Coronary artery tortuosity: Difference between revisions
Rim Halaby (talk | contribs) Created page with "__NOTOC__ {{CMG}}; {{AE}} {{Rim}} ==Overview== Tortuosity in coronary artery is characterized by one or more bends of 90° or more, or three or more bends of 45° to 90° pr..." |
No edit summary |
||
(47 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Coronary angiography2}} | |||
{{CMG}}; {{AE}} {{MM}} | |||
{{ | {{SK}} Serpentine coronary artery | ||
==Overview== | ==Overview== | ||
Coronary tortuosity (CT) is a common finding in coronary angiography settings. Although the unclear clinical importance of this phenomenon, the importance of CT comes from the possibility of reducing the coronary blood supply, through the reduced coronary perfusion pressure distal to the tortuous point of the coronary artery, as a result to this kinking and tortuosity, which may lead to ischemia.<ref name="pmid17612682">{{cite journal| author=Zegers ES, Meursing BT, Zegers EB, Oude Ophuis AJ| title=Coronary tortuosity: a long and winding road. | journal=Neth Heart J | year= 2007 | volume= 15 | issue= 5 | pages= 191-5 | pmid=17612682 | doi= | pmc=PMC1877966 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17612682 }} </ref> | |||
==Angiography | ==Definition== | ||
Although coronary artery tortuosity still has unclear fixed definition, some authors describe this phenomenon as a fixed ≥3 bends during both systole and diastole, in at least a single epicardial artery, with each bend ≥45° change in the vessel direction.<ref name="pmid17216126">{{cite journal| author=Turgut O, Yilmaz A, Yalta K, Yilmaz BM, Ozyol A, Kendirlioglu O et al.| title=Tortuosity of coronary arteries: an indicator for impaired left ventricular relaxation? | journal=Int J Cardiovasc Imaging | year= 2007 | volume= 23 | issue= 6 | pages= 671-7 | pmid=17216126 | doi=10.1007/s10554-006-9186-4 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17216126 }} </ref> On the other hand, severe CT is described as a two following 180°turns of a major epicardial artery.<ref name="pmid19585899">{{cite journal| author=Groves SS, Jain AC, Warden BE, Gharib W, Beto RJ| title=Severe coronary tortuosity and the relationship to significant coronary artery disease. | journal=W V Med J | year= 2009 | volume= 105 | issue= 4 | pages= 14-7 | pmid=19585899 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19585899 }} </ref> | |||
==Pathophysiology== | |||
The pathophysiology of coronary artery tortuosity is still unclear, and it is believed to be a result of an arterial remodeling due to elastin degeneration in the arterial wall.<ref name="pmid22163145">{{cite journal| author=Panduranga P, Riyami AA| title=Serpentine coronary arteries: in a patient with apical hypertrophic cardiomyopathy. | journal=Tex Heart Inst J | year= 2011 | volume= 38 | issue= 5 | pages= 594-5 | pmid=22163145 | doi= | pmc=PMC3231533 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22163145 }} </ref> Elastin degeneration may occur with age, atherosclerosis, hypertension, aneurysms, ectasias, and diabetes mellitus.<ref name="pmid3413685">{{cite journal| author=Dobrin PB, Schwarcz TH, Baker WH| title=Mechanisms of arterial and aneurysmal tortuosity. | journal=Surgery | year= 1988 | volume= 104 | issue= 3 | pages= 568-71 | pmid=3413685 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3413685 }} </ref> | |||
CT can result from a congenital defect as well, and called [[arterial tortuosity syndrome]], which is an autosomal recessive connective tissue condition, and characterized by generalised tortuosity and elongation of all major arteries, associated with hyperextensible [[skin]] and hypermobility of [[joint]]s, and may involve other organs.<ref name="pmid8958317">{{cite journal| author=Pletcher BA, Fox JE, Boxer RA, Singh S, Blumenthal D, Cohen T et al.| title=Four sibs with arterial tortuosity: description and review of the literature. | journal=Am J Med Genet | year= 1996 | volume= 66 | issue= 2 | pages= 121-8 | pmid=8958317 | doi=10.1002/(SICI)1096-8628(19961211)66:2<121::AID-AJMG1>3.0.CO;2-U | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8958317 }} </ref> | |||
==Diagnosis== | |||
===Coronary Angiography=== | |||
A highly curved or [[tortuous]] [[vessel]] segment may result in substantial foreshortening of the [[artery]]. The length of the [[stenosis]] should therefore be assessed in the most unforeshortened projection so that the appropriate length of [[stent]]s and [[balloon]]s can be selected. | |||
==Clinical Significance== | |||
The presence of severe [[vessel]] [[tortuosity]] and eccentric angulated [[lesion]]s have been identified as a significant predictors of percutaneous coronary intervention (PCI) failure, as well as worse clinical outcomes<ref name="pmid15219518">{{cite journal| author=Gibson CM, Bigelow B, James D, Tepper MR, Murphy SA, Kirtane AJ et al.| title=Association of lesion complexity following fibrinolytic administration with mortality in ST-elevation myocardial infarction. | journal=Am J Cardiol | year= 2004 | volume= 94 | issue= 1 | pages= 108-11 | pmid=15219518 | doi=10.1016/j.amjcard.2004.03.038 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15219518 }} </ref>. In general, high procedural success (>85%) and low [[complication]] rates (<3%) have been reported. However, these assessments of outcomes are limited by variable definitions of angulation and [[tortuous|tortuosity]]. More specifically, angulation >60 degrees is associated with an increased risk of failure. | |||
Challenges in the treatment of angulated [[lesion]]s and [[lesion]]s in tortuous segments includes: | |||
*Difficulty in delivering the interventional equipment | |||
*Increased risk of [[vessel]] [[dissection]] | |||
*Increased risk of [[vessel perforation]]. | |||
The degree of angulation at bifurcation [[lesion]]s, which is a possible independent predictor of percutaneous coronary intervention (PCI) outcome, can be assessed with three-dimensional [[quantitative]] [[coronary angiography]]. The feasibility of this analysis is currently being investigated. | |||
Furthermore, it is suggested that PCI affects the distal [[bifurcation]] angle (between the [[LAD]] and [[LCx]]). Both the proximal (between the [[Left coronary artery|left main]] and [[LCx|circumflex branch of left coronary artery]]) and [[distal]] bifurcation angles are affected by motion during the [[cardiac cycle]]. | |||
==PCI in the Angulated or Tortuous Lesion== | |||
{{Main|PCI in the angulated or tortuous lesion}} | |||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
[[Category:Cardiology]] | [[Category:Cardiology]] |
Latest revision as of 17:36, 17 February 2014
Coronary Angiography | |
General Principles | |
---|---|
Anatomy & Projection Angles | |
Normal Anatomy | |
Anatomic Variants | |
Projection Angles | |
Epicardial Flow & Myocardial Perfusion | |
Epicardial Flow | |
Myocardial Perfusion | |
Lesion Complexity | |
ACC/AHA Lesion-Specific Classification of the Primary Target Stenosis | |
Lesion Morphology | |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohamed Moubarak, M.D. [2]
Synonyms and keywords: Serpentine coronary artery
Overview
Coronary tortuosity (CT) is a common finding in coronary angiography settings. Although the unclear clinical importance of this phenomenon, the importance of CT comes from the possibility of reducing the coronary blood supply, through the reduced coronary perfusion pressure distal to the tortuous point of the coronary artery, as a result to this kinking and tortuosity, which may lead to ischemia.[1]
Definition
Although coronary artery tortuosity still has unclear fixed definition, some authors describe this phenomenon as a fixed ≥3 bends during both systole and diastole, in at least a single epicardial artery, with each bend ≥45° change in the vessel direction.[2] On the other hand, severe CT is described as a two following 180°turns of a major epicardial artery.[3]
Pathophysiology
The pathophysiology of coronary artery tortuosity is still unclear, and it is believed to be a result of an arterial remodeling due to elastin degeneration in the arterial wall.[4] Elastin degeneration may occur with age, atherosclerosis, hypertension, aneurysms, ectasias, and diabetes mellitus.[5]
CT can result from a congenital defect as well, and called arterial tortuosity syndrome, which is an autosomal recessive connective tissue condition, and characterized by generalised tortuosity and elongation of all major arteries, associated with hyperextensible skin and hypermobility of joints, and may involve other organs.[6]
Diagnosis
Coronary Angiography
A highly curved or tortuous vessel segment may result in substantial foreshortening of the artery. The length of the stenosis should therefore be assessed in the most unforeshortened projection so that the appropriate length of stents and balloons can be selected.
Clinical Significance
The presence of severe vessel tortuosity and eccentric angulated lesions have been identified as a significant predictors of percutaneous coronary intervention (PCI) failure, as well as worse clinical outcomes[7]. In general, high procedural success (>85%) and low complication rates (<3%) have been reported. However, these assessments of outcomes are limited by variable definitions of angulation and tortuosity. More specifically, angulation >60 degrees is associated with an increased risk of failure.
Challenges in the treatment of angulated lesions and lesions in tortuous segments includes:
- Difficulty in delivering the interventional equipment
- Increased risk of vessel dissection
- Increased risk of vessel perforation.
The degree of angulation at bifurcation lesions, which is a possible independent predictor of percutaneous coronary intervention (PCI) outcome, can be assessed with three-dimensional quantitative coronary angiography. The feasibility of this analysis is currently being investigated.
Furthermore, it is suggested that PCI affects the distal bifurcation angle (between the LAD and LCx). Both the proximal (between the left main and circumflex branch of left coronary artery) and distal bifurcation angles are affected by motion during the cardiac cycle.
PCI in the Angulated or Tortuous Lesion
References
- ↑ Zegers ES, Meursing BT, Zegers EB, Oude Ophuis AJ (2007). "Coronary tortuosity: a long and winding road". Neth Heart J. 15 (5): 191–5. PMC 1877966. PMID 17612682.
- ↑ Turgut O, Yilmaz A, Yalta K, Yilmaz BM, Ozyol A, Kendirlioglu O; et al. (2007). "Tortuosity of coronary arteries: an indicator for impaired left ventricular relaxation?". Int J Cardiovasc Imaging. 23 (6): 671–7. doi:10.1007/s10554-006-9186-4. PMID 17216126.
- ↑ Groves SS, Jain AC, Warden BE, Gharib W, Beto RJ (2009). "Severe coronary tortuosity and the relationship to significant coronary artery disease". W V Med J. 105 (4): 14–7. PMID 19585899.
- ↑ Panduranga P, Riyami AA (2011). "Serpentine coronary arteries: in a patient with apical hypertrophic cardiomyopathy". Tex Heart Inst J. 38 (5): 594–5. PMC 3231533. PMID 22163145.
- ↑ Dobrin PB, Schwarcz TH, Baker WH (1988). "Mechanisms of arterial and aneurysmal tortuosity". Surgery. 104 (3): 568–71. PMID 3413685.
- ↑ Pletcher BA, Fox JE, Boxer RA, Singh S, Blumenthal D, Cohen T; et al. (1996). "Four sibs with arterial tortuosity: description and review of the literature". Am J Med Genet. 66 (2): 121–8. doi:10.1002/(SICI)1096-8628(19961211)66:2<121::AID-AJMG1>3.0.CO;2-U. PMID 8958317.
- ↑ Gibson CM, Bigelow B, James D, Tepper MR, Murphy SA, Kirtane AJ; et al. (2004). "Association of lesion complexity following fibrinolytic administration with mortality in ST-elevation myocardial infarction". Am J Cardiol. 94 (1): 108–11. doi:10.1016/j.amjcard.2004.03.038. PMID 15219518.