Ciprofloxacin clinical studies: Difference between revisions
Created page with "__NOTOC__ {{Ciprofloxacin}} {{CMG}};{{AE}}{{AK}} ===Complicated Urinary Tract Infection and Pyelonephritis – Efficacy in Pediatric Patients:=== NOTE: Although effective in..." |
No edit summary |
||
Line 2: | Line 2: | ||
{{Ciprofloxacin}} | {{Ciprofloxacin}} | ||
{{CMG}};{{AE}}{{AK}} | {{CMG}};{{AE}}{{AK}} | ||
===Complicated Urinary Tract Infection and Pyelonephritis – Efficacy in Pediatric Patients:=== | ===Complicated Urinary Tract Infection and Pyelonephritis – Efficacy in Pediatric Patients:=== |
Latest revision as of 17:14, 8 January 2014
Ciprofloxacin Hydrochloride |
---|
CIPRO®,CIPROFLOXACIN®,CILOXAN®,CETRAXAL® FDA Package Insert |
Description |
Clinical Pharmacology |
Microbiology |
Indications and Usage |
Contraindications |
Warnings |
Precautions |
Adverse Reactions |
Overdosage |
Clinical Studies |
Dosage and Administration |
How Supplied |
Medication Guide |
Direction For Use |
Labels and Packages |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Abdurahman Khalil, M.D. [2]
Complicated Urinary Tract Infection and Pyelonephritis – Efficacy in Pediatric Patients:
NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues.
Ciprofloxacin, administered IV and/or orally, was compared to a cephalosporin for treatment of complicated urinary tract infections (cUTI) and pyelonephritis in pediatric patients 1 to 17 years of age (mean age of 6 ± 4 years). The trial was conducted in the US, Canada, Argentina, Peru, Costa Rica, Mexico, South Africa, and Germany. The duration of therapy was 10 to 21 days (mean duration of treatment was 11 days with a range of 1 to 88 days). The primary objective of the study was to assess musculoskeletal and neurological safety.
Patients were evaluated for clinical success and bacteriological eradication of the baseline organism(s) with no new infection or superinfection at 5 to 9 days post-therapy (Test of Cure or TOC). The Per Protocol population had a causative organism(s) with protocol specified colony count(s) at baseline, no protocol violation, and no premature discontinuation or loss to follow-up (among other criteria).
The clinical success and bacteriologic eradication rates in the Per Protocol population were similar between ciprofloxacin and the comparator group as shown below.
Inhalational Anthrax In Adults And Pediatrics
Additional Information
The mean serum concentrations of ciprofloxacin associated with a statistically significant improvement in survival in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving oral and intravenous regimens. (See DOSAGE AND ADMINISTRATION.) Ciprofloxacin pharmacokinetics have been evaluated in various human populations. The mean peak serum concentration achieved at steady-state in human adults receiving 500 mg orally every 12 hours is 2.97 mcg/mL, and 4.56 mcg/mL following 400 mg intravenously every 12 hours. The mean trough serum concentration at steady-state for both of these regimens is 0.2 mcg/mL. In a study of 10 pediatric patients between 6 and 16 years of age, the mean peak plasma concentration achieved is 8.3 mcg/mL and trough concentrations range from 0.09 to 0.26 mcg/mL, following two 30-minute intravenous infusions of 10 mg/kg administered 12 hours apart. After the second intravenous infusion patients switched to 15 mg/kg orally every 12 hours achieve a mean peak concentration of 3.6 mcg/mL after the initial oral dose. Long-term safety data, including effects on cartilage, following the administration of ciprofloxacin to pediatric patients are limited. (For additional information, see PRECAUTIONS, Pediatric Use.) Ciprofloxacin serum concentrations achieved in humans serve as a surrogate endpoint reasonably likely to predict clinical benefit and provide the basis for this indication.6
A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 11 LD50 (~5.5 x 105 spores (range 5-30 LD50) of B. anthraciswas conducted. The minimal inhibitory concentration (MIC) of ciprofloxacin for the anthrax strain used in this study was 0.08 mcg/mL. In the animals studied, mean serum concentrations of ciprofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady-state ranged from 0.98 to 1.69 mcg/mL. Mean steady-state trough concentrations at 12 hours post-dose ranged from 0.12 to 0.19 mcg/mL.7 Mortality due to anthrax for animals that received a 30-day regimen of oral ciprofloxacin beginning 24 hours post-exposure was significantly lower (1/9), compared to the placebo group (9/10) [p= 0.001]. The one ciprofloxacin-treated animal that died of anthrax did so following the 30-day drug administration period.8
More than 9300 persons were recommended to complete a minimum of 60 days of antibiotic prophylaxis against possible inhalational exposure to B. anthracis during 2001. Ciprofloxacin was recommended to most of those individuals for all or part of the prophylaxis regimen. Some persons were also given anthrax vaccine or were switched to alternative antibiotics. No one who received ciprofloxacin or other therapies as prophylactic treatment subsequently developed inhalational anthrax. The number of persons who received ciprofloxacin as all or part of their post-exposure prophylaxis regimen is unknown.
Among the persons surveyed by the Centers for Disease Control and Prevention, over 1000 reported receiving ciprofloxacin as sole post-exposure prophylaxis for inhalational anthrax. Gastrointestinal adverse events (nausea, vomiting, diarrhea, or stomach pain), neurological adverse events (problems sleeping, nightmares, headache, dizziness or lightheadedness) and musculoskeletal adverse events (muscle or tendon pain and joint swelling or pain) were more frequent than had been previously reported in controlled clinical trials. This higher incidence, in the absence of a control group, could be explained by a reporting bias, concurrent medical conditions, other concomitant medications, emotional stress or other confounding factors, and/or a longer treatment period with ciprofloxacin. Because of these factors and limitations in the data collection, it is difficult to evaluate whether the reported symptoms were drug-related.
References
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/019537s075,020780s033lbl.pdf