Even among patients with TIMI grade 3 flow, there was a 7-fold increase in mortality dictated independently by the extent of the TMP grading. TIMI myocardial perfusion grade was a predictor of 30-day mortality, independent of gender, age, admission pulse, anterior MI location, the TIMI frame count, and the TIMI flow grade. (37)

In the setting of emergency PCI TMPG was a more potent and accurate predictor of survival than was TIMI flow alone after acute infarct PTCA. Interventions which normalize myocardial blush may in fact reduce mortality, though, only ~30% of pts undergoing PTCA had normal myocardial blush restored. (38)

Myocardial Contrast Echocardiography (MCE)

With no reflow, microbubbles do not enter the myocardium where there is a higher risk of arrhythmia, congestive heart failure, or death. This technique is limited for routine clinical application due to the need of additional equipment, personnel, time and expense. (33)

Intracoronary Pharmacotherapy

The main aim of IC pharmacotherapy is to improve and re-establish effective tissue level perfusion, prior to irreversible changes are triggered. Emphasis is to deliver the drug in the highest possible concentration to the affected area thus potentially minimizing systemic effects and ensuring drug delivery to the affected area in coronary slow-flow or no-reflow states. Administration via the guiding catheter may not achieve adequate dosing because of reflux of drug into the aorta. Ideally they should be administered to the distal vascular bed through a catheter such as a balloon catheter or an ultrafuse catheter.

Vasodilators

Non-Endothelium Dependent Vasodilators

Do not require an intact endothelium for vasodilation

Nitro-Vasodilators

Mechanism of Action

These compounds contribute active NO (nitric oxide) a vasodilator.


Nitroglycerin
  • Overview- Nitorglycerin dilates veins, larger arteries and arterioles, and has an antiplatelet action in-vitro. When it is administered systemically Venodilation > arterial dilation. The exact mechanism of the action of IC nitroglycerin not fully understood. Also, the anti anginal response may be mediated systemically rather than locally. This effect should be differentiated from direct coronary vasodilatory properties.(46)
  • Duration of action- The duration of action is a few minutes.
  • Clinical effects of IC nitroglycerin- Nitroglycerin dilates arteries > 100 mcg, including the areas of stenosis. In higher doses it dilates larger arteries as well. Nitroglycerin, as opposed to dipyridamole, does not cause “steal” phenomenon. (47, 48) In one study, IC nitroglycerin increased normal luminal area of coronary arteries increased by an average of 28% and luminal area in significantly stenotic segments by 29 %. (49) Smaller coronary arteries (< 1mm diameter) were shown to have a larger percentage dilation compared to larger arteries when given iv or ic. (50,51) Pretreatment with intracoronary nitroglycerin prevented exercise-induced vasoconstriction of stenotic coronary arteries. (52) Intra coronary nitroglycerin has also been shown to relieve resistant coronary artery spasm not responding to sub lingual nitroglycerin (53)
  • Clinical use- Nitroglycerin is the most commonly used IC vasodilator. Its uses include: suspected or obvious spasm, no-reflow, prophylaxis prior to stenting, prophylaxis in lesions prone to distal embolization, and post PCI angina. Additionally, nitroglycerin is used in conjunction with distal emboli-protection.
  • IC bolus- Nitroglycerin is delivered in 50 – 1000 mcg in boluses.
  • IC infusion-
  • Preparation-
  • Side effects- Side effects of nitroglycerin include: hypotension and headache.
  • Reversing the effects- Hypotension can be relieved with iv fluids and, occasionally, inotropes (eg dopamine).
  • Coronary spasm resistant to nitroglycerine- There have been reports of spasm unresponsive to ic nitroglycerine (200 mcg – 2000 mcg over 10 mts) being successfully treated with ic verapamil (1000 mcg to 1500 mcg given over 10 mts) (54,55)

Sodium nitroprusside
  • Overview: Compared with adenosine, intracoronary nitroprusside produces an equivalent but more prolonged coronary hyperemic response in normal coronary arteries (57)
  • Duration of action: The duration of action is a few minutes, with a drug half life = 2 minutes.
  • Clinical effects of IC nitroprusside: In one study, 50 mcg delivered IC was shown to be effective in alleviating impaired blood flow and no-reflow associated with PCI. (58) Similarly, 200 mcg produced improved CTFCs among patients with no-reflow and was also associated with a lower incidence of hypotension and bradycardia. (59)
  • Clinical use: Sodium nitroprusside's uses include: suspected or obvious spasm, no-reflow, prophylaxis prior to stenting, prophylaxis in lesions prone to distal embolization. It is also used in conjunction with distal emboli-protection and to treat post PCI angina.
  • IC bolus: 100 mcg IC as a single dose to a total dose of 1000 mcg (1 mg).
  • IC infusion:
  • Preperation:
  • Side effects: Side effects include bradycardia and hypotension, but at a lower rate than observed with nitroglycerin.
  • Reversing the effects:

Adenosine

  • Overview: Adenosine is synthesized in the myocardium in vivo. Intravenous or intracoronary adenosine can reliably increase coronary hyperemia to maximal levels to or even exceeding what is produced by transient ischemia.
  • Mechanism of action: Adenosine increases arterial endothelial cell nitric oxide (NO) through adenosine A2a receptors on the myocytes of resistance vessels. The administration of adenosine is associated with a reduction in both endothelial injury and neutrophil activation. (61)
  • Duration of action: Very brief (5-30 seconds).
  • Clinical Effects: Intra coronary adenosine was shown to improve TIMI frame count measurements in patients with microvascular angina. (64) High-dose intracoronary adenosine in the setting of AMI, was shown to be associated with improved echocardiographic parameters and clinical outcomes. (65) Several small studies demonstrated an improved microvascular function and reduction in infarct size in the setting of AMI (66,67) In the setting of ACS IC adenosine, compared to saline, was shown to significantly improve left ventricular wall motion and coronary flow.(68) In a canine model, submaximal dosing did not affect the endocardial to-epicardial blood flow ratio, whereas submaximal doses demonstrated a marked preferential endocardial perfusion. (69)
  • AMISTAD Trials: Largest randomized trials with Adenosine, however the drug was given intravenously.
    • AMISTAD I: Patients with STEMI were treated with thrombolysis and given an infusion of iv 70 mcg/kg/min adenosine infusion, demonstrated a significant reduction in infarct size. (62)
    • AMISTAD II: Largest trial (n=2118). (63) Patients with anterior ST elevation myocardial infarctions were treated with either thrombolysis (60%) or primary PCI (40%) and received IV adenosine 50 mcg/kg/min, 70 mcg/kg/min or placebo. Patients treated with adenosine demonstrated no reduction in the composite primary end point of death, new congestive heart failure or the first re-hospitalisation for congestive heart failure. A secondary endpoint of infarct size demonstrated a trend toward a reduction but did not reach statistical significance. The dose used in these two trials was low compared the conventional dose of 140 mcg/kg/min for coronary hyperemia. Also the drug was delivered systemically.
  • IC dosing: The dose needed to induce maximum hyperemia was 16 mcg IC for the left coronary artery and 12 mcg IC for the right coronary artery in a subjects with no CAD. (70) However in patients with known CAD, the dose varied from 50 mcg to 800 mcg. With increasing dose > 200 mcg, heart block was increasingly encountered. The IC dose of 80 mcg/kg/min produced maximum hyperemia. With higher doses up to 240 mcg/kg/min there was minimal drop in blood pressure but there was no tachycardia. (71) In a study comparing various doses of IC adenosine, IV adenosine, ATP and papavarine, it was shown that the IC doses and the IV doses produced comparable vasodilation. How ever IV dosing was associated with more episodes of hypotension and tachycardia and the IC dosing was more less likely to cause tachycardia. Additionally the IC dosing had a propensity to cause bradycardia. (Bernard De Bruyne, MD, PhD; Nico H.J. Pijls, et al, Intracoronary and Intravenous Adenosine 5'-Triphosphate, Adenosine, Papaverine, and Contrast Medium to AssessFractional Flow Reserve in HumansCirculation. 2003;107:1877-1883.)

Low doses ---> effects are confined to subendocardial vessels. High doses ---> transmural vasodilation (60)

  • IC BOLUS: In healthy persons 16 mcg boluses induced maximal hypermeia, but it may be necessary administer larger doses in patients with microvascular dysfunction. (72) Dosages used in studies raged from 16 mcg to 4 mg boluses. The usual dosages used were 100 mcg boluses to a total dose of 4000 mcg, (73)
  • IC infusion: 10-70 mcg/kg/min with some suggestion that the higher infusion rate may produce better results. Adenosine has a half-life of 6 seconds. Therefore, it can be repeatedly administered when ECG, pulse and blood pressure normalize. (74, 75)
  • Preparation: Add 6 mg of Adenosine to 9 cc of 0.9% NNrmal saline making 600 mcg/ml of the drug. Take 1 cc of this solution and dilute it with 9 cc of normal saline making 60 mcg/ml. Take 1 cc and add 0.9% N saline up to 10 cc yielding 6 mcg ml. Administer paying close attention to the ECG. Immediately before and during administration electrocardiogram can be recorded at a faster speed (100 mm/sec) to assess changes in the PR, QRS, and QT intervals. Because transient bradycardia can occur, consideration should be given to the prophylactic placement of a temporary pacemaker.
  • Side effects: Bradycardia is often seen with the administration of high doses. By increasing the refractory period of the sinoatrial and atrioventricular nodes produces heart block. Unlike with iv use, difficulty in breathing, hypotension, tachycarida, and chest pressure are all uncommon. (76, 77)
  • Reversing the effects: This is not an issue due to short duration of action

Dipyridamole

  • Mechanism of action: Dipyridamole increases interstitial adenosine, resulting in vasodilation. It is thought to divert blood to smaller vessels causing “steeling” from the ischemic areas (as opposed to nitrates).
  • Duration of action: Dipyridamole's duration of action is approximately 30 minutes.
  • Clinical effects:
  • Clinical use: Not used due to the availability of its active form, adenosine. However if needed the clinical usage could be similar to Adenosine.
  • IC bolus:
  • IC infusion:
  • Preparation:
  • Side effects:
  • Reversing the effects: Methyl xanthines reverse the effects of dipyridamole.

Calcium channel blockers (CCB)

Dihydropyridine CCBs


Nicardipine

  • Mechanism of action: Compared to nifedipine, diltiazem, and verapamil, nicardipine was the most vascular smooth muscle selective. Nicardipine was also shown to be more specific for coronary arteries than peripheral arteries. (78)
  • Duration of action: Nicardipine's duration of action is 5-6 minutes.
  • Clinical effects: After IV administration of nicardipine, coronary blood flow increased significantly and the mean aortic pressure decreased by 10%. (79) IC nicardipine 200 µg, 10,000 µg diltiazem and verapamil 200 µg were studied on coronary arteries. The effect on epicardial coronary artery diameter was similar among the 3 calcium channel blockers. Two patients who received diltiazem had a transient episode of type 1 second-degree atrioventricular block. Compared to the other two, nicardipine was shown to significantly increase icoronary blood flow velocity and also had a longer duration of effect (5–6 minutes). (80) Nicardpine 200 mcg IC not only prevented exercise induced vasoconstriction in the atherosclerotic arteries, but also caused vasodilation, in similar proportions to iv administration. The combination of nitroglycerin and nicardipine has an additive dilatory effect on coronary arteries that is more pronounced in stenotic than nonstenotic vessels (81, 82) In patients undergoing PTCA, ic infusion of nicardipine protected the myocardium from regional ischemia, allowing a faster recovery of aerobic metabolism after reperfusion. This mechanism appeared unrelated to direct hemodynamic effects of nicardipine. (83) In contrast to other calcium antagonists such as nifedipine, which depresses myocardial contractility, nicardipine 200 mcg ic, had negligible effects on myocardial contractility. (84)
  • Clinical use: Nicardipine is used: for suspected or obvious spasm, for no-reflow, as prophylaxis prior to stenting, as prophylaxis prior to PCI in lesions prone to distal embolization, as prophylaxis with rotational atherectomy, as part of the flush irrigation of rotational atherectomy. Nicardipine is also used inn conjunction with distal emboli-protection and to treate post PCI angina.
  • IC bolus: 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)
  • IC infusion:
  • Preparation:
  • Side effects: IC nicardipine has minimal systemic or direct myocardial depressant effects (85). It is also associated with a low incidence of bradycardia and hypotension – therefore it may be preferable in patients with low blood pressure.
  • Reversing the effects: Not usually an issue.

Non-Dihydropyridine CCBs

  • Mechanism of action: Non-Dihydropyridine CCBs block L-type calcium channels (vascular smooth muscle, cardiac myocytes, and cardiac sinoatrial and atrioventricular nodes). They also block influx of calcium into muscle cells, smooth muscle, cardiac myocyte relaxation and a-v slowing.

Diltiazem

  • Clinical effects: IC administration of diltiazem was shown to prevent exercise induced vasoconstriction of stenotic coronary arteries. (86)
  • Clinical use: Given the ready availability of Nicardipine, the use of Diltiazem is waning. If needed the clinical usage could be similar to Nicardpine.
  • IC bolus: Diltiazem 200 mcg as a single dose to a total dose of 1000 mcg (1 mg)
  • IC infusion:
  • Duration of action:
  • Preparation: Take 5 mg of Diltiazem in to 9 cc of Normal saline making 500 mcg/ml. Half a ml makes 250 mcg.
  • Side effects: Side effects of diltiazem include: bradycardia, hypotension, and myocardial depression.
  • Reversing the effects:

Verapamil

  • Clinical effects: IC verapamil was shown to improve TIMI flow rates and TIMI frame counts in patients with CAD and improve angiographic outcomes in no reflow states. (87) Additionally, it has been shown to augment postinterventional coronary blood flow. (88, 89) In patients undergoing PCI < 12 hrs of AMI, early administration of intracoronary verapamil 50-100 mcg prior and the same dose during PCI improved postprocedural myocardial perfusion as evaluated by TMPG (90) In the VAPOR trial, intragraft administration of 200 mcg verapamil prior to saphenous vein graft PCI reduced no-reflow and was associated with a trend toward improved myocardial perfusion. (91) Compared to those treated with PTCA alone, verapamil 500 mcg ic after primary PTCA improved microvascular function, leading to better LV functional outcome in patients with AMI (92) Vasospasm distal to a PTCA site may be resistant to nitroglycerine and was shown respond to Verapamil 100 mcg. (93) In the setting of ACS, 500 mcg of IC verapamil compared to saline was shown to significantly improve wall motion and coronary flow.(68) IC verapamil was shown to safely terminate reperfusion-induced ventricular tachyarrhythmias in a rapid manner. However, this effect was not seen for reperfusion-induced VF. (94)
  • Duration of action:
  • Clinical use: Due to ready availability of Nicardipine, this drug is less commonly used. However if needed the clinical usage could be similar to Nicardpine.
  • IC bolus: 200 mcg as a single dose to a total of 1000 mcg (1 mg)
  • IC infusion:
  • Preparation:
  • Side effects: Side effects of IC verapamil include: bradycardia, hypotension, and decline in contractility of the myocardium. In one study, 500 mcg IC bolus produced a significantly high incidence of hear block and hypotension, with the heart block lasting 3 hours. (68)
  • Reversing the effects:

Papavarine

  • Mechanism of action:
  • Duration of action: Peak effect after 30 sec and a total duration of action of less than 2 to 3 min. Maximal coronary hyperemia for up to 30 seconds.
  • Clinical use: Due to its long duration of action and potential for polymorphic VT, it is not commonly used in the coronary circulation.
  • IC dosing:
  • IC bolus: Total dose that can be given is limited by its relatively slow systemic elimination (half-life, 3-6 hours. 6-12 mg (2mg/ml 0.9% saline). Maximum dosing 30 mg.
  • IC infusion:
  • Preparation:
  • Side effects: Side effects of papavarine include polymorphic VT (0.5% incidence) and hypotension, which may be prolonged due to its longer half life (limiting papavarine's use).
  • Reversing the effects:

Alpha blockers

Phentolamine

  • Mechanism of action:
  • Duration of action:
  • Clinical effects: 72 hrs following thrombolysis for AMI, alpha-adrenergic blockade IC, using phentolanine attenuated vasoconstriction and postischemic LV dysfunction after PCI. Flow in the uninvolved artery improved following PCI of the culprit artery significantly (by nearly 10 frames) if it was abnormal to begin with. After 15 minutes of observation, however, flow in both the culprit and non-culprit arteries again slowed back down to pre-intervention values which was re-restored after administration of α-blockers. In this study patients initially received thrombolysis followed by angiography 24 hrs later. Also there was no use of glycoprotein inhibitors. (95)
  • Clinical use: Not commonly used clinically.

Endothelium dependent vasodilators

  • Overview: Endothelium dependent vasodilators require and intact endothelium. If the endothelium is diseased or absent then paradoxical vasoconstriction occurs.

Acetyl choline

  • Mechanism of action:
  • Clinical use:

Serotonin

  • Mechanism of action:
  • Clinical effects:
  • Clinical use:

IC anti-platelet agents

IC thrombolytics

Other IC medications

Future

REFERENCES

1. Chazov, Bulletin of Experimental Biology and Medicine, Vol 5, No 2, Feb 1962

2. Ganz et al; Circ 1979 Vol 60 Supp II – 845

3. Passamani E, on behalf of the TIMI study group. The Thrombolysis In Myocardial Infarction (TIMI) trial. N Engl J Med. 1985;312:932–936

4. Dalen JE, Gore JM, Braunwald E, Borer J, Goldberg RJ, Passamani ER, Forman S, Knatterud G, and the TIMI Investigators. Six- and twelve-month follow-up of the Phase I Thrombolysis in Myocardial Infarction (TIMI) Trial. Am J Cardiol 1988;62:179-85

5. Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival: Should the paradigm be expanded? Circulation 1989;79:441-4

6. Braunwald E. The open-artery theory is alive and well - again. N Engl J Med 1993;329:1650-2.

7. Cannon CP, Braunwald E. GUSTO, TIMI and the case for rapid reperfusion. Acta Cardiol 1994;49:1-8.

8. Flygenring BP, Sheehan FH, Kennedy JW, Dodge HT, Braunwald E, for the TIMI Investigators. Does arterial patency 90 minutes following thrombolytic therapy predict 42 day survival?(abstract) J Am Coll Cardiol 1991;17 (Suppl. A):275A

9. Anderson JL, Karagounis LA, Becker LC, Sorensen SG, Menlove RL for the TEAM-3 Investigators. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction. Ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-3 study. Circulation 1993;87:1829-1839.

10. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 1993;329:1615-1622

11. Gibson CM, Murphy SA, Rizzo MJ, et al. The relationship between the TIMI Frame Count and clinical outcomes after thrombolytic administration. Circulation 1999;99:1945-1950.

12. Ross AM, Neuhaus KL, Ellis SG. Frequent lack of concordance among core laboratories in assessing TIMI flow grade after reperfusion therapy. Circulation 1995; 92:I-345.

13. Gibson CM, Cannon CP, Daley WL, et al. The TIMI Frame Count: A Quantitative Method of Assessing Coronary Artery Flow. Circulation 1996; 93:879-888.

14. Ivanc TB, Crowe TD, Balazs EM, et al. Reproducibility of the corrected TIMI frame count in angiograms of MI patients receiving thrombolysis (abstr). J Am Coll Cardiol 1998;31:11A.

15. French JK, Ellis CJ, Webber BJ, et al. Abnormal coronary flow in infarct arteries 1 year after myocardial infarction is predicted at 4 weeks by corrected Thrombolysis in Myocardial Infarction (TIMI) frame count and stenosis severity. Am J Cardiol 1998;81:665–71.

16. French JK, Ellis CJ, White HD. The corrected TIMI frame count: the new gold standard? Aust N Z J Med 1998;28:569 -73.

17. French JK, Straznicky IT, Webber BJ, et al., for the HERO 1 Investigators. Angiographic frame counts 90 minutes after streptokinase predict left ventricular function at 48 hours following myocardial infarction. Heart 1999;81:128 –33.

18. Gibson CM, Murphy SA, Rizzo MJ, et al. The relationship between the TIMI Frame Count and clinical outcomes after thrombolytic administration. Circulation 1999;99:1945-1950.

19. Gibson CM, Ryan KA, Murphy SA, et al. Impaired coronary blood flow in non-culprit arteries in the setting of acute myocardial infarction. J Am Coll Cardiol 1999;34: 974-82.

20. Gibson CM, Goel, M, Rizzo M, et al for the RESTORE Investigators. Impaired Coronary Blood Flow in Non-Culprit Arteries in the Setting of Acute Coronary Syndromes:A RESTORE substudy. Am J Cardiol 2000,

21. Gibson CM, Ryan KA, Murphy SA, et al. Impaired coronary blood flow in non-culprit arteries in the setting of acute myocardial infarction. J Am Coll Cardiol 1999;34: 974-82.

22. Gregorini L, Marco J, Kozakova M, et al. Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 1999; 99:482-490.

23. Grines CL, Cox DA, Stone GW, et al. Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1999;341(26):1949-56.

24. Lansky AJ, Stone GW, Mehran R, et al. Impact of baseline TIMI flow on outcomes after primary stenting versus primary PTCA in acute myocardial infarction. Results from PAMI stent. J Am Coll Cardiol. 1999;33 (Suppl A):368A.

25. Gibson CM, Murphy SA, Menown I, et al for the TIMI Study Group. Determinants of Coronary Blood Flow Following Thrombolytic Administration. J Am Coll Cardiol 1999; 34:1403-12.

26. Rebecca Mesley, Martin Aldrich, Jill Swanson, Sabina Murphy, Colin Hynes, Timothy Saunders, Robert Zemble, Susan J. Marble, Carolyn H. McCabe, Christopher P. Cannon, C. Michael Gibson. For the T/Ml Study Group, University of California San Francisco, Brigham & Women’s Hospital, Boston, USA; Impact of Nitrate Administration on the TIMI Frame Count and TIMI Flow Grades in the Setting of Acute Myocardial Infarction.

27.

28. John K. French, Thomas A. Hyde, Ivan T. Straznicky, Jacquelin Andrews, Mayanna Lund, David J. Amos, Andrew Zambanini, Christopher J. Ellis, Bruce J. Webber, Stephanie C. McLaughlin, Ralph M.L. Whitlock, Hitesh Patel, Harvey D. White. Green Lane hospita/, Auckland, New Zealand; The Relationship Between Corrected Timi Frame Counts and Late Survival After Myocardial Infarction

29. Manginas A, Gatzov P, Chasikidis C, Voudris V, Pavlides G, Cokkinos DV. Estimation of coronary flow reserve using the Thrombolysis In Myocardial Infarction (TIMI) frame count method. Am J Cardiol 1999;83(11):1562-5.

30. Stankovic G, Manginas A, Voudris V, et al. Prediction of restenosis after coronary angioplasty by use of a new index: TIMI frame count/minimal luminal diameter ratio. Circulation 2000;101:962-8

31. Quantitative Angiographic Measurement of Absolute Coronary Blood Flow 81 Its Relation to Mortality in Acute Myocardial Infarction G. Michael Gibson, Rebecca Mesley, Timothy Saunders, Colin Hynes, Sabina Murphy, Robert Zemble, Susan J. Marble, Carolyn H. McCabe, Elliott M. Antman, Eugene Braunwald. for the T/M/ Study Group, University of California San Francisco, Brigham & Women’s Hospital Boston, USA

32. Falk, Circulation 71, No. 4, 699-708, 1985

33. Ito H, Tomooka T, Sakai N, et al. Lack of Myocardial Perfusion Immediately After Successful Thrombolysis. A Predictor of Poor Recovery of Left Ventricular Function in Anterior Myocardial Infarction. Circulation 1992; 85:1699-1705.

34. Gibson CM, Cannon CP, Murphy SA, et al for the TIMI Study Group. The Relationship of the TIMI Myocardial Perfusion Grade to Mortality Following Thrombolytic Administration. Circulation 2000;101:125-130

35. Lepper W, Hoffman R, Kamp O, et al. Angiographic myocardial blush grade relates to myocardial contrast echo and coronary flow reserve for assessment of reperfusion after myocardial infarction. J Am Coll Cardiol 2000; 35:397A

36. Gibson CM, Cannon CP, Murphy SA, et al for the TIMI Study Group. The Relationship of the TIMI Myocardial Perfusion Grade to Mortality Following Thrombolytic Administration. Circulation 2000;101:125-130.

37. Stone GW, Lansky AJ, Mehran R, et al. Beyond TIMI 3 Flow: The importance of restored myocardial perfusion for survival in high risk patients undergoing primary or rescue PTCA. J Am Coll Cardiol 2000; 35: 403A.

38. Gregg W. Stone, Alexandra J. Lansky, Roxana Mehran, Michael A. Peterson, Luis Gruberg, George Dangas, Kartik Eesai, Steven T. Slack, Renee Reed, Brian Proctor, Martin 8. Leon. Washington Hospital Center, Washington, DC, USA Myocardial perfusion may be impaired after PTCA in AMI despite restoration of normal epicardial (TIMI-3) blood flow, which may be partly responsible for mortality even after successful PTCA.

39. Barron HV, Cannon CP, Murphy SA, Braunwald E, Gibson CM. The association between white blood cell count, epicardial blood flow, myocardial perfusion and clinical outcomes in the setting of acute MI. A TIMI 10B substudy. Circulation 2000;102(19):2329-34.

40. de Lemos JA, Gibson CM, Antman EM, et al. Correlation between the TIMI myocardial perfusion grade and ST segment resolution among patients with normal epicardial flow after fibrinolysis. Circulation 2000:102: II-775.

41. Gibson CM, Giugliano RP, Roe MT, et al. Impaired TIMI epicardial flow and myocardial perfusion grades are associated with increased time to ST segment recovery in ST segment elevation MI: an INTEGRITI substudy. Circulation. 2002;106(suppl II):II-598.

42. Angeja BG, Gunda M, Murphy SA, et al. TIMI myocardial perfusion grade and ST segment resolution: association with infarct size as assessed by single photon emission computed tomography imaging. Circulation. 2002;105:282–285.

43. Gibson CM, Cohen DJ, Cohen E, et al for the ESPRIT study group. Eptifibatide improves tissue level perfusion: Results of the ESPRIT angiographic substudy. Circulation 2000, 102: II-366 (abstr).

44. Cannon CP, Gibson CM, Lambrew CT, et al for the NRMI-2 Investigators. Relationship of door-to-balloon time to mortality in patients with acute myocardial infarction treated with primary angioplasty. JAMA 2000; 283:2941-7.

45. Gibson CM, Cannon CP, Piana RN, et al. Angiographic predictors of early reocclusion in the TIMI 4 trial. J Am Coll Cardiol 1995; 25:582-589.

46. WILLIAM GANZ M.D.HAROLD S. MARCUS M.D. Failure of Intracoronary Nitroglycerin to Alleviate Pacing-Induced Angina ; Circulation. 1972;46:880;

47. Harrison DG, ET AL. The nitrovasodilators. New ideas about old drugs. Circulation 1993; 87:1461-1467

48. Garvan D Kane, Mayo clinic caridilogy concise text book 3rd ed, pp 1249

49. B. GREG BROWN, MD, PhD Response of Normal and Diseased Epicardial Coronary Arteries to Vasoactive Drugs: Quantitative Arteriographic Studies Am J Cardiol 1985;56:23E-29E

50. RL Feldman, JD Marx, CJ Pepine and CR Conti; Analysis of coronary responses to various doses of intracoronary nitroglycerin; Circulation, Vol 66, 321-32

51. Feldman RL, Pepine CJ, Conti CR: Magnitude of dilatation of large and small coronary arteries bv nitroglycerin. Circulation 64: 324, 1981


52. Hess OM, Bortone AS. Eid K, et al. Coronary vasomotor tone during static and dynamic exercise. Eur Heart J 1089:Ill;IllS-Ill.

53. CJ Pepine, RL Feldman and CR Conti; Action of intracoronary nitroglycerin in refractory coronary artery spasm; Circulation 1982;65;411-414

54. Richard M. Pomerantz, MD, Richard E. Kuntz, MD, Daniel J. Diver, MD, Robert D. Safian, MD, FSCAI, and Donald S. Baim, MD, FSCAl; lntracoronary Verapamil for the Treatment of Distal Microvascular Coronary Artery Spasm Following PTCA lntracoronary Verapamil for the Treatment of Distal Microvascular Coronary Artery Spasm Following PTCA

55. Richard M. Pomerantz, MD, Richard E. Kuntz, MD, Daniel J. Diver, MD, Robert D. Safian, MD, FSCAI, and Donald S. Baim, MD, FSCAl

56. Babbitt D, Perry J, Forman M.: Intracoronary verapamil for revera1 of refractory coronary vasospasm during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 12: 1377-1381, 1988.

57. Walter A. Parham, MD; Andre Bouhasin, MD; Jeffrey P. Ciaramita, MD; Souheil Khoukaz, MD; Steven C. Herrmann, MD; Morton J. Kern, MD; Coronary Hyperemic Dose Responses of Intracoronary Sodium Nitroprusside; Circulation. 2004;109:1236-1243

58. William B. Hillegass, MD, MPH,* Neal A. Dean, BA,† Laurence Liao, MD, Rodney G. Rhinehart, MD,† Paul R. Myers, MD, PHD, FACC, FSCAI; Treatment of No-Reflow and Impaired Flow With the Nitric Oxide Donor Nitroprusside Following Percutaneous Coronary Interventions: Initial Human Clinical Experience; J Am Coll Cardiol 2001;37:1335– 43

59. Hillegass WB, Dean NA, Liao L, et al. Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J Am Coll Cardiol. 2001;37:1335–1343.

60. Jose G. Diez’ , M.J. Lievano, Mihai Croitoru’ , James J. Ferguson’ Hospital Universitario San Rafael, Bogota, Colombia; ‘St. Luke’s Episcopal Hospital/The Texas Heart Institute, Houston, TX, USA

61. Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J 2001;22:729–39.

62. Mahaffey KW, Puma JA, Barbagelata NA, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the acute myocardial infarction study of adenosine (AMISTAD) trial. J Am Coll Cardiol 1999;34:1711–20.

63. Ross AM, Gibbons RJ, Stone GW, et al. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005;45:1775–80.

64. Increment in Coronarv Flow (TIMI Frame Count) in Men With Microvascuiar Angina Jose G. Diez’ , M.J. Lievano, Mihai Croitoru’ , James J. Ferguson’ Hospital Universitario San Rafael, Bogota, Colombia; ‘St. Luke’s Episcopal Hospital/The Texas Heart Institute, Houston, TX, USA, Abs JACC 2000=

65. Marzilli M, Orsini E, Marraccini P, et al. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000; 101:2154–2159.

66. Assali AR, Sdringola S, Ghani M, et al. Intracoronary adenosine administered during percutaneous intervention in acute myocardial infarction and reduction in the incidence of ‘‘no reflow’’ phenomenon. Catheter Cardiovasc Interv 2000;51:27–31.

67. Micari A, Belcik TA, Balcells EA, et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 2005;96:1410–5.

68. K Vijayalakshmi, V J Whittaker, B Kunadian, J Graham, R A Wright, J A Hall, A Sutton, M A de Belder; Prospective, randomised, controlled trial to study the effect of intracoronary injection of verapamil and adenosine on coronary blood flow during percutaneous coronary intervention in patients with acute coronary syndromes, Heart 2006;92:1278–1284. doi: 10.1136/hrt.2005.075077

69. Rembert J, Boyd LM, Watkinson WP, Greenfield JC: Effect of adenosine on transmural myocardial blood flow distribution in the awake dog. Am J Physiol 1980;239(Heart Circ Physiol 8):H7-H13

70. Robert F. Wilson, MD, Keith Wyche, BS, Betsy V. Christensen, BSN,Steven Zimmer, MD, and David D. Laxson, MD;Effects of Adenosine on Human Coronary Arterial Circulation; Circulation 1990;82:1595-1606

71. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JRTC: Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardvasc Diagn 1988;15:76-80

72. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JRTC: Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardvasc Diagn 1988;15:76-80

73. RF Wilson, K Wyche, BV Christensen, S Zimmer and DD Laxson; Effects of adenosine on human coronary arterial circulation, Circulation 1990;82;1595-1606

74. Ross AM, Gibbons RJ, Stone GW, et al. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005;45:1775–80.

75. Micari A, Belcik TA, Balcells EA, et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 2005;96:1410–5.

76. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JRTC: Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardvasc Diagn 1988;15:76-80

77. Steven E. Reis, Richard Holubkov, Joon S. Lee, Barry Sharaf, Nathaniel Reichek, William J. Rogers, Edward G. Walsh, Anthon R. Fuisz, Richard Kerensky, Katherine M. Detre, et al.Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease : Results from the pilot phase of the Women’s Ischemia Syndrome Evaluation (WISE) Study Pages 1469-1475

78. ROGER L. WHITING, PhD Animal Pharmacology of Nicardipine and Its Clinical Relevance; Am J Cardiol 1987;59:3J-8J

79. Roussenu MF, Vincent MF. Van Hoof F. Van den Berghc G. Ch:wlicr AAPouleur H. Effects of nicardipine and nisoldipine on myocordiol metabolism, coronary blood flow and oxygen supply in angina pectoris. Am J Cardiol 1984;54:1189-1194.

80. Fugit MD, Rubal BJ, Donovan DJ. Effects of intracoronary nicardipine, diltiazem and verapamil on coronary blood flow. J Invas Cardiol 2000;12:80–85.

81. PHILIPP KAUFMANN, MD, GIUSEPPE VASSALLI, MD, URS UTZINGER, PHD, OTTO M. HESS, MDJ; Coronary Vasomotion During Dynamic Exercise: Influence Of Intravenous and Intracoronary Nicardipine Am Coil Cardiol 1995;26:624-31)

82. Gage JE. Hess OM. Murakami T. Rittcr M, Grimm J, Krayenbuchl HP. Vasoconstriction of stenotic coronary arteries during exercise in patients with classic angina pectoris: reversibiiity by nitroglycerin. Circulation 1986; 73:865-76.

83. CLAUDE HANET, MD, MICHEL F. ROUSSEAU, MD, MARIE-FRANCOISE VINCENT, MD, EDITH LAVENNE-PARDONGE, MD, and HUBERT POULEUR, MD; Myocardial Protection by lntracoronary Nicardipine Administration During Percutaneous Transluminal Coronary Angioplasty AmJ Cardiol 1987;59:1035-1040

84. CLAUDE HANET, MD, MICHEL F. ROUSSEAU, MD, MARIE-FRANCOISE VINCENT, MD, EDITH LAVENNE-PARDONGE, MD, and HUBERT POULEUR, MD; Myocardial Protection by lntracoronary Nicardipine Administration During Percutaneous Transluminal Coronary Angioplasty AmJ Cardiol 1987;59:1035-1040

85. Rousseau MF, Vincent MF, Cheron P, Van Den Berghe G, Charlier AA, Pouleur H. Effects of nicordipine on coronary blood flow, left ventricular inotropic state and myocurdial metabolism in patients with onginu pectoris. Br J Clin Phormocol 1985;20:147S-157s.

86. Nonogi H, Hess OM, Ritter M, et al. Prevention of coronary vasoconstriction by diltiazem during dynamic exercise in patients with coronary artery disease. J Am Coil Cardiol 1988;12:892-9.

87. Piana R, Paik G, Moscucci M, et al. Incidence and treatment of ‘no-reflow’ after percutaneous coronary intervention. Circulation 1994;89:2514–8.

88. Piana RN, Paik GY, Mosucci M, et al. Incidence and treatment of “no reflow” after percutaneous coronary intervention. Circulation 1994;89: 2514–8.

89. Werner GS, Lang K, Kuehnert H, et al. Intracoronary verapamil for reversal of no-reflow during coronary angioplasty for acute myocardial infarction. Catheter Cardiovasc Interv 2002;57:444–51.

90. Chi-Ling Hang, MD; Cha-Ping Wang, MD; Hon-Kan Yip, MD; Cheng-Hsu Yang, MD; G. Bih-Fang Guo, MD, PhD; Chiung-Jen Wu, MD; and Shyh-Ming Chen, MD; Early Administration of Intracoronary Verapamil Improves Myocardial Perfusion During Percutaneous Coronary Interventions for Acute Myocardial Infarction; CHEST 2005; 128:2593–2598

91. Michaels AM, Appleby M, Dauterman K, et al. Pretreatment with intragraft verapamil prior to percutaneous coronary intervention of saphenous vein graft lesions: results of the randomized, controlled vasodilator prevention of no-reflow (VAPOR) trial. J Invasive Cardiol. 2002;14:299–302.

92. YOSHIAKI TANIYAMA, MD, HIROSHI ITO, MD, KATSUOMI IWAKURA, MD, TOHRU MASUYAMA, MD,* MASATSUGU HORI, MD,* SHIN TAKIUCHI, MD, NAGAHIRO NISHIKAWA, MD, YORIHIKO HIGASHINO, MD, KENSHI FUJII, MD, TAKAZO MINAMINO, MD Beneficial Effect of Intracoronary Verapamil on Microvascular and Myocardial Salvage in Patients With Acute Myocardial Infarction JACC Vol. 30, No. 5 November 1, 1997:1193-9

93. Pomerantz R, Kuntz RE, Diver DJ, Safian RD, Baim DS. Intracoronary verapamil for the treatment of distal microvascular coronary artery spasm following PTCA. Cathet Cardiovasc Diagn 1991;24:283–5.

94. Intracoronary Verapamil Rapidly Terminates Reperfusion Tachyarrhythmias in Acute Myocardial Infarction; Masaya Kato, MD, PhD; Keigo Dote, MD, PhD; Shota Sasaki, MD, PhD; Hiroaki Takemoto, MD; Seiji Habara, MD; and Daiji Hasegawa, MD; CHEST 2004; 126:702–708

95. Gregorini L, Marco J, Farah B, et al. Effects of selective alpha1- and alpha2-adrenergic blockade on coronary flow reserve after coronary stenting. Circulation. 2002 3;106: 2901–2907.

96. Wilson RF, Laxson DD, Lesser JR, et al. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet 1989;i:807–11.


Template:WikiDoc Sources