Amlodipine Besylate: Difference between revisions

Jump to navigation Jump to search
Deepika Beereddy (talk | contribs)
No edit summary
Deepika Beereddy (talk | contribs)
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
|genericName=Amlodipine Besylate
|genericName=Amlodipine Besylate
|aOrAn=an
|aOrAn=an
|drugClass=antihypertensive agent
|drugClass=[[antihypertensive]] agent
|indicationType=treatment
|indicationType=treatment
|indication=hypertension, coronary artery disease
|indication=[[hypertension]], [[coronary artery disease]]
|adverseReactions=edema, fatigue, nausea, abdominal pain, and somnolence
|adverseReactions=[[edema]], [[fatigue]], [[nausea]], [[abdominal pain]], and [[somnolence]]
|blackBoxWarningTitle=<b><span style="color:#FF0000;">TITLE</span></b>
|blackBoxWarningTitle=<b><span style="color:#FF0000;">TITLE</span></b>
|blackBoxWarningBody=<i><span style="color:#FF0000;">Condition Name:</span></i> (Content)
|blackBoxWarningBody=<i><span style="color:#FF0000;">Condition Name:</span></i> (Content)
|fdaLIADAdult=====Hypertension====
|fdaLIADAdult=====Hypertension====


*Amlodipine besylate tablet, USP is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including Amlodipine besylate tablet, USP.
*Amlodipine besylate tablet, USP is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily [[stroke]]s and [[myocardial infarction]]s. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including Amlodipine besylate tablet, USP.


*Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).
*Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, [[antithrombotic therapy]], smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).


*Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.
*Numerous [[antihypertensive]] drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.


*systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.
*systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.


*Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.
*Some [[antihypertensive]] drugs have smaller blood pressure effects (as monotherapy) in black patients, and many [[antihypertensive]] drugs have additional approved indications and effects (e.g., on [[angina]], [[heart failure]], or [[diabetic kidney disease]]). These considerations may guide selection of therapy.


*Amlodipine besylate tablet, USP may be used alone or in combination with other antihypertensive agents.
*Amlodipine besylate tablet, USP may be used alone or in combination with other antihypertensive agents.


*'''Dosing information'''
*'''Dosing information'''
:* The usual initial antihypertensive oral dose of Amlodipine besylate tablet, USP is 5 mg once daily, and the maximum dose is 10 mg once daily.
:* The usual initial [[antihypertensive]] oral dose of Amlodipine besylate tablet, USP is 5 mg once daily, and the maximum dose is 10 mg once daily.


:* Small, fragile, or elderly patients, or patients with hepatic insufficiency may be started on 2.5 mg once daily and this dose may be used when adding Amlodipine besylate tablet, USP to other antihypertensive therapy.
:* Small, fragile, or elderly patients, or patients with hepatic insufficiency may be started on 2.5 mg once daily and this dose may be used when adding Amlodipine besylate tablet, USP to other [[antihypertensive]] therapy.


:* Adjust dosage according to blood pressure goals. In general, wait 7 to 14 days between titration steps. Titrate more rapidly, however, if clinically warranted, provided the patient is assessed frequently.
:* Adjust dosage according to blood pressure goals. In general, wait 7 to 14 days between titration steps. Titrate more rapidly, however, if clinically warranted, provided the patient is assessed frequently.
Line 34: Line 34:
'''Chronic Stable Angina'''
'''Chronic Stable Angina'''


*Amlodipine besylate tablet, USP is indicated for the symptomatic treatment of chronic stable angina. Amlodipine besylate tablet, USP may be used alone or in combination with other antianginal agents.
*Amlodipine besylate tablet, USP is indicated for the symptomatic treatment of chronic stable [[angina]]. Amlodipine besylate tablet, USP may be used alone or in combination with other antianginal agents.
* Dosing information:
* Dosing information:
:* The recommended dose range for patients with coronary artery disease is 5 to 10 mg once daily. In clinical studies, the majority of patients required 10 mg
:* The recommended dose range for patients with coronary artery disease is 5 to 10 mg once daily. In clinical studies, the majority of patients required 10 mg
Line 40: Line 40:
'''Vasospastic Angina (Prinzmetal's or Variant Angina)'''
'''Vasospastic Angina (Prinzmetal's or Variant Angina)'''


*Amlodipine besylate tablet, USP is indicated for the treatment of confirmed or suspected vasospastic angina. Amlodipine besylate tablet, USP may be used as monotherapy or in combination with other antianginal agents.
*Amlodipine besylate tablet, USP is indicated for the treatment of confirmed or suspected vasospastic [[angina]]. Amlodipine besylate tablet, USP may be used as monotherapy or in combination with other antianginal agents.
* Dosing information:
* Dosing information:
:* The recommended dose for chronic stable or vasospastic angina is 5 to 10 mg, with the lower dose suggested in the elderly and in patients with hepatic insufficiency. Most patients will require 10 mg for adequate effect.
:* The recommended dose for chronic stable or vasospastic [[angina]] is 5 to 10 mg, with the lower dose suggested in the elderly and in patients with hepatic insufficiency. Most patients will require 10 mg for adequate effect.


'''Angiographically Documented CAD'''
'''Angiographically Documented CAD'''


*In patients with recently documented CAD by angiography and without heart failure or an ejection fraction <40%, Amlodipine besylate tablet, USP is indicated to reduce the risk of hospitalization for angina and to reduce the risk of a coronary revascularization procedure.
*In patients with recently documented CAD by angiography and without heart failure or an ejection fraction <40%, Amlodipine besylate tablet, USP is indicated to reduce the risk of hospitalization for [[angina]] and to reduce the risk of a coronary revascularization procedure.
|offLabelAdultGuideSupport=There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of Amlodipine Besylate in adult patients.
|offLabelAdultGuideSupport=There is limited information regarding <i>Off-Label Guideline-Supported Use</i> of Amlodipine Besylate in adult patients.
|offLabelAdultNoGuideSupport=*Congestive heart failure
|offLabelAdultNoGuideSupport=*Congestive heart failure
Line 71: Line 71:
'''Increased Angina or Myocardial Infarction'''
'''Increased Angina or Myocardial Infarction'''


*Worsening angina and acute myocardial infarction can develop after starting or increasing the dose of amlodipine, particularly in patients with severe obstructive coronary artery disease.
*Worsening [[angina]] and acute myocardial infarction can develop after starting or increasing the dose of amlodipine, particularly in patients with severe obstructive [[coronary artery disease]].


'''Patients with Hepatic Failure'''
'''Patients with Hepatic Failure'''
Line 84: Line 84:
*The following events occurred in <1% but >0.1% of patients in controlled clinical trials or under conditions of open trials or marketing experience where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:
*The following events occurred in <1% but >0.1% of patients in controlled clinical trials or under conditions of open trials or marketing experience where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:


*'''Cardiovascular:''' arrhythmia (including ventricular tachycardia and atrial fibrillation), bradycardia, chest pain, peripheral ischemia, syncope, tachycardia, vasculitis.
*'''Cardiovascular:''' [[arrhythmia]] (including [[ventricular tachycardia]] and [[atrial fibrillation]]), [[bradycardia]], [[chest pain]], [[peripheral ischemia]], [[syncope]], [[tachycardia]], [[vasculitis]].


*'''Central and Peripheral Nervous System:''' hypoesthesia, neuropathy peripheral, paresthesia, tremor, vertigo.
*'''Central and Peripheral Nervous System:''' [[hypoesthesia]], [[neuropathy peripheral]], [[paresthesia]], [[tremor]], [[vertigo]].


*'''Gastrointestinal:''' anorexia, constipation, dysphagia, diarrhea, flatulence, pancreatitis, vomiting, gingival hyperplasia.
*'''Gastrointestinal:''' [[anorexia]], [[constipation]], [[dysphagia]], [[diarrhea]], [[flatulence]], [[pancreatitis]], [[vomiting]], [[gingival hyperplasia]].


*'''General:''' allergic reaction, asthenia,1 back pain, hot flushes, malaise, pain, rigors, weight gain, weight decrease.
*'''General:''' [[allergic reaction]], [[asthenia]],1 [[back pain]], hot flushes, [[malaise]], [[pain]], [[rigors]], [[weight gain]], weight decrease.


*'''Musculoskeletal System:''' arthralgia, arthrosis, muscle cramps,1 myalgia.
*'''Musculoskeletal System:''' [[arthralgia]], [[arthrosis]], [[muscle cramps]],1 [[myalgia]].


*'''Psychiatric:''' sexual dysfunction (male1 and female), insomnia, nervousness, depression, abnormal dreams, anxiety, depersonalization.
*'''Psychiatric:''' [[sexual dysfunction]] (male1 and female), [[insomnia]], nervousness, [[depression]], abnormal dreams, [[anxiety]], [[depersonalization]].


*'''Respiratory System:''' dyspnea,1 epistaxis.
*'''Respiratory System:''' [[dyspnea]],1 [[epistaxis]].


*'''Skin and Appendages:''' angioedema, erythema multiforme, pruritus, 1 rash, 1 rash erythematous, rash maculopapular.
*'''Skin and Appendages:''' [[angioedema]], [[erythema multiforme]], [[pruritus]], 1 [[rash]], 1 rash erythematous, rash maculopapular.


*'''Special Senses:''' abnormal vision, conjunctivitis, diplopia, eye pain, tinnitus.
*'''Special Senses:''' abnormal vision, [[conjunctivitis]], [[diplopia]], eye pain, [[tinnitus]].


*'''Urinary System:''' micturition frequency, micturition disorder, nocturia.
*'''Urinary System:''' micturition frequency, micturition disorder, [[nocturia]].


*'''Autonomic Nervous System:''' dry mouth, sweating increased.
*'''Autonomic Nervous System:''' [[dry mouth]], sweating increased.


*'''Metabolic and Nutritional:''' hyperglycemia, thirst.
*'''Metabolic and Nutritional:''' [[hyperglycemia]], [[thirst]].


*'''Hemopoietic:''' leukopenia, purpura, thrombocytopenia.
*'''Hemopoietic:''' [[leukopenia]], [[purpura]], [[thrombocytopenia]].


1 These events occurred in less than 1% in placebo-controlled trials, but the incidence of these side effects was between 1% and 2% in all multiple dose studies.
1 These events occurred in less than 1% in placebo-controlled trials, but the incidence of these side effects was between 1% and 2% in all multiple dose studies.
Line 162: Line 162:
'''CYP3A4 Inhibitors'''
'''CYP3A4 Inhibitors'''


*Coadministration of a 180 mg daily dose of diltiazem with 5 mg amlodipine in elderly hypertensive patients resulted in a 60% increase in amlodipine systemic exposure. Erythromycin coadministration in healthy volunteers did not significantly change amlodipine systemic exposure. However, strong inhibitors of CYP3A4 (e.g., ketoconazole, itraconazole, ritonavir) may increase the plasma concentrations of amlodipine to a greater extent. Monitor for symptoms of hypotension and edema when amlodipine is coadministered with CYP3A4 inhibitors.
*Coadministration of a 180 mg daily dose of diltiazem with 5 mg amlodipine in elderly hypertensive patients resulted in a 60% increase in amlodipine systemic exposure. Erythromycin coadministration in healthy volunteers did not significantly change amlodipine systemic exposure. However, strong inhibitors of CYP3A4 (e.g., [[ketoconazole]], [[itraconazole]], [[ritonavir]]) may increase the plasma concentrations of amlodipine to a greater extent. Monitor for symptoms of [[hypotension]] and [[edema]] when amlodipine is coadministered with CYP3A4 inhibitors.


'''CYP3A4 Inducers'''
'''CYP3A4 Inducers'''


*No information is available on the quantitative effects of CYP3A4 inducers on amlodipine. Blood pressure should be closely monitored when amlodipine is coadministered with CYP3A4 inducers.
*No information is available on the quantitative effects of CYP3A4 inducers on amlodipine. Blood pressure should be closely monitored when amlodipine is coadministered with [[CYP3A4 inducers]].


'''Cyclosporine'''
'''Cyclosporine'''


*A prospective study in renal transplant patients (N=11) showed on an average of 40% increase in trough cyclosporine levels when concomitantly treated with amlodipine.
*A prospective study in renal transplant patients (N=11) showed on an average of 40% increase in trough [[cyclosporine]] levels when concomitantly treated with amlodipine.


'''Drug/Laboratory Test Interactions'''
'''Drug/Laboratory Test Interactions'''
Line 188: Line 188:
|administration='''Adults'''
|administration='''Adults'''


*The usual initial antihypertensive oral dose of Amlodipine besylate tablet, USP is 5 mg once daily, and the maximum dose is 10 mg once daily.
*The usual initial [[antihypertensive]] oral dose of Amlodipine besylate tablet, USP is 5 mg once daily, and the maximum dose is 10 mg once daily.


*Small, fragile, or elderly patients, or patients with hepatic insufficiency may be started on 2.5 mg once daily and this dose may be used when adding Amlodipine besylate tablet, USP to other antihypertensive therapy.
*Small, fragile, or elderly patients, or patients with hepatic insufficiency may be started on 2.5 mg once daily and this dose may be used when adding Amlodipine besylate tablet, USP to other [[antihypertensive]] therapy.


*Adjust dosage according to blood pressure goals. In general, wait 7 to 14 days between titration steps. Titrate more rapidly, however, if clinically warranted, provided the patient is assessed frequently.
*Adjust dosage according to blood pressure goals. In general, wait 7 to 14 days between titration steps. Titrate more rapidly, however, if clinically warranted, provided the patient is assessed frequently.


*Angina: The recommended dose for chronic stable or vasospastic angina is 5 to 10 mg, with the lower dose suggested in the elderly and in patients with hepatic insufficiency. Most patients will require 10 mg for adequate effect.
*[[Angina]]: The recommended dose for chronic stable or [[vasospastic angina]] is 5 to 10 mg, with the lower dose suggested in the elderly and in patients with hepatic insufficiency. Most patients will require 10 mg for adequate effect.


*Coronary artery disease: The recommended dose range for patients with coronary artery disease is 5 to 10 mg once daily. In clinical studies, the majority of patients required 10 mg.
*Coronary artery disease: The recommended dose range for patients with coronary artery disease is 5 to 10 mg once daily. In clinical studies, the majority of patients required 10 mg.
Line 200: Line 200:
'''Children'''
'''Children'''


*The effective antihypertensive oral dose in pediatric patients ages 6–17 years is 2.5 mg to 5 mg once daily. Doses in excess of 5 mg daily have not been studied in pediatric patients.
*The effective [[antihypertensive]] oral dose in pediatric patients ages 6–17 years is 2.5 mg to 5 mg once daily. Doses in excess of 5 mg daily have not been studied in pediatric patients.


'''DOSAGE FORMS AND STRENGTHS'''
'''DOSAGE FORMS AND STRENGTHS'''
Line 217: Line 217:
*Amlodipine is a peripheral arterial vasodilator that acts directly on vascular smooth muscle to cause a reduction in peripheral vascular resistance and reduction in blood pressure.
*Amlodipine is a peripheral arterial vasodilator that acts directly on vascular smooth muscle to cause a reduction in peripheral vascular resistance and reduction in blood pressure.


*The precise mechanisms by which amlodipine relieves angina have not been fully delineated, but are thought to include the following:
*The precise mechanisms by which amlodipine relieves [[angina]] have not been fully delineated, but are thought to include the following:


*Exertional Angina: In patients with exertional angina, amlodipine reduces the total peripheral resistance (after load) against which the heart works and reduces the rate pressure product, and thus myocardial oxygen demand, at any given level of exercise.
*Exertional Angina: In patients with exertional [[angina]], amlodipine reduces the total peripheral resistance (after load) against which the heart works and reduces the rate pressure product, and thus myocardial oxygen demand, at any given level of exercise.


*Vasospastic Angina: Amlodipine has been demonstrated to block constriction and restore blood flow in coronary arteries and arterioles in response to calcium, potassium epinephrine, serotonin, and thromboxane A2 analog in experimental animal models and in human coronary vessels in vitro. This inhibition of coronary spasm is responsible for the effectiveness of amlodipine in vasospastic (Prinzmetal's or variant) angina.
*Vasospastic Angina: Amlodipine has been demonstrated to block constriction and restore blood flow in coronary arteries and arterioles in response to calcium, potassium epinephrine, serotonin, and thromboxane A2 analog in experimental animal models and in human coronary vessels in vitro. This inhibition of coronary spasm is responsible for the effectiveness of amlodipine in vasospastic (Prinzmetal's or variant) [[angina]].
|structure=*Amlodipine besylate is the besylate salt of amlodipine, a long-acting calcium channel blocker.
|structure=*Amlodipine besylate is the besylate salt of amlodipine, a long-acting calcium channel blocker.


Line 229: Line 229:


*Amlodipine besylate is a white or almost white powder with a molecular weight of 567.1. It is slightly soluble in water and sparingly soluble in ethanol. Amlodipine besylate tablets, USP are formulated as white to off white tablets equivalent to 2.5, 5, and 10 mg of amlodipine for oral administration. In addition to the active ingredient, amlodipine besylate, each tablet contains the following inactive ingredients: microcrystalline cellulose, dibasic calcium phosphate dihydrate, sodium starch glycolate, colloidal silicon dioxide and magnesium stearate.
*Amlodipine besylate is a white or almost white powder with a molecular weight of 567.1. It is slightly soluble in water and sparingly soluble in ethanol. Amlodipine besylate tablets, USP are formulated as white to off white tablets equivalent to 2.5, 5, and 10 mg of amlodipine for oral administration. In addition to the active ingredient, amlodipine besylate, each tablet contains the following inactive ingredients: microcrystalline cellulose, dibasic calcium phosphate dihydrate, sodium starch glycolate, colloidal silicon dioxide and magnesium stearate.
|PD=*Hemodynamics: Following administration of therapeutic doses to patients with hypertension, amlodipine produces vasodilation resulting in a reduction of supine and standing blood pressures. These decreases in blood pressure are not accompanied by a significant change in heart rate or plasma catecholamine levels with chronic dosing. Although the acute intravenous administration of amlodipine decreases arterial blood pressure and increases heart rate in hemodynamic studies of patients with chronic stable angina, chronic oral administration of amlodipine in clinical trials did not lead to clinically significant changes in heart rate or blood pressures in normotensive patients with angina.
|PD=*Hemodynamics: Following administration of therapeutic doses to patients with hypertension, amlodipine produces vasodilation resulting in a reduction of supine and standing blood pressures. These decreases in blood pressure are not accompanied by a significant change in heart rate or plasma catecholamine levels with chronic dosing. Although the acute intravenous administration of amlodipine decreases arterial blood pressure and increases heart rate in hemodynamic studies of patients with chronic stable [[angina]], chronic oral administration of amlodipine in clinical trials did not lead to clinically significant changes in heart rate or blood pressures in normotensive patients with [[angina]].


*With chronic once daily oral administration, antihypertensive effectiveness is maintained for at least 24 hours. Plasma concentrations correlate with effect in both young and elderly patients. The magnitude of reduction in blood pressure with amlodipine is also correlated with the height of pretreatment elevation; thus, individuals with moderate hypertension (Diastolic pressure 105–114 mmHg) had about a 50% greater response than patients with mild hypertension (diastolic pressure 90–104 mmHg). Normotensive subjects experienced no clinically significant change in blood pressures (+1/–2 mmHg).
*With chronic once daily oral administration, [[antihypertensive]] effectiveness is maintained for at least 24 hours. Plasma concentrations correlate with effect in both young and elderly patients. The magnitude of reduction in blood pressure with amlodipine is also correlated with the height of pretreatment elevation; thus, individuals with moderate hypertension (Diastolic pressure 105–114 mmHg) had about a 50% greater response than patients with mild hypertension (diastolic pressure 90–104 mmHg). Normotensive subjects experienced no clinically significant change in blood pressures (+1/–2 mmHg).


*In hypertensive patients with normal renal function, therapeutic doses of amlodipine resulted in a decrease in renal vascular resistance and an increase in glomerular filtration rate and effective renal plasma flow without change in filtration fraction or proteinuria.
*In hypertensive patients with normal [[renal function]], therapeutic doses of amlodipine resulted in a decrease in renal vascular resistance and an increase in glomerular filtration rate and effective renal plasma flow without change in filtration fraction or proteinuria.


*As with other calcium channel blockers, hemodynamic measurements of cardiac function at rest and during exercise (or pacing) in patients with normal ventricular function treated with amlodipine have generally demonstrated a small increase in cardiac index without significant influence on dP/dt or on left ventricular end diastolic pressure or volume. In hemodynamic studies, amlodipine has not been associated with a negative inotropic effect when administered in the therapeutic dose range to intact animals and man, even when coadministered with beta-blockers to man. Similar findings, however, have been observed in normal or well-compensated patients with heart failure with agents possessing significant negative inotropic effects.
*As with other calcium channel blockers, hemodynamic measurements of cardiac function at rest and during exercise (or pacing) in patients with normal ventricular function treated with amlodipine have generally demonstrated a small increase in cardiac index without significant influence on dP/dt or on left ventricular end diastolic pressure or volume. In hemodynamic studies, amlodipine has not been associated with a negative inotropic effect when administered in the therapeutic dose range to intact animals and man, even when coadministered with beta-blockers to man. Similar findings, however, have been observed in normal or well-compensated patients with heart failure with agents possessing significant negative inotropic effects.


*Electrophysiologic Effects: Amlodipine does not change sinoatrial nodal function or atrioventricular conduction in intact animals or man. In patients with chronic stable angina, intravenous administration of 10 mg did not significantly alter A-H and H-V conduction and sinus node recovery time after pacing. Similar results were obtained in patients receiving amlodipine and concomitant beta-blockers. In clinical studies in which amlodipine was administered in combination with beta-blockers to patients with either hypertension or angina, no adverse effects on electrocardiographic parameters were observed. In clinical trials with angina patients alone, amlodipine therapy did not alter electrocardiographic intervals or produce higher degrees of AV blocks.
*Electrophysiologic Effects: Amlodipine does not change sinoatrial nodal function or atrioventricular conduction in intact animals or man. In patients with chronic stable [[angina]], intravenous administration of 10 mg did not significantly alter A-H and H-V conduction and sinus node recovery time after pacing. Similar results were obtained in patients receiving amlodipine and concomitant [[beta-blockers]]. In clinical studies in which amlodipine was administered in combination with beta-blockers to patients with either hypertension or [[angina]], no adverse effects on electrocardiographic parameters were observed. In clinical trials with [[angina]] patients alone, amlodipine therapy did not alter electrocardiographic intervals or produce higher degrees of AV blocks.
|PK=*After oral administration of therapeutic doses of amlodipine, absorption produces peak plasma concentrations between 6 and 12 hours. Absolute bioavailability has been estimated to be between 64 and 90%. The bioavailability of amlodipine is not altered by the presence of food.
|PK=*After oral administration of therapeutic doses of amlodipine, absorption produces peak plasma concentrations between 6 and 12 hours. Absolute bioavailability has been estimated to be between 64 and 90%. The bioavailability of amlodipine is not altered by the presence of food.


Line 262: Line 262:
'''Adult Patients'''
'''Adult Patients'''


*The antihypertensive efficacy of amlodipine besylate has been demonstrated in a total of 15 double-blind, placebo-controlled, randomized studies involving 800 patients on amlodipine and 538 on placebo. Once daily administration produced statistically significant placebo-corrected reductions in supine and standing blood pressures at 24 hours postdose, averaging about 12/6 mmHg in the standing position and 13/7 mmHg in the supine position in patients with mild to moderate hypertension. Maintenance of the blood pressure effect over the 24-hour dosing interval was observed, with little difference in peak and trough effect. Tolerance was not demonstrated in patients studied for up to 1 year. The 3 parallel, fixed dose, dose response studies showed that the reduction in supine and standing blood pressures was dose-related within the recommended dosing range. Effects on diastolic pressure were similar in young and older patients. The effect on systolic pressure was greater in older patients, perhaps because of greater baseline systolic pressure. Effects were similar in black patients and in white patients.
*The [[antihypertensive]] efficacy of amlodipine besylate has been demonstrated in a total of 15 double-blind, placebo-controlled, randomized studies involving 800 patients on amlodipine and 538 on placebo. Once daily administration produced statistically significant placebo-corrected reductions in supine and standing blood pressures at 24 hours postdose, averaging about 12/6 mmHg in the standing position and 13/7 mmHg in the supine position in patients with mild to moderate hypertension. Maintenance of the blood pressure effect over the 24-hour dosing interval was observed, with little difference in peak and trough effect. Tolerance was not demonstrated in patients studied for up to 1 year. The 3 parallel, fixed dose, dose response studies showed that the reduction in supine and standing blood pressures was dose-related within the recommended dosing range. Effects on diastolic pressure were similar in young and older patients. The effect on systolic pressure was greater in older patients, perhaps because of greater baseline systolic pressure. Effects were similar in black patients and in white patients.


'''Pediatric Patients'''
'''Pediatric Patients'''
Line 270: Line 270:
'''Effects in Chronic Stable Angina'''
'''Effects in Chronic Stable Angina'''


*The effectiveness of 5 to 10 mg/day of amlodipine in exercise-induced angina has been evaluated in 8 placebo-controlled, double-blind clinical trials of up to 6 weeks duration involving 1038 patients (684 amlodipine, 354 placebo) with chronic stable angina. In 5 of the 8 studies, significant increases in exercise time (bicycle or treadmill) were seen with the 10 mg dose. Increases in symptom-limited exercise time averaged 12.8% (63 sec) for amlodipine 10 mg, and averaged 7.9% (38 sec) for amlodipine 5 mg. Amlodipine 10 mg also increased time to 1 mm ST segment deviation in several studies and decreased angina attack rate. The sustained efficacy of amlodipine in angina patients has been demonstrated over long-term dosing. In patients with angina, there were no clinically significant reductions in blood pressures (4/1 mmHg) or changes in heart rate (+0.3 bpm).
*The effectiveness of 5 to 10 mg/day of amlodipine in exercise-induced angina has been evaluated in 8 placebo-controlled, double-blind clinical trials of up to 6 weeks duration involving 1038 patients (684 amlodipine, 354 placebo) with chronic stable angina. In 5 of the 8 studies, significant increases in exercise time (bicycle or treadmill) were seen with the 10 mg dose. Increases in symptom-limited exercise time averaged 12.8% (63 sec) for amlodipine 10 mg, and averaged 7.9% (38 sec) for amlodipine 5 mg. Amlodipine 10 mg also increased time to 1 mm ST segment deviation in several studies and decreased [[angina]] attack rate. The sustained efficacy of amlodipine in angina patients has been demonstrated over long-term dosing. In patients with [[angina]], there were no clinically significant reductions in blood pressures (4/1 mmHg) or changes in heart rate (+0.3 bpm).


'''Effects in Vasospastic Angina'''
'''Effects in Vasospastic Angina'''
Line 278: Line 278:
'''Effects in Documented Coronary Artery Disease'''
'''Effects in Documented Coronary Artery Disease'''


*In PREVENT, 825 patients with angiographically documented coronary artery disease were randomized to amlodipine (5 to 10 mg once daily) or placebo and followed for 3 years. Although the study did not show significance on the primary objective of change in coronary luminal diameter as assessed by quantitative coronary angiography, the data suggested a favorable outcome with respect to fewer hospitalizations for angina and revascularization procedures in patients with CAD.
*In PREVENT, 825 patients with angiographically documented coronary artery disease were randomized to amlodipine (5 to 10 mg once daily) or placebo and followed for 3 years. Although the study did not show significance on the primary objective of change in coronary luminal diameter as assessed by quantitative [[coronary angiography]], the data suggested a favorable outcome with respect to fewer hospitalizations for [[angina]] and revascularization procedures in patients with CAD.


*CAMELOT enrolled 1318 patients with CAD recently documented by angiography, without left main coronary disease and without heart failure or an ejection fraction <40%. Patients (76% males, 89% Caucasian, 93% enrolled at US sites, 89% with a history of angina, 52% without PCI, 4% with PCI and no stent, and 44% with a stent) were randomized to double-blind treatment with either amlodipine (5 to 10 mg once daily) or placebo in addition to standard care that included aspirin (89%), statins (83%), beta-blockers (74%), nitroglycerin (50%), anti-coagulants (40%), and diuretics (32%), but excluded other calcium channel blockers. The mean duration of follow-up was 19 months. The primary endpoint was the time to first occurrence of one of the following events: hospitalization for angina pectoris, coronary revascularization, myocardial infarction, cardiovascular death, resuscitated cardiac arrest, hospitalization for heart failure, stroke/TIA, or peripheral vascular disease. A total of 110 (16.6%) and 151 (23.1%) first events occurred in the amlodipine and placebo groups, respectively, for a hazard ratio of 0.691 (95% CI: 0.540–0.884, p = 0.003). The primary endpoint is summarized in Figure 1 below. The outcome of this study was largely derived from the prevention of hospitalizations for angina and the prevention of revascularization procedures (see Table 1). Effects in various subgroups are shown in Figure 2.
*CAMELOT enrolled 1318 patients with CAD recently documented by angiography, without left main coronary disease and without heart failure or an ejection fraction <40%. Patients (76% males, 89% Caucasian, 93% enrolled at US sites, 89% with a history of [[angina]], 52% without PCI, 4% with PCI and no stent, and 44% with a stent) were randomized to double-blind treatment with either amlodipine (5 to 10 mg once daily) or placebo in addition to standard care that included aspirin (89%), statins (83%), beta-blockers (74%), nitroglycerin (50%), anti-coagulants (40%), and diuretics (32%), but excluded other calcium channel blockers. The mean duration of follow-up was 19 months. The primary endpoint was the time to first occurrence of one of the following events: hospitalization for [[angina]] pectoris, coronary revascularization, myocardial infarction, cardiovascular death, resuscitated [[cardiac arrest]], hospitalization for [[heart failure]], [[stroke]]/[[TIA]], or [[peripheral vascular disease]]. A total of 110 (16.6%) and 151 (23.1%) first events occurred in the amlodipine and placebo groups, respectively, for a hazard ratio of 0.691 (95% CI: 0.540–0.884, p = 0.003). The primary endpoint is summarized in Figure 1 below. The outcome of this study was largely derived from the prevention of hospitalizations for [[angina]] and the prevention of revascularization procedures (see Table 1). Effects in various subgroups are shown in Figure 2.


*In an angiographic substudy (n=274) conducted within CAMELOT, there was no significant difference between amlodipine and placebo on the change of atheroma volume in the coronary artery as assessed by intravascular ultrasound.
*In an angiographic substudy (n=274) conducted within CAMELOT, there was no significant difference between amlodipine and placebo on the change of atheroma volume in the coronary artery as assessed by intravascular ultrasound.
Line 287: Line 287:
[[File:Amlodipine clinical studies 2.png|600px|thumbnail|left]]
[[File:Amlodipine clinical studies 2.png|600px|thumbnail|left]]
{{clear}}
{{clear}}
Table 1 below summarizes the significant composite endpoint and clinical outcomes from the composites of the primary endpoint. The other components of the primary endpoint including cardiovascular death, resuscitated cardiac arrest, myocardial infarction, hospitalization for heart failure, stroke/TIA, or peripheral vascular disease did not demonstrate a significant difference between amlodipine and placebo.
*Table 1 below summarizes the significant composite endpoint and clinical outcomes from the composites of the primary endpoint. The other components of the primary endpoint including cardiovascular death, resuscitated cardiac arrest, myocardial infarction, hospitalization for heart failure, stroke/TIA, or peripheral vascular disease did not demonstrate a significant difference between amlodipine and placebo.
[[File:Amlodipine table 1.png|600px|thumbnail|left]]
[[File:Amlodipine table 1.png|600px|thumbnail|left]]
{{clear}}
{{clear}}


'''Studies in Patients with Heart Failure'''
*Amlodipine has been compared to placebo in four 8–12 week studies of patients with NYHA Class II/III heart failure, involving a total of 697 patients. In these studies, there was no evidence of worsened heart failure based on measures of exercise tolerance, NYHA classification, symptoms, or left ventricular ejection fraction. In a long-term (follow-up at least 6 months, mean 13.8 months) placebo-controlled mortality/morbidity study of amlodipine 5 to 10 mg in 1153 patients with [[NYHA]] Classes III (n=931) or IV (n=222) heart failure on stable doses of diuretics, digoxin, and ACE inhibitors, amlodipine had no effect on the primary endpoint of the study which was the combined endpoint of all-cause mortality and cardiac morbidity (as defined by life-threatening [[arrhythmia]], acute [[myocardial infarction]], or hospitalization for worsened heart failure), or on NYHA classification, or symptoms of heart failure. Total combined all-cause mortality and cardiac morbidity events were 222/571 (39%) for patients on amlodipine and 246/583 (42%) for patients on placebo; the cardiac morbid events represented about 25% of the endpoints in the study.
*Another study (PRAISE-2) randomized patients with NYHA Class III (80%) or IV (20%) heart failure without clinical symptoms or objective evidence of underlying ischemic disease, on stable doses of ACE inhibitors (99%), digitalis (99%), and diuretics (99%), to placebo (n=827) or amlodipine (n=827) and followed them for a mean of 33 months. There was no statistically significant difference between amlodipine and placebo in the primary endpoint of all-cause mortality (95% confidence limits from 8% reduction to 29% increase on amlodipine). With amlodipine there were more reports of pulmonary edema.
|howSupplied='''2.5 mg Tablets'''
*Amlodipine Besylate Tablets, USP - 2.5 mg (Amlodipine besylate USP equivalent to 2.5 mg of Amlodipine per tablet) are supplied as white to off white round tablets with "126" debossed on one side and "C" on other side and supplied as follows:
NDC 69097-126-05    Bottle of 90
NDC 69097-126-15    Bottle of 1000
'''5 mg Tablets'''
*Amlodipine Besylate Tablets, USP - 5 mg (Amlodipine besylate USP equivalent to 5 mg of Amlodipine per tablet) are supplied as white to off white round tablets with "127" debossed on one side and "C" on other side and supplied as follows:
NDC 69097-127-05    Bottle of 90
NDC 69097-127-15    Bottle of 1000
'''10 mg Tablets'''
*Amlodipine Besylate Tablets, USP - 10 mg (Amlodipine besylate USP equivalent to 10 mg of Amlodipine per tablet) are supplied as white to off white round tablets with "128" debossed on one side and "C" on other side and supplied as follows:
NDC 69097-128-05    Bottle of 90
NDC 69097-128-15    Bottle of 1000
|storage='''Storage'''
*Store at 20°C to 25°C (68°F to 77°F). [See USP controlled room temperature.] Protect from light and moisture.
|packLabel=[[File:Pdp amlodipine 1.png|600px|thumbnail|left]]
{{clear}}
[[File:Pdp amlodipine 2.png|600px|thumbnail|left]]
{{clear}}
[[File:Pdp 3 amlodipine.png|600px|thumbnail|left]]
{{clear}}
[[File:Pdp pallet label 1.png|600px|thumbnail|left]]
{{clear}}
[[File:Pdp pallet label 2.png|600px|thumbnail|left]]
{{clear}}
[[File:Pdp pallet label 3.png|600px|thumbnail|left]]
{{clear}}
[[File:Amlodipine label 1.png|600px|thumbnail|left]]
{{clear}}
[[File:Amlodipine label 2.png|600px|thumbnail|left]]
{{clear}}
[[File:Amlodipine label 3.png|600px|thumbnail|left]]
{{clear}}
|fdaPatientInfo=[[File:Amlodipine medication guide.png|600px|thumbnail|left]]
{{clear}}
|alcohol=Alcohol-Amlodipine Besylate interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
|alcohol=Alcohol-Amlodipine Besylate interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
|brandNames=Norvasc
}}
}}

Latest revision as of 05:39, 31 August 2014

Amlodipine Besylate
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Deepika Beereddy, MBBS [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Overview

Amlodipine Besylate is an antihypertensive agent that is FDA approved for the treatment of hypertension, coronary artery disease. Common adverse reactions include edema, fatigue, nausea, abdominal pain, and somnolence.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

Hypertension

  • Amlodipine besylate tablet, USP is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including Amlodipine besylate tablet, USP.
  • Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).
  • Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.
  • systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.
  • Amlodipine besylate tablet, USP may be used alone or in combination with other antihypertensive agents.
  • Dosing information
  • The usual initial antihypertensive oral dose of Amlodipine besylate tablet, USP is 5 mg once daily, and the maximum dose is 10 mg once daily.
  • Small, fragile, or elderly patients, or patients with hepatic insufficiency may be started on 2.5 mg once daily and this dose may be used when adding Amlodipine besylate tablet, USP to other antihypertensive therapy.
  • Adjust dosage according to blood pressure goals. In general, wait 7 to 14 days between titration steps. Titrate more rapidly, however, if clinically warranted, provided the patient is assessed frequently.

Coronary Artery Disease (CAD)

Chronic Stable Angina

  • Amlodipine besylate tablet, USP is indicated for the symptomatic treatment of chronic stable angina. Amlodipine besylate tablet, USP may be used alone or in combination with other antianginal agents.
  • Dosing information:
  • The recommended dose range for patients with coronary artery disease is 5 to 10 mg once daily. In clinical studies, the majority of patients required 10 mg

Vasospastic Angina (Prinzmetal's or Variant Angina)

  • Amlodipine besylate tablet, USP is indicated for the treatment of confirmed or suspected vasospastic angina. Amlodipine besylate tablet, USP may be used as monotherapy or in combination with other antianginal agents.
  • Dosing information:
  • The recommended dose for chronic stable or vasospastic angina is 5 to 10 mg, with the lower dose suggested in the elderly and in patients with hepatic insufficiency. Most patients will require 10 mg for adequate effect.

Angiographically Documented CAD

  • In patients with recently documented CAD by angiography and without heart failure or an ejection fraction <40%, Amlodipine besylate tablet, USP is indicated to reduce the risk of hospitalization for angina and to reduce the risk of a coronary revascularization procedure.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Amlodipine Besylate in adult patients.

Non–Guideline-Supported Use

  • Congestive heart failure
  • Diabetic nephropathy
  • Disorder related to transplantation
  • Kidney disease, Nondiabetic
  • Left ventricular hypertrophy
  • Raynaud's phenomenon
  • Silent myocardial ischemia
  • Systolic hypertension

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

Hypertension

  • Dosing information:
  • 6 to 17 years of age: 2.5-5 mg ORALLY once daily

Safety and efficacy not established in pediatric patients younger than 6 years of age [3]

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Amlodipine Besylate in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Amlodipine Besylate in pediatric patients.

Contraindications

Amlodipine besylate tablet, USP is contraindicated in patients with known sensitivity to amlodipine.

Warnings

Hypotension

  • Symptomatic hypotension is possible, particularly in patients with severe aortic stenosis. Because of the gradual onset of action, acute hypotension is unlikely.

Increased Angina or Myocardial Infarction

  • Worsening angina and acute myocardial infarction can develop after starting or increasing the dose of amlodipine, particularly in patients with severe obstructive coronary artery disease.

Patients with Hepatic Failure

  • Because amlodipine is extensively metabolized by the liver and the plasma elimination half-life (t1/2) is 56 hours in patients with impaired hepatic function, titrate slowly when administering amlodipine to patients with severe hepatic impairment.

Adverse Reactions

Clinical Trials Experience

  • Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
  • Amlodipine has been evaluated for safety in more than 11,000 patients in U.S. and foreign clinical trials. In general, treatment with amlodipine was well-tolerated at doses up to 10 mg daily. Most adverse reactions reported during therapy with amlodipine were of mild or moderate severity. In controlled clinical trials directly comparing amlodipine (N=1730) at doses up to 10 mg to placebo (N=1250), discontinuation of amlodipine because of adverse reactions was required in only about 1.5% of patients and was not significantly different from placebo (about 1%). The most commonly reported side effects more frequent than placebo are reflected in the table below. The incidence (%) of side effects that occurred in a dose related manner are as follows:
  • The following events occurred in <1% but >0.1% of patients in controlled clinical trials or under conditions of open trials or marketing experience where a causal relationship is uncertain; they are listed to alert the physician to a possible relationship:
  • Urinary System: micturition frequency, micturition disorder, nocturia.
  • Autonomic Nervous System: dry mouth, sweating increased.

1 These events occurred in less than 1% in placebo-controlled trials, but the incidence of these side effects was between 1% and 2% in all multiple dose studies.

  • Amlodipine therapy has not been associated with clinically significant changes in routine laboratory tests. No clinically relevant changes were noted in serum potassium, serum glucose, total triglycerides, total cholesterol, HDL cholesterol, uric acid, blood urea nitrogen, or creatinine.
  • In the CAMELOT and PREVENT studies, the adverse event profile was similar to that reported previously (see above), with the most common adverse event being peripheral edema.

Postmarketing Experience

  • Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
  • The following postmarketing event has been reported infrequently where a causal relationship is uncertain: gynecomastia. In postmarketing experience, jaundice and hepatic enzyme elevations (mostly consistent with cholestasis or hepatitis), in some cases severe enough to require hospitalization, have been reported in association with use of amlodipine.
  • Amlodipine has been used safely in patients with chronic obstructive pulmonary disease, well-compensated congestive heart failure, coronary artery disease, peripheral vascular disease, diabetes mellitus, and abnormal lipid profiles.

Drug Interactions

In Vitro Data

  • In vitro data indicate that amlodipine has no effect on the human plasma protein binding of digoxin, phenytoin, warfarin, and indomethacin.

Cimetidine

  • Coadministration of amlodipine with cimetidine did not alter the pharmacokinetics of amlodipine.

Grapefruit Juice

  • Coadministration of 240 mL of grapefruit juice with a single oral dose of amlodipine 10 mg in 20 healthy volunteers had no significant effect on the pharmacokinetics of amlodipine.

Magnesium and Aluminum Hydroxide Antacid

  • Coadministration of a magnesium and aluminum hydroxide antacid with a single dose of amlodipine had no significant effect on the pharmacokinetics of amlodipine.

Sildenafil

  • A single 100 mg dose of sildenafil in subjects with essential hypertension had no effect on the pharmacokinetic parameters of amlodipine. When amlodipine and sildenafil were used in combination, each agent independently exerted its own blood pressure lowering effect.

Atorvastatin

  • Coadministration of multiple 10 mg doses of amlodipine with 80 mg of atorvastatin resulted in no significant change in the steady-state pharmacokinetic parameters of atorvastatin.

Simvastatin

  • Coadministration of multiple doses of 10 mg of amlodipine with 80 mg simvastatin resulted in a 77% increase in exposure to simvastatin compared to simvastatin alone. Limit the dose of simvastatin in patients on amlodipine to 20 mg daily.

Digoxin

  • Coadministration of amlodipine with digoxin did not change serum digoxin levels or digoxin renal clearance in normal volunteers.

Ethanol (Alcohol)

  • Single and multiple 10 mg doses of amlodipine had no significant effect on the pharmacokinetics of ethanol.

Warfarin

  • Coadministration of amlodipine with warfarin did not change the warfarin prothrombin response time.

CYP3A4 Inhibitors

  • Coadministration of a 180 mg daily dose of diltiazem with 5 mg amlodipine in elderly hypertensive patients resulted in a 60% increase in amlodipine systemic exposure. Erythromycin coadministration in healthy volunteers did not significantly change amlodipine systemic exposure. However, strong inhibitors of CYP3A4 (e.g., ketoconazole, itraconazole, ritonavir) may increase the plasma concentrations of amlodipine to a greater extent. Monitor for symptoms of hypotension and edema when amlodipine is coadministered with CYP3A4 inhibitors.

CYP3A4 Inducers

  • No information is available on the quantitative effects of CYP3A4 inducers on amlodipine. Blood pressure should be closely monitored when amlodipine is coadministered with CYP3A4 inducers.

Cyclosporine

  • A prospective study in renal transplant patients (N=11) showed on an average of 40% increase in trough cyclosporine levels when concomitantly treated with amlodipine.

Drug/Laboratory Test Interactions

  • None known.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): C

  • There are no adequate and well-controlled studies in pregnant women. Amlodipine should be used during pregnancy only if the potential benefit justifies the risk to the fetus.
  • No evidence of teratogenicity or other embryo/fetal toxicity was found when pregnant rats and rabbits were treated orally with amlodipine maleate at doses up to 10 mg amlodipine/kg/day (respectively, 8 times2 and 23 times2 the maximum recommended human dose of 10 mg on a mg/m2 basis) during their respective periods of major organogenesis. However, litter size was significantly decreased (by about 50%) and the number of intrauterine deaths was significantly increased (about 5-fold) in rats receiving amlodipine maleate at a dose equivalent to 10 mg amlodipine/kg/day for 14 days before mating and throughout mating and gestation. Amlodipine maleate has been shown to prolong both the gestation period and the duration of labor in rats at this dose.

2 Based on patient weight of 50 kg.
Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Amlodipine Besylate in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Amlodipine Besylate during labor and delivery.

Nursing Mothers

  • It is not known whether amlodipine is excreted in human milk. In the absence of this information, it is recommended that nursing be discontinued while Amlodipine is administered.

Pediatric Use

  • Amlodipine (2.5 to 5 mg daily) is effective in lowering blood pressure in patients 6 to 17 years.

Effect of amlodipine on blood pressure in patients less than 6 years of age is not known.

Geriatic Use

Clinical studies of amlodipine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Elderly patients have decreased clearance of amlodipine with a resulting increase of AUC of approximately 40–60%, and a lower initial dose may be required.

Gender

There is no FDA guidance on the use of Amlodipine Besylate with respect to specific gender populations.

Race

There is no FDA guidance on the use of Amlodipine Besylate with respect to specific racial populations.

Renal Impairment

There is no FDA guidance on the use of Amlodipine Besylate in patients with renal impairment.

Hepatic Impairment

There is no FDA guidance on the use of Amlodipine Besylate in patients with hepatic impairment.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Amlodipine Besylate in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Amlodipine Besylate in patients who are immunocompromised.

Administration and Monitoring

Administration

Adults

  • The usual initial antihypertensive oral dose of Amlodipine besylate tablet, USP is 5 mg once daily, and the maximum dose is 10 mg once daily.
  • Small, fragile, or elderly patients, or patients with hepatic insufficiency may be started on 2.5 mg once daily and this dose may be used when adding Amlodipine besylate tablet, USP to other antihypertensive therapy.
  • Adjust dosage according to blood pressure goals. In general, wait 7 to 14 days between titration steps. Titrate more rapidly, however, if clinically warranted, provided the patient is assessed frequently.
  • Angina: The recommended dose for chronic stable or vasospastic angina is 5 to 10 mg, with the lower dose suggested in the elderly and in patients with hepatic insufficiency. Most patients will require 10 mg for adequate effect.
  • Coronary artery disease: The recommended dose range for patients with coronary artery disease is 5 to 10 mg once daily. In clinical studies, the majority of patients required 10 mg.

Children

  • The effective antihypertensive oral dose in pediatric patients ages 6–17 years is 2.5 mg to 5 mg once daily. Doses in excess of 5 mg daily have not been studied in pediatric patients.

DOSAGE FORMS AND STRENGTHS

2.5, 5, and 10 mg Tablets

Monitoring

  • Monitor for symptoms of hypotension and edema when amlodipine is coadministered with CYP3A4 inhibitors.

IV Compatibility

There is limited information regarding the compatibility of Amlodipine Besylate and IV administrations.

Overdosage

  • Overdosage might be expected to cause excessive peripheral vasodilation with marked hypotension and possibly a reflex tachycardia. In humans, experience with intentional overdosage of amlodipine is limited.
  • Single oral doses of amlodipine maleate equivalent to 40 mg amlodipine/kg and 100 mg amlodipine/kg in mice and rats, respectively, caused deaths. Single oral amlodipine maleate doses equivalent to 4 or more mg amlodipine/kg or higher in dogs (11 or more times the maximum recommended human dose on a mg/m2 basis) caused a marked peripheral vasodilation and hypotension.
  • If massive overdose should occur, initiate active cardiac and respiratory monitoring. Frequent blood pressure measurements are essential. Should hypotension occur, provide cardiovascular support including elevation of the extremities and the judicious administration of fluids. If hypotension remains unresponsive to these conservative measures, consider administration of vasopressors (such as phenylephrine) with attention to circulating volume and urine output. As amlodipine is highly protein bound, hemodialysis is not likely to be of benefit.

Pharmacology

Mechanism of Action

  • Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Negative inotropic effects can be detected in vitro but such effects have not been seen in intact animals at therapeutic doses. Serum calcium concentration is not affected by amlodipine. Within the physiologic pH range, amlodipine is an ionized compound (pKa=8.6), and its kinetic interaction with the calcium channel receptor is characterized by a gradual rate of association and dissociation with the receptor binding site, resulting in a gradual onset of effect.
  • Amlodipine is a peripheral arterial vasodilator that acts directly on vascular smooth muscle to cause a reduction in peripheral vascular resistance and reduction in blood pressure.
  • The precise mechanisms by which amlodipine relieves angina have not been fully delineated, but are thought to include the following:
  • Exertional Angina: In patients with exertional angina, amlodipine reduces the total peripheral resistance (after load) against which the heart works and reduces the rate pressure product, and thus myocardial oxygen demand, at any given level of exercise.
  • Vasospastic Angina: Amlodipine has been demonstrated to block constriction and restore blood flow in coronary arteries and arterioles in response to calcium, potassium epinephrine, serotonin, and thromboxane A2 analog in experimental animal models and in human coronary vessels in vitro. This inhibition of coronary spasm is responsible for the effectiveness of amlodipine in vasospastic (Prinzmetal's or variant) angina.

Structure

  • Amlodipine besylate is the besylate salt of amlodipine, a long-acting calcium channel blocker.
  • Amlodipine besylate is chemically described as 3-Ethyl-5-methyl (±)-2-[(2-aminoethoxy) methyl]-4-(2-chlorophenyl)-1, 4-dihydro-6-methyl-3, 5-pyridinedicarboxylate, monobenzenesulphonate. Its molecular formula is C20H25CIN2O5•C6H6O3S, and its structural formula is:
  • Amlodipine besylate is a white or almost white powder with a molecular weight of 567.1. It is slightly soluble in water and sparingly soluble in ethanol. Amlodipine besylate tablets, USP are formulated as white to off white tablets equivalent to 2.5, 5, and 10 mg of amlodipine for oral administration. In addition to the active ingredient, amlodipine besylate, each tablet contains the following inactive ingredients: microcrystalline cellulose, dibasic calcium phosphate dihydrate, sodium starch glycolate, colloidal silicon dioxide and magnesium stearate.

Pharmacodynamics

  • Hemodynamics: Following administration of therapeutic doses to patients with hypertension, amlodipine produces vasodilation resulting in a reduction of supine and standing blood pressures. These decreases in blood pressure are not accompanied by a significant change in heart rate or plasma catecholamine levels with chronic dosing. Although the acute intravenous administration of amlodipine decreases arterial blood pressure and increases heart rate in hemodynamic studies of patients with chronic stable angina, chronic oral administration of amlodipine in clinical trials did not lead to clinically significant changes in heart rate or blood pressures in normotensive patients with angina.
  • With chronic once daily oral administration, antihypertensive effectiveness is maintained for at least 24 hours. Plasma concentrations correlate with effect in both young and elderly patients. The magnitude of reduction in blood pressure with amlodipine is also correlated with the height of pretreatment elevation; thus, individuals with moderate hypertension (Diastolic pressure 105–114 mmHg) had about a 50% greater response than patients with mild hypertension (diastolic pressure 90–104 mmHg). Normotensive subjects experienced no clinically significant change in blood pressures (+1/–2 mmHg).
  • In hypertensive patients with normal renal function, therapeutic doses of amlodipine resulted in a decrease in renal vascular resistance and an increase in glomerular filtration rate and effective renal plasma flow without change in filtration fraction or proteinuria.
  • As with other calcium channel blockers, hemodynamic measurements of cardiac function at rest and during exercise (or pacing) in patients with normal ventricular function treated with amlodipine have generally demonstrated a small increase in cardiac index without significant influence on dP/dt or on left ventricular end diastolic pressure or volume. In hemodynamic studies, amlodipine has not been associated with a negative inotropic effect when administered in the therapeutic dose range to intact animals and man, even when coadministered with beta-blockers to man. Similar findings, however, have been observed in normal or well-compensated patients with heart failure with agents possessing significant negative inotropic effects.
  • Electrophysiologic Effects: Amlodipine does not change sinoatrial nodal function or atrioventricular conduction in intact animals or man. In patients with chronic stable angina, intravenous administration of 10 mg did not significantly alter A-H and H-V conduction and sinus node recovery time after pacing. Similar results were obtained in patients receiving amlodipine and concomitant beta-blockers. In clinical studies in which amlodipine was administered in combination with beta-blockers to patients with either hypertension or angina, no adverse effects on electrocardiographic parameters were observed. In clinical trials with angina patients alone, amlodipine therapy did not alter electrocardiographic intervals or produce higher degrees of AV blocks.

Pharmacokinetics

  • After oral administration of therapeutic doses of amlodipine, absorption produces peak plasma concentrations between 6 and 12 hours. Absolute bioavailability has been estimated to be between 64 and 90%. The bioavailability of amlodipine is not altered by the presence of food.
  • Amlodipine is extensively (about 90%) converted to inactive metabolites via hepatic metabolism with 10% of the parent compound and 60% of the metabolites excreted in the urine. Ex vivo studies have shown that approximately 93% of the circulating drug is bound to plasma proteins in hypertensive patients. Elimination from the plasma is biphasic with a terminal elimination half-life of about 30–50 hours. Steady-state plasma levels of amlodipine are reached after 7 to 8 days of consecutive daily dosing.
  • The pharmacokinetics of amlodipine are not significantly influenced by renal impairment. Patients with renal failure may therefore receive the usual initial dose.
  • Elderly patients and patients with hepatic insufficiency have decreased clearance of amlodipine with a resulting increase in AUC of approximately 40–60%, and a lower initial dose may be required. A similar increase in AUC was observed in patients with moderate to severe heart failure.

Pediatric Patients

  • Sixty-two hypertensive patients aged 6 to 17 years received doses of amlodipine between 1.25 mg and 20 mg. Weight adjusted clearance and volume of distribution were similar to values in adults.

Nonclinical Toxicology

Carcinogenesis, Mutagenesis, Impairment of Fertility

  • Rats and mice treated with amlodipine maleate in the diet for up to two years, at concentrations calculated to provide daily dosage levels of 0.5, 1.25, and 2.5 amlodipine mg/kg/day, showed no evidence of a carcinogenic effect of the drug. For the mouse, the highest dose was, on a mg/m2 basis, similar to the maximum recommended human dose of 10 mg amlodipine/day.3 For the rat, the highest dose was, on a mg/m2 basis, about twice the maximum recommended human dose.3
  • Mutagenicity studies conducted with amlodipine maleate revealed no drug related effects at either the gene or chromosome level.
  • There was no effect on the fertility of rats treated orally with amlodipine maleate (males for 64 days and females for 14 days prior to mating) at doses up to 10 mg amlodipine/kg/day (8 times the maximum recommended human dose3 of 10 mg/day on a mg/m2 basis).

3 Based on patient weight of 50 kg

Clinical Studies

Effects in Hypertension

Adult Patients

  • The antihypertensive efficacy of amlodipine besylate has been demonstrated in a total of 15 double-blind, placebo-controlled, randomized studies involving 800 patients on amlodipine and 538 on placebo. Once daily administration produced statistically significant placebo-corrected reductions in supine and standing blood pressures at 24 hours postdose, averaging about 12/6 mmHg in the standing position and 13/7 mmHg in the supine position in patients with mild to moderate hypertension. Maintenance of the blood pressure effect over the 24-hour dosing interval was observed, with little difference in peak and trough effect. Tolerance was not demonstrated in patients studied for up to 1 year. The 3 parallel, fixed dose, dose response studies showed that the reduction in supine and standing blood pressures was dose-related within the recommended dosing range. Effects on diastolic pressure were similar in young and older patients. The effect on systolic pressure was greater in older patients, perhaps because of greater baseline systolic pressure. Effects were similar in black patients and in white patients.

Pediatric Patients

  • Two hundred sixty-eight hypertensive patients aged 6 to 17 years were randomized first to amlodipine 2.5 or 5 mg once daily for 4 weeks and then randomized again to the same dose or to placebo for another 4 weeks. Patients receiving 2.5 mg or 5 mg at the end of 8 weeks had significantly lower systolic blood pressure than those secondarily randomized to placebo. The magnitude of the treatment effect is difficult to interpret, but it is probably less than 5 mmHg systolic on the 5 mg dose and 3.3 mmHg systolic on the 2.5 mg dose. Adverse events were similar to those seen in adults.

Effects in Chronic Stable Angina

  • The effectiveness of 5 to 10 mg/day of amlodipine in exercise-induced angina has been evaluated in 8 placebo-controlled, double-blind clinical trials of up to 6 weeks duration involving 1038 patients (684 amlodipine, 354 placebo) with chronic stable angina. In 5 of the 8 studies, significant increases in exercise time (bicycle or treadmill) were seen with the 10 mg dose. Increases in symptom-limited exercise time averaged 12.8% (63 sec) for amlodipine 10 mg, and averaged 7.9% (38 sec) for amlodipine 5 mg. Amlodipine 10 mg also increased time to 1 mm ST segment deviation in several studies and decreased angina attack rate. The sustained efficacy of amlodipine in angina patients has been demonstrated over long-term dosing. In patients with angina, there were no clinically significant reductions in blood pressures (4/1 mmHg) or changes in heart rate (+0.3 bpm).

Effects in Vasospastic Angina

  • In a double-blind, placebo-controlled clinical trial of 4 weeks duration in 50 patients, amlodipine therapy decreased attacks by approximately 4/week compared with a placebo decrease of approximately 1/week (p<0.01). Two of 23 amlodipine and 7 of 27 placebo patients discontinued from the study due to lack of clinical improvement.

Effects in Documented Coronary Artery Disease

  • In PREVENT, 825 patients with angiographically documented coronary artery disease were randomized to amlodipine (5 to 10 mg once daily) or placebo and followed for 3 years. Although the study did not show significance on the primary objective of change in coronary luminal diameter as assessed by quantitative coronary angiography, the data suggested a favorable outcome with respect to fewer hospitalizations for angina and revascularization procedures in patients with CAD.
  • CAMELOT enrolled 1318 patients with CAD recently documented by angiography, without left main coronary disease and without heart failure or an ejection fraction <40%. Patients (76% males, 89% Caucasian, 93% enrolled at US sites, 89% with a history of angina, 52% without PCI, 4% with PCI and no stent, and 44% with a stent) were randomized to double-blind treatment with either amlodipine (5 to 10 mg once daily) or placebo in addition to standard care that included aspirin (89%), statins (83%), beta-blockers (74%), nitroglycerin (50%), anti-coagulants (40%), and diuretics (32%), but excluded other calcium channel blockers. The mean duration of follow-up was 19 months. The primary endpoint was the time to first occurrence of one of the following events: hospitalization for angina pectoris, coronary revascularization, myocardial infarction, cardiovascular death, resuscitated cardiac arrest, hospitalization for heart failure, stroke/TIA, or peripheral vascular disease. A total of 110 (16.6%) and 151 (23.1%) first events occurred in the amlodipine and placebo groups, respectively, for a hazard ratio of 0.691 (95% CI: 0.540–0.884, p = 0.003). The primary endpoint is summarized in Figure 1 below. The outcome of this study was largely derived from the prevention of hospitalizations for angina and the prevention of revascularization procedures (see Table 1). Effects in various subgroups are shown in Figure 2.
  • In an angiographic substudy (n=274) conducted within CAMELOT, there was no significant difference between amlodipine and placebo on the change of atheroma volume in the coronary artery as assessed by intravascular ultrasound.
  • Table 1 below summarizes the significant composite endpoint and clinical outcomes from the composites of the primary endpoint. The other components of the primary endpoint including cardiovascular death, resuscitated cardiac arrest, myocardial infarction, hospitalization for heart failure, stroke/TIA, or peripheral vascular disease did not demonstrate a significant difference between amlodipine and placebo.

Studies in Patients with Heart Failure

  • Amlodipine has been compared to placebo in four 8–12 week studies of patients with NYHA Class II/III heart failure, involving a total of 697 patients. In these studies, there was no evidence of worsened heart failure based on measures of exercise tolerance, NYHA classification, symptoms, or left ventricular ejection fraction. In a long-term (follow-up at least 6 months, mean 13.8 months) placebo-controlled mortality/morbidity study of amlodipine 5 to 10 mg in 1153 patients with NYHA Classes III (n=931) or IV (n=222) heart failure on stable doses of diuretics, digoxin, and ACE inhibitors, amlodipine had no effect on the primary endpoint of the study which was the combined endpoint of all-cause mortality and cardiac morbidity (as defined by life-threatening arrhythmia, acute myocardial infarction, or hospitalization for worsened heart failure), or on NYHA classification, or symptoms of heart failure. Total combined all-cause mortality and cardiac morbidity events were 222/571 (39%) for patients on amlodipine and 246/583 (42%) for patients on placebo; the cardiac morbid events represented about 25% of the endpoints in the study.
  • Another study (PRAISE-2) randomized patients with NYHA Class III (80%) or IV (20%) heart failure without clinical symptoms or objective evidence of underlying ischemic disease, on stable doses of ACE inhibitors (99%), digitalis (99%), and diuretics (99%), to placebo (n=827) or amlodipine (n=827) and followed them for a mean of 33 months. There was no statistically significant difference between amlodipine and placebo in the primary endpoint of all-cause mortality (95% confidence limits from 8% reduction to 29% increase on amlodipine). With amlodipine there were more reports of pulmonary edema.

How Supplied

2.5 mg Tablets

  • Amlodipine Besylate Tablets, USP - 2.5 mg (Amlodipine besylate USP equivalent to 2.5 mg of Amlodipine per tablet) are supplied as white to off white round tablets with "126" debossed on one side and "C" on other side and supplied as follows:

NDC 69097-126-05 Bottle of 90

NDC 69097-126-15 Bottle of 1000

5 mg Tablets

  • Amlodipine Besylate Tablets, USP - 5 mg (Amlodipine besylate USP equivalent to 5 mg of Amlodipine per tablet) are supplied as white to off white round tablets with "127" debossed on one side and "C" on other side and supplied as follows:

NDC 69097-127-05 Bottle of 90

NDC 69097-127-15 Bottle of 1000

10 mg Tablets

  • Amlodipine Besylate Tablets, USP - 10 mg (Amlodipine besylate USP equivalent to 10 mg of Amlodipine per tablet) are supplied as white to off white round tablets with "128" debossed on one side and "C" on other side and supplied as follows:

NDC 69097-128-05 Bottle of 90

NDC 69097-128-15 Bottle of 1000

Storage

Storage

  • Store at 20°C to 25°C (68°F to 77°F). [See USP controlled room temperature.] Protect from light and moisture.

Images

Drug Images

{{#ask: Page Name::Amlodipine Besylate |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Amlodipine Besylate |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

Precautions with Alcohol

Alcohol-Amlodipine Besylate interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

Norvasc

Look-Alike Drug Names

There is limited information regarding Amlodipine Besylate Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.