Moyamoya disease surgery: Difference between revisions

Jump to navigation Jump to search
Vishnu Vardhan Serla (talk | contribs)
No edit summary
Michael Maddaleni (talk | contribs)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
Please help WikiDoc by adding more content here.  It's easy!  Click  [[Help:How_to_Edit_a_Page|here]]  to learn about editing.
{{Moyamoya disease}}
{{Moyamoya disease}}
{{CMG}} {{AE}} {{VVS}}
{{CMG}} {{AE}} {{VVS}}
==Treatment==
==Surgery==
There are many operations that have been developed for the condition, but currently the most favored are the in-direct procedures EDAS, EMS, and multiple burr holes and the direct procedure STA-MCA. Direct [[superficial temporal artery]] (STA) to [[middle cerebral artery]] (MCA) bypass is considered the treatment of choice, although its efficacy, particularly for hemorrhagic disease, remains uncertain. Multiple [[burr hole]]s have been used in frontal and parietal lobes with good neovascularisation achieved.
There are many operations that have been developed for the condition, but currently the most favored are the in-direct procedures EDAS, EMS, and multiple burr holes and the direct procedure STA-MCA. Direct [[superficial temporal artery]] (STA) to [[middle cerebral artery]] (MCA) bypass is considered the treatment of choice, although its efficacy, particularly for hemorrhagic disease, remains uncertain. Multiple [[burr hole]]s have been used in frontal and parietal lobes with good neovascularization achieved.


The '''EDAS''' ([[encephaloduroarteriosynangiosis]]) procedure is a [[synangiosis]] procedure that requires dissection of a scalp artery over a course of several inches and then making a small temporary opening in the skull directly beneath the artery. The artery is then sutured to the surface of the brain and the bone replaced.
The EDAS ([[encephaloduroarteriosynangiosis]]) procedure is a [[synangiosis]] procedure that requires dissection of a scalp artery over a course of several inches and then making a small temporary opening in the skull directly beneath the artery. The artery is then sutured to the surface of the brain and the bone replaced.


In the '''EMS''' ([[encephalomyosynangiosis]]) procedure, the [[temporalis]] muscle, which is in the temple region of the forehead, is dissected and through an opening in the skull placed onto the surface of the brain.
In the EMS ([[encephalomyosynangiosis]]) procedure, the [[temporalis]] muscle, which is in the temple region of the forehead, is dissected and through an opening in the skull placed onto the surface of the brain.


In the '''multiple burr holes''' procedure, multiple small holes (burr holes) are placed in the skull to allow for growth of new vessels into the brain from the scalp.
In the multiple burr holes procedure, multiple small holes (burr holes) are placed in the skull to allow for growth of new vessels into the brain from the scalp.


In the '''STA-MCA''' procedure, the scalp artery (superficial temporal artery or STA) is directly sutured to an artery on the surface of the brain (middle cerebral artery or MCA). This procedure is also commonly referred to as an EC-IC (External Carotid-Internal Carotid) bypass.
In the STA-MCA procedure, the scalp artery (superficial temporal artery or STA) is directly sutured to an artery on the surface of the brain (middle cerebral artery or MCA). This procedure is also commonly referred to as an EC-IC (External Carotid-Internal Carotid) bypass.


All of these operations have in common the concept of a blood and oxygen "starved" brain reaching out to grasp and develop new and more efficient means of bringing blood to the brain and bypassing the areas of blockage. The modified direct anastomosis and encephalo-myo-arterio-synagiosis play a role in this improvement by increasing cerebral blood flow (CBF) after the operation. A significant correlation is found between the postoperative effect and the stages of preoperative angiograms. It is crucial for surgery that the anesthesiologist have experience in managing children being treated for moyamoya as the type of anesthesia they require is very different from the standard anesthetic children get for almost any other type of [[neurosurgical]] procedure.
All of these operations have in common the concept of a blood and oxygen "starved" brain reaching out to grasp and develop new and more efficient means of bringing blood to the brain and bypassing the areas of blockage. The modified direct anastomosis and encephalo-myo-arterio-synagiosis play a role in this improvement by increasing cerebral blood flow (CBF) after the operation. A significant correlation is found between the postoperative effect and the stages of preoperative angiograms. It is crucial for surgery that the anesthesiologist have experience in managing children being treated for moyamoya as the type of anesthesia they require is very different from the standard anesthetic children get for almost any other type of [[neurosurgical]] procedure.
Line 25: Line 27:
[[Category:Congenital disorders]]
[[Category:Congenital disorders]]
[[Category:Needs content]]
[[Category:Needs content]]
[[Category:Needs overview]]

Latest revision as of 15:17, 19 March 2013

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Moyamoya disease Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Moyamoya Disease from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Moyamoya disease surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Moyamoya disease surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Moyamoya disease surgery

CDC on Moyamoya disease surgery

Moyamoya disease surgery in the news

Blogs on Moyamoya disease surgery

Directions to Hospitals Treating Moyamoya disease

Risk calculators and risk factors for Moyamoya disease surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Vishnu Vardhan Serla M.B.B.S. [2]

Surgery

There are many operations that have been developed for the condition, but currently the most favored are the in-direct procedures EDAS, EMS, and multiple burr holes and the direct procedure STA-MCA. Direct superficial temporal artery (STA) to middle cerebral artery (MCA) bypass is considered the treatment of choice, although its efficacy, particularly for hemorrhagic disease, remains uncertain. Multiple burr holes have been used in frontal and parietal lobes with good neovascularization achieved.

The EDAS (encephaloduroarteriosynangiosis) procedure is a synangiosis procedure that requires dissection of a scalp artery over a course of several inches and then making a small temporary opening in the skull directly beneath the artery. The artery is then sutured to the surface of the brain and the bone replaced.

In the EMS (encephalomyosynangiosis) procedure, the temporalis muscle, which is in the temple region of the forehead, is dissected and through an opening in the skull placed onto the surface of the brain.

In the multiple burr holes procedure, multiple small holes (burr holes) are placed in the skull to allow for growth of new vessels into the brain from the scalp.

In the STA-MCA procedure, the scalp artery (superficial temporal artery or STA) is directly sutured to an artery on the surface of the brain (middle cerebral artery or MCA). This procedure is also commonly referred to as an EC-IC (External Carotid-Internal Carotid) bypass.

All of these operations have in common the concept of a blood and oxygen "starved" brain reaching out to grasp and develop new and more efficient means of bringing blood to the brain and bypassing the areas of blockage. The modified direct anastomosis and encephalo-myo-arterio-synagiosis play a role in this improvement by increasing cerebral blood flow (CBF) after the operation. A significant correlation is found between the postoperative effect and the stages of preoperative angiograms. It is crucial for surgery that the anesthesiologist have experience in managing children being treated for moyamoya as the type of anesthesia they require is very different from the standard anesthetic children get for almost any other type of neurosurgical procedure.

References

Template:WH Template:WS