Salmonellosis pathophysiology: Difference between revisions
No edit summary |
m Changes made per Mahshid's request |
||
(41 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Salmonellosis}} | {{Salmonellosis}} | ||
{{CMG}} | {{CMG}}; {{AE}} {{JM}} | ||
==Overview== | |||
The pathogenesis of [[salmonellosis]] varies among the different [[Salmonella]] [[serovars]]. Typhoidal and [[Salmonella enterica|nontyphoidal Salmonella]] ([[Salmonella enterica|NTS]]) interact with host defense mechanisms, eliciting variable [[immune responses]] in humans. NTS colonizes the intestine, induces neutrophil migration into the intestinal lumen, and causes a self limiting inflammatory diarrhea. [[Bacteremia]] due to NTS is rare but can occur, especially in persons infected with HIV. Individuals with type I cytokine pathway deficiencies are at increased risk of developing NTS infection. | |||
==Pathophysiology== | ==Pathophysiology== | ||
The pathogenesis of | The pathogenesis of [[salmonellosis]] varies between different ''[[Salmonella]]'' [[serovar|serovars]] and depends on the interaction of multiple [[virulence]] programs with host defense mechanisms. These interactions occur in different tissues and at various stages of infection leading to variable host [[morbidity]] and [[mortality]].<ref name="pmid17146467">{{cite journal| author=Coburn B, Grassl GA, Finlay BB| title=Salmonella, the host and disease: a brief review. | journal=Immunol Cell Biol | year= 2007 | volume= 85 | issue= 2 | pages= 112-8 | pmid=17146467 | doi=10.1038/sj.icb.7100007 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17146467 }} </ref> [[salmonella enterica|''Salmonella enterica'' serovar Typhi]] ([[S. Typhi|''S''. Typhi]]) and [[salmonella enterica|''Salmonella'' Paratyphi A]] both cause [[bacteremia]]. [[Non-typhoidal Salmonella]] ([[NTS]]) usually cause self-limiting [[diarrhea]] although NTS may lead to secondary [[bacteremia]]. [[Immunocompromised]] individuals and infants in sub-Saharan Africa may develop primary NTS bacteremia.<ref name="pmid23055923">{{cite journal| author=de Jong HK, Parry CM, van der Poll T, Wiersinga WJ| title=Host-pathogen interaction in invasive Salmonellosis. | journal=PLoS Pathog | year= 2012 | volume= 8 | issue= 10 | pages= e1002933 | pmid=23055923 | doi=10.1371/journal.ppat.1002933 | pmc=PMC3464234 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23055923 }} </ref> | ||
Typhoidal and [[salmonella|nontyphoidal ''Salmonella'']] (NTS) serovars elicit different [[immune responses]] in humans.<ref name="pmid25136336">{{cite journal| author=Gal-Mor O, Boyle EC, Grassl GA| title=Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. | journal=Front Microbiol | year= 2014 | volume= 5 | issue= | pages= 391 | pmid=25136336 | doi=10.3389/fmicb.2014.00391 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25136336 }} </ref> NTS serovars induce a greater inflammatory interaction with human gut mucosa compared to typhoidal serovars. In animal models, S. enterica colonizes the intestine and localizes to the apical epithelium, inducing inflammatory changes. These changes include PMN infiltration, necrosis of the epithelium, crypt abscesses, and edema. The recruitment of neutrophils to the intestinal epithelium is the histopathological hallmark of intestinal disease. The various S. enterica serovars that are able to cause intestinal disease do so by attracting PMNs, specifically by inducing interleukin-8. With serovar Typhimurium, this recruitment occurs within the first few hours of infection. Massive migration of neutrophils and exudate secretion into the intestinal lumen occurs approximately 8-10 hours after infection. The onset of diarrhea begins between 8-72 hours after colonization. Salmonella serovar Typhimurium enterocolitis is the most severe in the caudal ileum, cecum, and proximal colon. Disease among humans usually occurs after ingesting more than 50 000 bacteria.<ref name="pmid17146467">{{cite journal| author=Coburn B, Grassl GA, Finlay BB| title=Salmonella, the host and disease: a brief review. | journal=Immunol Cell Biol | year= 2007 | volume= 85 | issue= 2 | pages= 112-8 | pmid=17146467 | doi=10.1038/sj.icb.7100007 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17146467 }} </ref> | |||
Typhoidal serovars do not usually cause acute diarrhea or induce a large neutrophil recruitment into the intestinal lumen. In [[typhoid]] infection, [[S. Typhi|''S''. Typhi]] bacteria is first ingested, usually through contaminated water or animal products. The bacteria is able to withstand the highly acidic environment of the stomach and proceeds to colonize the ileum and cecum. Upon colonization, the bacteria can gain entry into host circulation by either invading phagocytic M-cells or through dendritic cell uptake. Dissemination via the reticuloendothelial system (RES)occurs once extraintestinal infection is achieved. The bacteria can then take up residence in splenocytes, mostly within macrophages, dendritic cells, and polymorphonuclear leukocytes. Hepatocytes and other hepatic non-professional phagocytes may also serve as targets for infection and replication. Once ''Salmonella'' is internalized in the host cells, it resides in the ''Salmonella'' containing vacuole(SCV). In phagocytes, this specific vacuole formation evades fusion with the phagocyte oxidase complex. The ability of ''Salmonella'' to survive phagocytic killing is a central component of the bacteria's virulence. <ref name="pmid17146467">{{cite journal| author=Coburn B, Grassl GA, Finlay BB| title=Salmonella, the host and disease: a brief review. | journal=Immunol Cell Biol | year= 2007 | volume= 85 | issue= 2 | pages= 112-8 | pmid=17146467 | doi=10.1038/sj.icb.7100007 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17146467 }} </ref> | |||
===Transmission=== | |||
Salmonella bacteria are widely distributed in domestic and wild animals. They are prevalent in food animals such as poultry, pigs, cattle; and in pets, including cats and dogs, birds and reptiles such as turtles. Salmonella can pass through the entire food chain from animal feed, primary production, and all the way to households or food-service establishments and institutions. Salmonellosis in humans is generally contracted through the consumption of contaminated food of animal origin (mainly eggs, meat, poultry and milk), although other foods, including green vegetables contaminated by manure, have been implicated in its transmission. Person-to-person transmission through the faecal-oral route can also occur. Human cases also occur where individuals have contact with infected animals, including pets. <ref name=WHO>{{cite web | title = Salmonella(non-typhoidal) | url = http://www.who.int/mediacentre/factsheets/fs139/en/ }}</ref> | |||
===Genetics=== | |||
Susceptibility to salmonella infection is associated with multiple cytokine abnormalities. Studies have demonstrated that individuals with genetic deficiencies in the type I cytokine pathway (IL-12/IL-23 system) are greatly susceptible to infection with NTS, particularly to severe extraintestinal disease. These individuals, however, are not more susceptible to S. Typhi or S. Paratyphi infections. <ref name="pmid25136336">{{cite journal| author=Gal-Mor O, Boyle EC, Grassl GA| title=Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. | journal=Front Microbiol | year= 2014 | volume= 5 | issue= | pages= 391 | pmid=25136336 | doi=10.3389/fmicb.2014.00391 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25136336 }} </ref> | |||
===Associated Conditions=== | |||
Invasive infections caused by NTS are frequently associated with immunocompromised adults, particularly those with HIV infection. <ref name="pmid25136336">{{cite journal| author=Gal-Mor O, Boyle EC, Grassl GA| title=Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. | journal=Front Microbiol | year= 2014 | volume= 5 | issue= | pages= 391 | pmid=25136336 | doi=10.3389/fmicb.2014.00391 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25136336 }} </ref> | |||
==References== | ==References== | ||
{{reflist|2}} | {{reflist|2}} | ||
[[Category:Bacterial diseases]] | [[Category:Bacterial diseases]] | ||
[[Category:Foodborne illnesses]] | [[Category:Foodborne illnesses]] | ||
[[Category:Zoonoses]] | [[Category:Zoonoses]] | ||
[[Category:Disease]] | |||
[[Category:Emergency medicine]] | [[Category:Emergency medicine]] | ||
[[Category:Intensive care medicine]] | [[Category:Intensive care medicine]] |
Latest revision as of 18:41, 18 September 2017
Salmonellosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Salmonellosis pathophysiology On the Web |
American Roentgen Ray Society Images of Salmonellosis pathophysiology |
Risk calculators and risk factors for Salmonellosis pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Jolanta Marszalek, M.D. [2]
Overview
The pathogenesis of salmonellosis varies among the different Salmonella serovars. Typhoidal and nontyphoidal Salmonella (NTS) interact with host defense mechanisms, eliciting variable immune responses in humans. NTS colonizes the intestine, induces neutrophil migration into the intestinal lumen, and causes a self limiting inflammatory diarrhea. Bacteremia due to NTS is rare but can occur, especially in persons infected with HIV. Individuals with type I cytokine pathway deficiencies are at increased risk of developing NTS infection.
Pathophysiology
The pathogenesis of salmonellosis varies between different Salmonella serovars and depends on the interaction of multiple virulence programs with host defense mechanisms. These interactions occur in different tissues and at various stages of infection leading to variable host morbidity and mortality.[1] Salmonella enterica serovar Typhi (S. Typhi) and Salmonella Paratyphi A both cause bacteremia. Non-typhoidal Salmonella (NTS) usually cause self-limiting diarrhea although NTS may lead to secondary bacteremia. Immunocompromised individuals and infants in sub-Saharan Africa may develop primary NTS bacteremia.[2]
Typhoidal and nontyphoidal Salmonella (NTS) serovars elicit different immune responses in humans.[3] NTS serovars induce a greater inflammatory interaction with human gut mucosa compared to typhoidal serovars. In animal models, S. enterica colonizes the intestine and localizes to the apical epithelium, inducing inflammatory changes. These changes include PMN infiltration, necrosis of the epithelium, crypt abscesses, and edema. The recruitment of neutrophils to the intestinal epithelium is the histopathological hallmark of intestinal disease. The various S. enterica serovars that are able to cause intestinal disease do so by attracting PMNs, specifically by inducing interleukin-8. With serovar Typhimurium, this recruitment occurs within the first few hours of infection. Massive migration of neutrophils and exudate secretion into the intestinal lumen occurs approximately 8-10 hours after infection. The onset of diarrhea begins between 8-72 hours after colonization. Salmonella serovar Typhimurium enterocolitis is the most severe in the caudal ileum, cecum, and proximal colon. Disease among humans usually occurs after ingesting more than 50 000 bacteria.[1]
Typhoidal serovars do not usually cause acute diarrhea or induce a large neutrophil recruitment into the intestinal lumen. In typhoid infection, S. Typhi bacteria is first ingested, usually through contaminated water or animal products. The bacteria is able to withstand the highly acidic environment of the stomach and proceeds to colonize the ileum and cecum. Upon colonization, the bacteria can gain entry into host circulation by either invading phagocytic M-cells or through dendritic cell uptake. Dissemination via the reticuloendothelial system (RES)occurs once extraintestinal infection is achieved. The bacteria can then take up residence in splenocytes, mostly within macrophages, dendritic cells, and polymorphonuclear leukocytes. Hepatocytes and other hepatic non-professional phagocytes may also serve as targets for infection and replication. Once Salmonella is internalized in the host cells, it resides in the Salmonella containing vacuole(SCV). In phagocytes, this specific vacuole formation evades fusion with the phagocyte oxidase complex. The ability of Salmonella to survive phagocytic killing is a central component of the bacteria's virulence. [1]
Transmission
Salmonella bacteria are widely distributed in domestic and wild animals. They are prevalent in food animals such as poultry, pigs, cattle; and in pets, including cats and dogs, birds and reptiles such as turtles. Salmonella can pass through the entire food chain from animal feed, primary production, and all the way to households or food-service establishments and institutions. Salmonellosis in humans is generally contracted through the consumption of contaminated food of animal origin (mainly eggs, meat, poultry and milk), although other foods, including green vegetables contaminated by manure, have been implicated in its transmission. Person-to-person transmission through the faecal-oral route can also occur. Human cases also occur where individuals have contact with infected animals, including pets. [4]
Genetics
Susceptibility to salmonella infection is associated with multiple cytokine abnormalities. Studies have demonstrated that individuals with genetic deficiencies in the type I cytokine pathway (IL-12/IL-23 system) are greatly susceptible to infection with NTS, particularly to severe extraintestinal disease. These individuals, however, are not more susceptible to S. Typhi or S. Paratyphi infections. [3]
Associated Conditions
Invasive infections caused by NTS are frequently associated with immunocompromised adults, particularly those with HIV infection. [3]
References
- ↑ 1.0 1.1 1.2 Coburn B, Grassl GA, Finlay BB (2007). "Salmonella, the host and disease: a brief review". Immunol Cell Biol. 85 (2): 112–8. doi:10.1038/sj.icb.7100007. PMID 17146467.
- ↑ de Jong HK, Parry CM, van der Poll T, Wiersinga WJ (2012). "Host-pathogen interaction in invasive Salmonellosis". PLoS Pathog. 8 (10): e1002933. doi:10.1371/journal.ppat.1002933. PMC 3464234. PMID 23055923.
- ↑ 3.0 3.1 3.2 Gal-Mor O, Boyle EC, Grassl GA (2014). "Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ". Front Microbiol. 5: 391. doi:10.3389/fmicb.2014.00391. PMID 25136336.
- ↑ "Salmonella(non-typhoidal)".